首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the neuropeptide bradykinin (BK) and its natural proteolytic fragment Des-Arg9 bradykinin (DBK) on DNA synthesis and phospholipase C activation were investigated in cultured mesangial cells. DBK, acting through a distinct bradykinin receptor, induced DNA synthesis in serum-starved cultured mesangial cells. The effect of DBK was dose dependent (ED50 = 0.6 microM) and was strongly potentiated by insulin. Under the same conditions, BK had no effect. Down-regulation of protein kinase C by long term pretreatment with 12-O-tetradecanoylphorbol-13-acetate (TPA) markedly reduced DBK-induced DNA synthesis. In the same way, co-incubation with the protein kinase C inhibitor staurosporine potently attenuated the response to DBK, suggesting a role of protein kinase C in DBK-induced mitogenesis. Analysis of phosphoproteins from 32P-labeled mesangial cells by two-dimensional gel electrophoresis revealed that DBK, like TPA but not BK, induced a net increase in the phosphorylation of an acidic cellular protein migrating with an apparent Mr = 80,000 (termed 80K), identified as a major and specific substrate of protein kinase C. Phosphorylation of the 80K protein by DBK or TPA was completely abolished in cells depleted of protein kinase C. DBK and TPA also induced an increase in phosphorylation of an Mr = 28,000 protein. Moreover, DBK but not TPA stimulated the phosphorylation of an Mr = 18,000 protein in normal as well as in protein kinase C-depleted cells. Analysis of phospholipase C activation revealed that DBK induced a large and sustained increase in diacylglycerol production and inositol phosphate accumulation over a 10-min incubation. BK had only a minor effect on both parameters. These results demonstrate that DBK, but not BK, modulates DNA synthesis through protein kinase C activation in cultured mesangial cells.  相似文献   

2.
The results presented here demonstrate that bradykinin, acting through a B2 subtype receptor, induces a unique pattern of early signals in quiescent Swiss 3T3 cells. Bradykinin caused a rapid mobilization of calcium from internal stores, as judged by measurements of intracellular Ca2+ concentration in fura-2-loaded cells and by 45Ca2+ efflux from radiolabeled cells. Analysis of phosphoproteins from 32P-labeled Swiss 3T3 cells by one- and two-dimensional gel electrophoresis revealed that bradykinin stimulated transient phosphorylation of an acidic cellular protein migrating with an apparent Mr = 80,000 (termed 80K), identified as a major and specific substrate of protein kinase C. Down-regulation of protein kinase C by pretreatment with phorbol 12,13-dibutyrate (PDBu) completely abolished the increase in 80K phosphorylation. In contrast to the sustained effect induced by bombesin, vasopressin, or PDBu, the stimulation of 80K phosphorylation by bradykinin reached a maximum after 1 min of incubation, and then it rapidly decreased to almost basal levels. Furthermore, bradykinin did not induce protein kinase C-mediated events such as inhibition of 125I-epidermal growth factor binding or enhancement of cAMP accumulation. Bombesin and vasopressin elicited both responses in parallel cultures. Bradykinin induced rapid accumulation of total inositol phosphates in cells labeled with myo-[3H]inositol. In contrast to bombesin and vasopressin which stimulated a linear increase in inositol phosphate accumulation over a 10-min period, the effect of bradykinin reached a plateau after 2.5 min of incubation with no further increase up to 10 min. The results demonstrate that the early signaling events triggered by bradykinin can be distinguished from those elicited by bombesin and vasopressin in Swiss 3T3 cells.  相似文献   

3.
In bovine aortic endothelial cells, ATP (10-100 microM) and bradykinin (0.1-1.0 microM) enhanced the phosphorylation of two major protein substrates with apparent molecular masses of 95 and 28 kDa. The action of ATP involved P2y purinoceptors. The kinetics were distinct for the two phosphopeptides. The phosphorylation of the 95-kDa protein was rapid (within 30 s) but transient (maintained for only 2 min). This time course agrees with that observed for the increase of the cytosolic Ca2+ level induced by ATP in these cells. Ionophore A23187 (greater than or equal to 100 nM) induced this phosphorylation for a longer period (5-10 min), whereas phorbol 12-myristate 13-acetate (PMA) was completely inactive. The enhancement of the 28-kDa protein phosphorylation was detectable after a 5-min lag and was maintained for at least 20 min. PMA (50 nM) stimulated weakly the phosphorylation of the 28-kDa protein, whereas A23187 (100-300 nM) was even more effective than ATP and bradykinin. The 95-kDa phosphoprotein seems to be related to a 100-kDa substrate of calmodulin-dependent protein kinase III recently identified as elongation factor-2. The 28-kDa protein, which was resolved as three variants in bidimensional gel electrophoresis, appears very similar to a slightly heavier phosphoprotein from thrombin-stimulated human platelets. In addition, bidimensional electrophoresis allowed the detection of at least 10 substrates (from 18 to 46 kDa) whose phosphorylation was enhanced equally well by ATP, bradykinin, and A23187 and only partially by PMA. In conclusion, protein phosphorylation induced by ATP and bradykinin in aortic endothelial cells seems to be catalyzed mostly by Ca2+-dependent kinases, distinct from protein kinase C.  相似文献   

4.
K Hirata  H Akita  M Yokoyama 《FEBS letters》1991,287(1-2):181-184
Vascular endothelial cells, in response to various neurohumoral and physical stimuli, produce an endothelium-derived relaxing factor, a substance which regulates vascular tone. We have demonstrated that oxidized low density lipoprotein (LDL) inhibits endothelium-dependent relaxation. We studied the effect of oxidized LDL on inositol phosphates formation stimulated with bradykinin (BK) in cultured bovine aortic endothelial cells. BK elicited a rapid generation of inositol phosphates from inositol phospholipids. Accumulation of inositol 1,4,5-trisphosphate (IP3) stimulated with BK (0.1 microM) was markedly inhibited by oxidized LDL. However, native LDL had little effect on BK-induced accumulation of IP3. From these results, oxidized LDL inhibits receptor-mediated phosphoinositides hydrolysis and modulates the endothelial function.  相似文献   

5.
Western blotting with anti-phosphotyrosine antibodies was employed in order to study insulin-dependent protein tyrosine phosphorylation in intact Fao cells. In insulin-treated cells, a prominent 180-kDa protein underwent tyrosine phosphorylation, which peaked at 45 s and then rapidly declined. Pretreatment of the cells with 1 mM Bt2cAMP or 0.16 microM 12-O-tetradecanoylphorbol-13-acetate inhibited the insulin-dependent phosphorylation of pp 180, while 1 mM vanadate or 3 mM H2O2 markedly potentiated it. These results indicate that phosphorylation of pp 180 is respectively regulated by agents that are known to synergize with or antagonize the action of the insulin receptor kinase. pp 180 is therefore likely to mediate physiological functions of this receptor kinase. Incubation of Fao cells with 3 mM H2O2 for 30 min prior to their treatment with insulin for 45 s allowed the detection of additional, previously undescribed, proteins pp 150, 114, 100, 85, 68, and 56 kDa that underwent insulin-dependent tyrosine phosphorylation. The potentiating effects of H2O2 were time- and dose-dependent and could be reversed by 2 mM dithiothreitol. Proteins phosphorylated in response to H2O2 plus insulin maintained their fully phosphorylated state for at least 20 min. We suggest that these phosphoproteins are potential physiological substrates for the insulin receptor kinase.  相似文献   

6.
The phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) caused phosphorylation of phosphoproteins of 56-kDa which co-migrated with and had identical pI values to subunits of tyrosine hydroxylase. The phosphorylation was closely correlated with an increase of [3H]3,4-dihydroxyphenylalanine (DOPA) production which is a reflection of increased tyrosine hydroxylase activity. Only those phorbol esters which activate protein kinase C induced phosphorylation of the 56-kDa proteins and increased [3H]DOPA production. Neither TPA-induced phosphorylation of the 56-kDa proteins nor TPA-induced enhancement of [3H] DOPA production required extracellular Ca2+. TPA caused increases in phosphorylation of the 56-kDa proteins and increases in [3H]DOPA production over similar concentration ranges (10-1000 nM). TPA did not increase cellular cAMP. The data suggest that phorbol ester-induced phosphorylation of intracellular tyrosine hydroxylase, possibly by protein kinase C, results in increased tyrosine hydroxylase activity.  相似文献   

7.
Protein tyrosine phosphorylation in rabbit peritoneal neutrophils was examined by immunoblotting with antibodies specific for phosphotyrosine. Stimulation of the neutrophils with chemotactic factor fMet-Leu-Phe (10 nM) caused rapid increases of tyrosine phosphorylation of several proteins with apparent molecular masses of (Group A) 54-58 kDa and 100-125 kDa and (Group B) 36-41 kDa. Stimulation of Group A proteins was observed by fMet-Leu-Phe (10 nM, maximum at 20 s) and A23187 (1 microM, 1 min). Stimulation of Group B proteins was observed by fMet-Leu-Phe (ED50 0.15 nM, 1 min), leukotriene B4 (ED50 0.15 nM, 1 min), phorbol 12-myristate 13-acetate (PMA) (ED50 25 ng/ml, 10 min) and partially by ionophore A23187 (1 microM, 1 min). Pretreatment of the cell with the protein kinase inhibitor H-7 (25 microM, 5 min) and PMA (0.1 microgram/ml, 3 min) partially inhibited the fMet-Leu-Phe effect. However, pretreatment of the cells with quin 2/AM (20 microM, 10 min) completely inhibited the fMet-Leu-Phe effect. The results indicate that rapid regulation of tyrosine phosphorylation is an early event occurring in stimulated neutrophils. Furthermore the effect of fMet-Leu-Phe on tyrosine phosphorylation may require Ca2+ mobilization and may partially require the activity of H-7-sensitive protein kinases.  相似文献   

8.
Vasopressin and bradykinin bind to receptors coupled to GTP-binding proteins and rapidly induce polyphosphoinositide breakdown leading to Ca2+ mobilization and activation of protein kinase C. Both peptides are known to induce mitogenesis in the presence of growth factors that act through receptors with intrinsic tyrosine kinase activity. Surprisingly, addition of a combination of vaso-pressin and bradykinin to Swiss 3T3 cells synergistically stimulates DNA synthesis in the absence of any other growth factors. This effect is induced at nanomolar concentrations of the peptides and could be inhibited by addition of specific receptor antagonists or broad spectrum neuropeptide antagonists. Bradykinin, which stimulates transient activation of protein kinase C, induces DNA synthesis in synergy with substances that cause long-term activation of protein kinase C, like vasopression or phorbol 12, 13-dibutyrate. Down-regulation of protein kinase C inhibited the induction of mitogenesis by the combination of vasopressin and bradykinin, thus demonstrating the importance of long-term activation of this enzyme for DNA synthesis. Analysis of tyrosine phosphorylated proteins of Mr = 110,000–130,000 and Mr = 70,000–80,000 revealed a biphasic response after stimulation with bradykinin, whereas the response induced by vasopressin declined after the initial maximum. The combination of bradykinin with vasopressin caused an enhanced and prolonged increase in tyrosine phosphorylation of these proteins as compared with the individual peptides. Inhibition of tyrosine phosphorylation by tyrphostin was paralleled by inhibition of DNA synthesis. Together, these results demonstrate synergistic stimulation of DNA synthesis by bradykinin and vasopressin via prolonged stimulation of multiple signaling pathways and imply that the interactive effects of Ca2+ -mobilizing peptides on mitogenesis may be more general than previously thought. © 1994 Wiley-Liss, Inc.  相似文献   

9.
Protein phosphorylation was studied during platelet stimulation in two ranges of ionized [Ca2+]. At ionized [Ca2+]i< or = 1 microM, proteins were phosphorylated. At ionized [Ca2+]i > or = 4 microM, phosphoproteins disappeared. Protein dephosphorylation was prevented by the combined action of calpeptin and phosphatase inhibitors. Protein tyrosine phosphatase activity was stimulated regardless of the ionized [Ca2+] level. Protein tyrosine kinase activity was stimulated at ionized [Ca2+]i < or =1 microM, whereas at ionized [Ca2+]i > or =4 microM, no protein tyrosine kinase activity was observed except in the presence of calpeptin. Thus, the massive tyrosine phosphoprotein disappearance observed at a high ionized [Ca2+]i resulted not only in protein tyrosine phosphatase activation, but also in calpain-induced protein tyrosine kinase inactivation.  相似文献   

10.
Various inhibitors of phospholipases and serine/threonine kinases were used to determine whether activation of these enzymes was necessary for Ag-induced exocytosis in rat basophilic RBL-2H3 cells. Several inhibitors, however, inhibited events other than those intended in stimulated RBL-2H3 cells. Staurosporine and KT5926, inhibitors of protein kinase C and myosin L chain kinase, respectively, suppressed, in a dose-dependent manner, hydrolysis of inositol phospholipids, release of arachidonic acid, and exocytosis in cells stimulated with Ag or Ca(2+)-ionophore, A23187. Such generalized inhibition could also be induced in permeabilized cells with several peptide inhibitors of tyrosine kinases. All the above inhibitors suppressed Ag-induced tyrosine phosphorylation of several proteins, including phospholipase C gamma 1, and this suppression correlated with the inhibition of hydrolysis of inositol phospholipids and exocytosis. Three inhibitors of protein kinase C, Ro31-7549, calphostin C, and a peptide inhibitor, did not inhibit the tyrosine phosphorylation of proteins but selectively blocked exocytosis, presumably, by inhibiting protein kinase C. Thus, both tyrosine phosphorylation of proteins and the activation of protein kinase C were necessary events for hydrolysis of inositol phospholipids and exocytosis.  相似文献   

11.
Interleukin 2 (IL-2) has been shown to stimulate tyrosine phosphorylation of a number of proteins requiring only the p75 beta chain of the IL-2 receptor. Unlike the receptors for epidermal growth factor, insulin, and other growth factors, the p55-alpha and p75-beta chains of the IL-2 receptor have no tyrosine protein kinase domain suggesting that the IL-2 receptor complex activates protein kinases by a unique mechanism. The activation of tyrosine kinases by IL-2 in situ was studied and using a novel methodology has shown tyrosine kinase activity associated with the purified IL-2R complex in vitro. IL-2 stimulated the in situ tyrosine phosphorylation of 97 kDa and 58 kDa proteins which bound to poly(Glu,Tyr)4:1, a substrate for tyrosine protein kinases, suggesting these proteins had characteristics found in almost all tyrosine kinases. IL-2 was found to stimulate tyrosine protein kinase activity in receptor extracts partially purified from human T lymphocytes and the YT cell line. Biotinylated IL-2 was used to precipitate the high-affinity-receptor complex and phosphoproteins associated with it. The data indicated that the 97-kDa and 58-kDa phosphotyrosyl proteins were tightly associated with the IL-2 receptor complex. These proteins were phosphorylated on tyrosine residues by IL-2 stimulation of intact cells and ligand treatment of in vitro receptor extracts. Furthermore, the 97-kDa and 58-kDa proteins were found in streptavidin-agarose/biotinylated IL-2 purified receptor preparations and showed high affinity for tyrosine kinase substrate support matrixes. The experiments suggest that these two proteins are potential candidates for tyrosine kinases involved in the IL-2R complex signal transduction process.  相似文献   

12.
Angiotensin II (AII, 100 nM) stimulation of bovine adrenal chromaffin cells (BACCs) produced angiotensin II receptor subtype 1 (AT1)-mediated increases in extracellular regulated protein kinase 1/2 (ERK1/2) and stress-activated p38MAPK (p38 kinase) phosphorylation over a period of 10 min. ERK1/2 and p38 kinase phosphorylation preceded Ser31 phosphorylation on tyrosine hydroxylase (TOH). The inhibitors of mitogen-activated protein kinase kinase 1/2 (MEK1/2) activation, PD98059 (0.1-50 microM) and UO126 (0.1-10 microM), dose-dependently inhibited both ERK2 and Ser31 phosphorylation on TOH in response to AII, suggesting MEK1/2 involvement. The p38 kinase inhibitor SB203580 (20 microM, 30 min) abolished Ser31 and Ser19 phosphorylation on TOH and partially inhibited ERK2 phosphorylation produced by AII. In contrast, 1 microM SB203580 did not affect AII-stimulated TOH phosphorylation, but fully inhibited heat shock protein 27 (HSP27) phosphorylation produced by AII. Also, 1 microM SB203580 fully inhibited Ser19 phosphorylation on TOH and HSP27 phosphorylation in response to anisomycin (30 min, 10 microg/mL). The results suggest that ERKs mediate Ser31 phosphorylation on TOH in response to AII, but p38 kinase is not involved. Previous studies suggesting a role for p38 kinase in the phosphorylation of Ser31 are explained by the non-specific effects of 20 microM SB203580 in BACCs. The p38 kinase pathway is able to phosphorylate Ser19 on TOH in response to anisomycin, but does not do so in response to AII.  相似文献   

13.
Rat liver soluble proteins were phosphorylated by endogenous protein kinase with [gamma-32P]ATP. Proteins were separated in dodecyl sulphate slab gels and detected with the aid of autoradiography. The relative role of cAMP-dependent, cAMP-independent and Ca2+-activated protein kinases in the phosphorylation of soluble proteins was investigated. Heat-stable inhibitor of cAMP-dependent protein kinase inhibits nearly completed the phosphorylation of seven proteins, including L-type pyruvate kinase. The phosphorylation of eight proteins is not influenced by protein kinase inhibitor. The phosphorylation of six proteins, including phosphorylase, is partially inhibited by protein kinase inhibitor. These results indicate that phosphoproteins of rat liver can be subdivided into three groups: phosphoproteins that are phosphorylated by (a) cAMP-dependent protein kinase or (b) cAMP-independent protein kinase; (c) phosphoproteins in which both cAMP-dependent and cAMP-independent protein kinase play a role in the phosphorylation. The relative phosphorylation rate of substrates for cAMP-dependent protein kinase is about 15-fold the phosphorylation rate of substrates for cAMP-independent protein kinase. The Km for ATP of cAMP-dependent protein kinase and phosphorylase kinase is 8 microM and 38 microM, respectively. Ca2+ in the micromolare range stimulates the phosphorylation of (a) phosphorylase, (b) a protein with molecular weight of 130 000 and (c) a protein with molecular weight of 15 000. The phosphate incorporation into a protein with molecular weight of 115 000 is inhibited by Ca2+. Phosphorylation of phosphorylase and the 15 000-Mr protein in the presence of 100 microM Ca2+ could be completely inhibited by trifluoperazine. It can be concluded that calmodulin is involved in the phosphorylation of at least two soluble proteins. No evidence for Ca2+-stimulated phosphorylation of subunits of glycolytic or gluconeogenic enzymes, including pyruvate kinase, was found. This indicates that it is unlikely that direct phosphorylation by Ca2+-dependent protein kinases is involved in the stimulation of gluconeogenesis by hormones that act through a cAMP-independent, Ca2+-dependent mechanism.  相似文献   

14.
Treatment of rat basophilic leukemia cells (RBL-2H3) with antigen or ionophore leads to an increase in cellular protein tyrosine phosphorylation. Three major proteins of molecular mass of 72, 92, and 110 kDa are targeted by antigen and a 110-kDa species by ionophore, A23187. The antigen- and ionophore-induced tyrosine phosphorylation responses are dose-dependent and correlate with increases in serotonin release from activated cells. The presence of extracellular Ca2+ is required to sustain the antigen- and ionophore-stimulated tyrosine phosphorylation as well as mediator release. A protein tyrosine kinase inhibitor, RG 50864, differentially inhibits the antigen-stimulated tyrosine phosphorylation in the decreasing order of 72, 91, and 110-kDa proteins. The compound inhibition of the 72-kDa protein tyrosine phosphorylation correlates with that of serotonin release. In ionophore-stimulated cells, the inhibition of the 110-kDa protein tyrosine phosphorylation and serotonin release by RG 50864 occurs in parallel. These results suggest that the 72- and 110-kDa phosphoproteins may represent the respective regulators of serotonin release in antigen- and ionophore-activated cells. The 110-kDa tyrosine phosphorylated proteins from antigen- and ionophore-stimulated cells exhibit identical electrophoretic mobility and V8 protease-generated phosphopeptide maps, suggesting that these two proteins may be the same. These results provide new evidence that both the stimulatory actions of antigen and ionophore on mediator release are mediated through enhanced protein tyrosine phosphorylation in RBL-2H3 cells. Significantly, the present study suggests the presence of multiple tyrosine phosphorylation signaling pathways in RBL cells and that their selective utility may be determined by the nature of the stimulus.  相似文献   

15.
We have used an antibody specific for phosphotyrosine to investigate protein phosphorylation on tyrosine during hormone-induced maturation of starfish oocytes. Analysis of immunoprecipitates from cortices of in vivo labeled Marthasterias glacialis oocytes revealed the presence of labeled phosphotyrosine-containing proteins only after hormone addition. Six major phosphoproteins of 195, 155, 100, 85, 45, and 35 kDa were detected. Total activity in immunoprecipitates increased until first polar body emission and was greatly reduced upon completion of meiosis but some proteins exhibited different kinetics. The labeling of the 155-kDa protein reached a maximum at germinal vesicle breakdown, while the 35-kDa appeared later and disappeared after polar body emission. Similar results were obtained with Asterias rubens oocytes. In vitro phosphorylation of cortices showed that tyrosine kinase activity is a major protein kinase activity in this fraction, the main endogenous substrate being a 68-kDa protein. The proteins phosphorylated on tyrosine in vitro were almost similar in extracts from oocytes treated or not with the hormone.  相似文献   

16.
The relative capacities of muscarinic cholinergic receptor (MR) and bradykinin (BK)-receptor activation to increase phosphoinositide hydrolysis and to increase cytosolic Ca2+ were compared in NG108-15 neuroblastoma x glioma and 1321N1 human astrocytoma cells. In 1321N1 cells, the muscarinic cholinergic agonist carbachol and BK each stimulated a concentration-dependent accumulation of inositol phosphates (K0.5 approximately 10 microM and approximately 10 nM respectively) and a rapid increase in cytosolic Ca2+ as determined by quin2 fluorescence. In NG108-15 cells, BK alone stimulated a pertussis-toxin-insensitive accumulation of inositol phosphates (K0.5 approximately 10 nM) under conditions in which pertussis toxin completely inhibited MR-mediated inhibition of adenylate cyclase. BK also stimulated a rapid increase in cytosolic Ca2+ in NG108-15 cells. In contrast, no MR-mediated increase in phosphoinositide hydrolysis or change in cytosolic Ca2+ concentration was observed in NG108-15 cells. These results support the idea that MR selectively interact with either the cyclic AMP or the inositol phosphate second-messenger systems.  相似文献   

17.
Gangliosides have profound effects on protein phosphorylation in skeletal muscle. Addition of GT1b to guinea pig muscle extract stimulated the phosphorylation of a 98-kDa protein 4-8-fold. In contrast, Ca2+ stimulated the phosphorylation of this protein and two other proteins with apparent Mr of 107,000 and 145,000, respectively. Addition of GT1b in the presence of Ca2+ further enhanced the phosphorylation of the 98-kDa protein but completely inhibited the phosphorylation of both the 107- and the 145-kDa proteins. The nature of the ganglioside-modulated 98-kDa protein has been characterized. Results on the pH activity profiles and the requirements of Ca2+ for phosphorylation suggest that this phosphoprotein may correspond to glycogen phosphorylase. Phosphorylation of purified rabbit muscle phosphorylase b by nonactivated phosphorylase kinase was stimulated by GT1b. This stimulation was in part due to an activation of the kinase activity. Autophosphorylation of highly purified phosphorylase kinase was increased 4-10-fold in the presence of GT1b. Polysialogangliosides were more potent than monosialogangliosides in stimulating the autocatalytic activity, whereas asialo-GM1, colominic acid, N-acetylneuraminic acid, and phosphatidylserine were ineffective. The effects of gangliosides were dose-dependent. At physiological pH, the concentrations of GT1b required for half-maximal stimulation of the autophosphorylation of phosphorylase kinase were 6.4 microM in the absence of Ca2+ and 1.3 microM when the divalent cation was present. These findings suggest that gangliosides may play a role as biomodulators in the regulation of glycogenolysis in muscle.  相似文献   

18.
The phosphorylation activity associated with a neurofilament-enriched cytoskeletal preparation isolated from the squid giant axon has been studied and compared to the phosphorylation activities in intact squid axoplasm. The high molecular weight (greater than 300 kDa) and 220-kDa neurofilament proteins are the major endogenous substrates for the kinases in the axoplasm and the neurofilament preparation, whereas 95- and less than 60-kDa proteins are the major phosphoproteins in the ganglion cell preparation. The squid axon neurofilament (SANF) protein kinase activity appeared to be both cAMP and Ca2+ independent and could phosphorylate both casein (Km = 40 microM) and histone (Km = 180 microM). The SANF protein kinase could utilize either ATP or GTP in the phosphotransferase reaction, with a Km for ATP of 58 microM and 129.4 microM for GTP when casein was used as the exogenous substrate; and 25 and 98.1 microM for ATP and GTP, respectively, when the endogenous neurofilament proteins were used as substrates. The SANF protein kinase activity was only slightly inhibited by 2,3-diphosphoglycerate and various polyamines at high concentrations and was poorly inhibited by heparin (34% inhibition at 100 micrograms/ml). The failures of heparin to significantly inhibit and the polyamines to stimulate the SANF protein kinase indicate that it is not a casein type II kinase. The relative efficacy of GTP as a phosphate donor indicates that SANF protein kinase differs from known casein type I kinases. Phosphorylated (32P-labeled) neurofilament proteins were only slightly dephosphorylated in the presence of axoplasm or stellate ganglion cell supernatants, and the neurofilament-enriched preparation did not dephosphorylate 32P-labeled neurofilament proteins. The axoplasm and neurofilament preparations had no detectable protein kinase inhibitor activity, but a strong inhibitor activity, which was not dialyzable but was heat inactivatable, was found in ganglion cells. This inhibitor activity may account for the low phosphorylation activity found in the stellate ganglion cells and may indicate inhibitory regulation of SANF protein kinase activity in the ganglion cell bodies.  相似文献   

19.
It has been suggested that bradykinin (BK) plays an important role in regulating neointimal formation after vascular injury. However, implication of BK in the growth of rat vascular smooth muscle cells (VSMCs) is controversial. Therefore, we examined the mitogenic effect of BK on VSMCs associated with activation of mitogen-activated protein kinase (MAPK). Both [(3)H]thymidine incorporation and p42/p44 MAPK phosphorylation were activated by BK in time- and concentration-dependent manners. Pretreatment of these cells with neither pertussis toxin nor cholera toxin attenuated the BK-induced responses. Pretreatment of VSMCs with Hoe 140 (a selective B(2) receptor antagonist), U73122 (an inhibitor of phospholipase C), and BAPTA/AM (an intracellular Ca(2+) chelator) inhibited both [(3)H]thymidine incorporation and p42/p44 MAPK phosphorylation in response to BK. BK-induced [(3)H]thymidine incorporation and p42/p44 MAPK phosphorylation were inhibited by pretreatment of VSMCs with tyrosine kinase inhibitors (genistein and herbimycin A), protein kinase C (PKC) inhibitors (staurosporine, Go-6976, and Ro-318220), an MAPK kinase inhibitor (PD98059), and a p38 MAPK inhibitor (SB203580). Overexpression of the dominant negative mutants, H-Ras-15A and Raf-N4, suppressed p42/p44 MAPK activation induced by BK and PDGF-BB, indicating that Ras and Raf may be required for activation of these kinases. From these results, we concluded that the mitogenic effect of BK is mediated through activation of the Ras/Raf/MEK/MAPK pathway similar to that of PDGF-BB. BK-mediated MAPK activation was modulated by Ca(2+), PKC, and tyrosine kinase all of which are associated with cell proliferation in rat cultured VSMCs.  相似文献   

20.
Calcium/Ganglioside-Dependent Protein Kinase Activity in Rat Brain Membrane   总被引:14,自引:11,他引:3  
The effects of gangliosides on phosphorylation were studied in rat brain membrane. Gangliosides stimulated phosphorylation only in the presence of Ca2+ with major phosphoproteins of 45,000, 50,000, 60,000, and 80,000 daltons and high-molecular-weight species. In addition, gangliosides inhibited the phosphorylation of three proteins with molecular weights of 15,000, 20,000, and 78,000 daltons. The two low-molecular-weight proteins comigrated with rat myelin basic proteins. Ganglioside stimulation was dependent on the formation of a Ca2+-ganglioside complex since the calcium salt of gangliosides stimulated phosphorylation maximally. Disialo and trisialo gangliosides were more potent stimulators of kinase activity than the monosialo GM1 X GD1a was the most potent activator tested. Asialo-GM1, cerebroside, sialic acid, neuraminyllactose, sulfatide, and the acidic phospholipids phosphatidylserine and phosphatidylinositol did not stimulate kinase activity. The Ca2+-dependent, ganglioside-stimulated phosphorylation was qualitatively similar to the pattern for calmodulin-dependent phosphorylation. However, while calmodulin-dependent kinase activity was inhibited with an IC50 of 10 microM trifluoperazine, ganglioside-stimulated kinase was inhibited with an IC50 of 200 microM trifluoperazine. These results indicate that gangliosides have complex effects on membrane-associated kinase activities and suggest that Ca2+-ganglioside complexes are potent stimulators of membrane kinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号