首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The 5S ribosomal RNA genes have been localized in mitotic and lampbrush chromosomes of Triturus vulgaris meridionalis by in situ hybridization. These genes are clustered in a single locus in an intercalary position of the long arm of chromosome XI. In lampbrush chromosome XI the 5S genes are located near a loop landmark mapped at 66 units.  相似文献   

4.
Summary Various pretreatments of metaphase spreads were examined to obtain optimal DNA labelling patterns while maintaining chromosome integrity duringin situ hybridization procedures. Preparations of African green monkey (AGM) chromosomes fixed in methanol-acetic acid (CV-1 cell line) were treated by coating with Denhardt's solution, dilute gelatin-chrome alum, nonfat instant dry milk dissolved in saline—citrate solution (SSC) and/or acetylation prior to denaturation of chromosomal DNA in 70% formamide-2 x SSC for 2 min at 70° C. A3H-labelled, cloned DNA fragment of the highly, repetitive AGM component DNA was hybridized to the chromosomes by incubation at 45° C for 16 h. Treatment with gelatinchrome alum prior to denaturation greatly improved chromosome morphology and decreased background, but reduced pericentromeric labelling. Sequential treatment with 5 x Denhardt's solution followed by gelatin-chrome alum resulted in enhanced specificity of labelling and excellent chromosome morphology, as well as reduced levels of background. Acetylation had little effect after pretreatment with gelatin-chrome alum, but reduced background levels after pretreatment with Denhardt's solution. Chromosomes treated with Denhardt's solution plus gelatin-chrome alum can be routinely G-banded using trypsin afterin situ hybridization.  相似文献   

5.
6.
The localization of the 28S, 18S and 5S rRNA genes in the mitotic chromosomes, and of the 5S rRNA genes in the lampbrush chromosomes of Triturus marmoratus has been studied by RNA/DNA in situ hybridization. The 28S and 18S genes are located in a subterminal position, and the 5S genes in an intermediate position, on the long arm of mitotic chromosome X. In situ hybridization on lampbrush chromosomes has shown that the 5S genes are located at or near a dense matrix loop landmark. The cytogenetic implications of these findings are briefly discussed.  相似文献   

7.
The loops which transcribe 5S ribosomal RNA in lampbrush chromosomes of the newt, Notophthalmus (Triturus) viridescens, were identified by hybridizing purified 5S DNA to nascent 5S RNA in situ. The genes which code for 5S RNA were found near the centromeres of chromosomes 1, 2, 6, and 7 by hybridizing iodinated 5S RNA to denatured lampbrush and mitotic chromosomes in situ. These genes and their intervening spacer DNA were isolated from Xenopus laevis using sequential silver-cesium sulfate equilibrium centrifugations. This purified 5S DNA was iodinated and hybridized to non-denatured lampbrush chromosomes in situ, where it bound to nascent 5S RNA on loops at the base of the centromeres of chromosomes 1, 2, 6, and 7. The number of 5S genes present in the haploid chromosome complement of N. viridescens was determined. — The 5S loops were chosen for study, since (1) the synthesis of 5S RNA has been demonstrated during the lampbrush stage, (2) both 5S RNA and 5S DNA could be isolated in pure form, and (3) the localization of the repetitive 5S genes could be verified by conventional in situ hybridization procedures. These methods may be applicable to the identification of other loops, leading to a better understanding of lampbrush chromosome function.  相似文献   

8.
Giant lampbrush chromosomes, which are characteristic of the diplotene stage of prophase I during avian oogenesis, represent a very promising system for precise physical gene mapping. We applied 35 chicken BAC and 4 PAC clones to both mitotic metaphase chromosomes and meiotic lampbrush chromosomes of chicken (Gallus gallus domesticus) and Japanese quail (Coturnix coturnix japonica). Fluorescence in situ hybridization (FISH) mapping on lampbrush chromosomes allowed us to distinguish closely located probes and revealed gene order more precisely. Our data extended the data earlier obtained using FISH to chicken and quail metaphase chromosomes 1–6 and Z. Extremely low levels of inter- and intra-chromosomal rearrangements in the chicken and Japanese quail were demonstrated again. Moreover, we did not confirm the presence of a pericentric inversion in Japanese quail chromosome 4 as compared to chicken chromosome 4. Twelve BAC clones specific for chicken chromosome 4p and 4q showed the same order in quail as in chicken when FISH was performed on lampbrush chromosomes. The centromeres of chicken and quail chromosomes 4 seem to have formed independently after centric fusion of ancestral chromosome 4 and a microchromosome.  相似文献   

9.
Ribosomal genes have been localized on mitotic and lampbrush chromosomes of 20 specimens of Triturus vulgaris meridionalis by in situ hybridization with 3H 18S+28S rRNA. The results may be summarized as follows: 1) each individual shows positive in situ hybridization at the nucleolus organizing region (NOR) on chromosome XI; 2) in addition, many specimens exhibit a positive reaction in chromosomal sites other than the NOR (additional ribosomal sites); 3) the chromosomal distribution of the additional sites appears to be identical in different tissues from the same specimen and to follow a specific individual pattern; 4) the additional ribosomal sites are preferentially found at the telomeric, centromeric or C-band regions of the chromosomes involved.Abbreviations rRNA ribosomal RNA - NOR nucleolus organizer region - rDNA the DNA sequences coding for 18S+28S rRNA plus the intervening spacer sequences - SSC 0.15 M sodium chloride, 0.015 sodium citrate, pH 7  相似文献   

10.
11.
I. Felger  D. Sperlich 《Chromosoma》1989,98(5):342-350
To study the middle repetitive fraction of the Drosophila subobscura genome, 26 phage clones containing repetitive sequences were examined by Southern DNA blot analysis and by in situ hybridization to polytene chromosomes. These results led to a classification of the clones according to five different types of hybridization patterns. Two types, each containing seven clones, are characterized by hybridization at 100 to 300 sites dispersed over the euchromatic parts of the chromosomes, and in addition by one prominently labelled chromosome band. One of these two classes also showed strong labelling of the chromocentre. The remaining types of hybridization pattern lacked a prominent band but showed hybridization either to the euchromatic regions or to the chromocentre or both. Chromosome A (=X) was the preferred location of prominently labelled bands and it also showed an excess of labelling by some clones. Some of the cloned dispersed sequences were localized cytologically on chromosomes of larvae from crosses between different strains of D. subobscura and between two closely related species, in order to detect heterozygosity at hybridization sites. Comparisons of the chromosomal distribution of labelling sites showed differences in number and location, indicating the possibility of transposition events.  相似文献   

12.
Banding patterns in newt chromosomes by the giemsa stain   总被引:2,自引:2,他引:0  
Specific banding patterns can be produced on the mitotic chromosomes of the newt species Triturus vulgaris meridionalis and T. italicus by using the Giemsa stain technique. These bands are most useful cytogenetic markers in karyotyping, since they facilitate identification of the individual elements of the complements. Evaluation of the shape of chromosomes as well as of the banding patterns produced by the Giemsa stain indicates that the karyotypes of T. vulgaris meridionalis and T. italicus are differentiated: hence the specific distinction of the two Salamandrids, still debated by taxonomists, appears supported by chromosome evidence. — Most of the bands seem to correspond to the heterochromatic tracts observable on mitotic chromosomes from embryos and larvae either untreated or submitted to cold treatment. Besides, the comparison of mitotic karyotypes and lampbrush maps shows that the bands located near the centromeric regions of mitotic chromosomes probably correspond to the so-called bars visible on either side of centromeres of lampbrush chromosomes, while some of the subterminal bands may correspond to the sphere.This work was financially supported by C. N. R., Roma.  相似文献   

13.
Summary In order to localize the genes coding for zein, the major storage protein of maize endosperm, zein 125I-mRNA and 3H-cDNA labelled at high specific activity were used for in situ hybridization on heterozygous interchanges and paracentric inversions of the KYS strain of Zea mays. The analysis of the diplotene-metaphase I microsporocytes indicated the presence of zein structural genes on the long arm of chromosomes 4 and 5, the short arm of chromosome 7 and the distal segment of the long arm of chromosome 10. The two hybridization sites on chromosomes 7 and 10 are found near opaque-2 and opaque-7 loci which are known to regulate zein synthesis. The present data are discussed in relation to results obtained by other authors using genetical mapping of zein genes.  相似文献   

14.
In order to increase the efficiency, accuracy, fidelity and reliability of in situ hybridization to identify the alien chromosomes and chromosome fragments in triticeae, major steps including probe labelling, chromosome denaturation, DNA concentration for blocking and post-hybridization washing in in situ hybridization were optimized. The results are as fel-lows. (1) The cloned repetitive DNA sequence could be biotin labelled more efficiently by nick translation than by random oligonucleotide labelling method: whereas the random oligonucleotide labelling is more suitable for genomic DNA probe and the labelling efficiency could be increased by prolonging the labelling time appropriately. (2) Denaturation of the biotinylated probe and chromosomes together in oven at 75 ℃ showed the satisfactory results of in situ hybridization, but the contour of treated rye chromosomes often became blurred when the temperature of denaturation was higher than 85℃. When 70% formamide (in 2 × SSC) was used to denature the chromosome DNA, rye chromosomes often swelled although the biotinylated signals could be detected. (3) The unlabeled DNA concentrations for blocking were tested in genomic in situ hybridization to detect the Haynaldia villosa chromosomes with biotin labelled H. villosa genomic DNA as probe. The best contrast between H. villosa and wheat chromosomes was obtained without using the blocking DNA (unlabeled wheat genomic DNA). (4) Post-hybridization washes were carried out in 50% formamide (in 2 × SSC) or in 2 × SSC at different temperature. When the post-hybridization washing temperature were increased gradually from room temperature to 42℃ in 50% formamide (in 2 × SSC). specific in situ hybridization signals on chromosome in triticeae were observed using both biotinylated repetitive DNA and genomic DNA as probe. With the improved resolution of this protocol, in situ hybridization would be widely applied to wheat breeding and genetics researches.  相似文献   

15.
The positions and general anatomical and histological characteristics of the gonads of Bipes biporus and B. canaliculatus are described. The amounts of DNA per haploid chromosome set have been measured in both species, the values being 1.83 and 2.0 pg for biporus and canaliculatus respectively. The karyotypes of both species are described on the basis of data from mitotic and meiotic metaphase chromosome sets and from lampbrush chromosomes. B. biporus has 10 macrochromosomes and 11 microchromosomes. B. canaliculatus has 11 macrochromosomes and 11 microchromosomes. The karyotypes of the two species differ distinctly with regard to the shapes of 3 of the macrochromosomes. Chiasma distribution is described for male meiosis in B. biporus. Studies of the lampbrush chromosomes of both species show the chiasma distribution in the female to be generally similar to that found in the male biporus. In B. canaliculatus, lampbrush chromosomes with maximally extended lateral loops are found in oocytes that are oblate spheroids measuring 0.7×1.0 mm along their short and long axes respectively, these being well before the start of the major phase of vitellogenesis. Smaller oocytes have more distinct chromomeres and shorter loops. Microchromosomes take the form of typical small lampbrush chromosomes in oocytes. There are at the most 1,000 chromomeres per haploid set of lampbrush chromosomes in B. canaliculatus. Chiasmata are described from lampbrush preparations in which the two half-bivalents are firmly attached to one another without evident association of their axes, indicating the possibility of chiasmate association between the DNA axes of lateral loops. There are remarkably few extrachromosomal nucleoli in Bipes oocytes, and its is suggested that this may indicate a level of ribosomal gene amplification that is much lower than that found in fish and Amphibia. The observations are particularly discussed in relation to current ideas concerning the structure and function of lampbrush chromosomes.  相似文献   

16.
A technique is described for preparation of 3H-labelled DNA by nick-translation employing deoxyribonuclease I and DNA polymerase I. The labelled DNA can be obtained in high yield with specific activities of 106 cpm/g or more. Ribosomal DNA, isolated from ovaries of young Xenopus laevis, and whole DNA from Plethodon cinereus were labelled in this way. The rDNA was used for in situ hybridization to meiotic chromosomes from P. cinereus, P. vehiculum and P. dunni. Autoradiographs of in situ hybrids were exposed for 5 to 10 days, by which time nucleolus organizer regions on the chromosomes of all 3 species were clearly and specifically labelled. In all eases, labelling was confined to a short region near the middle of the short arm of both halves of a medium length bivalent. It is concluded that nick-translation is a useful and altogether efficient method of labelling nucleic acids for subsequent use in experiments involving in situ hybridizations.  相似文献   

17.
The centromeric region of a telocentric field bean chromosome that resulted from centric fission of the metacentric satellite chromosome was microdissected. The DNA of this region was amplified and biotinylated by degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR)/linker-adapter PCR. After fluorescence in situ hybridization (FISH) the entire chromosome complement of Vicia faba was labelled by these probes except for the nucleolus organizing region (NOR) and the interstitial heterochromatin, the chromosomes of V. sativa and V. narbonensis were only slightly labelled by the same probes. Dense uniform labelling was also observed when a probe amplified from a clearly delimited microdissected centromeric region of a mutant of Tradescantia paludosa was hybridized to T. paludosa chromosomes. Even after six cycles of subtractive hybridization between DNA fragments amplified from centromeric and acentric regions no sequences specifically located at the field bean centromeres were found among the remaining DNA. A mouse antiserum was produced which detected nuclear proteins of 33 kDa and 68 kDa; these were predominantly located at V. faba kinetochores during mitotic metaphase. DNA amplified from the chromatin fraction adsorbed by this serum out of the sonicated total mitotic chromatin also did not cause specific labelling of primary constrictions. From these results we conclude: (1) either centromere-specific DNA sequences are not very conserved among higher plants and are — at least in species with large genomes — intermingled with complex dispersed repetitive sequences that prevent the purification of the former, or (2) (some of) the dispersed repeats themselves specify the primary constrictions by stereophysical parameters rather than by their base sequence.  相似文献   

18.
 This paper reports genomic in situ hybridization (GISH) and fluorescent in situ hybridization (FISH) data for chromosomes of raspberry (Rubus idaeus 2n=2x=14), blackberry (Rubus aggregate, subgenus Eubatus. 2n=2–12x=14–84) and their allopolyploid derivatives used in fruit breeding programmes. GISH was used to discriminate labelled chromosomes of raspberry origin from those of blackberry origin in allopolyploid hybrid plants. The raspberry chromosomes were labelled by GISH at their centromeres, and 1 chromosome was also labelled over the short arm. In one allopentaploid plant a chromosome carried a terminal signal. Karyotype analysis indicated that this is a blackberry chromosome carrying a raspberry translocation. GISH analysis of an aneuoctaploid blackberry cv ‘Aurora’ (2n=8x=58) showed that both whole and translocated raspberry chromosomes were present. The basic Rubus genome has one ribosomal DNA (rDNA) locus, and in all but one case all levels of ploidy had the expected multiples of rDNA loci. Interestingly, in the blackberry cv ‘Aurora’, there were only six sites, two less than might be predicted from its aneuoctaploid chromosome number. Our results highlight the potential of GISH and FISH for genomic designation, physical mapping and introgression studies in Rosaceous fruit crops. Received: 20 February 1998 / Accepted: 12 May 1998  相似文献   

19.
The heteromorphic chromosomes 1 of Triturus cristatus carnifex and T. marmoratus were studied in mitotic metaphase after staining with the Giemsa C-banding technique and with the fluorochromes, DAPI (AT-specific) and mithramycin (GC-specific). They were also examined in the lampbrush form under phase-contrast before fixation and after fixation and staining with Giemsa. Chromosomes 1 of T.c. carnifex are asynaptic and achiasmatic throughout most of their long arms. They are also heteromorphic in most of their long arms for the patterns of Giemsa and fluorochrome staining and the distribution of distinctive lampbrush loops. The heteromorphic regions correspond to the regions that are asynaptic and achiasmatic. They stain more strongly with mithramycin and more weakly with DAPI than the remainder of the chromosomes, signifying that their DNA is relatively rich in GC. The patterns of staining with Giemsa and fluorochromes and the distributions of distinctive lateral loops vary from one animal to another in the same species and even in the same population. The asynaptic and achiasmatic regions of chromosomes 1 in T. marmoratus extend throughout the whole of the long arms and well beyond the heterochromatic region. Chiasmata form only in the short arm and occasionally in the short euchromatic segment at the tip of the long arms. The staining patterns of chromosomes 1 in T. marmoratus differ from those in T.c. carnifex although, like carnifex, their DNA is relatively GC-rich. The chromosomes 1 of T. marmoratus are more submetacentric than those of T.c. carnifex. In T. marmoratus chromosome 1B is about 12% shorter than 1A. There is a short paracentric inversion heterozygosity in the long arm of chromosome 1B in T. marmoratus which probably accounts for the lack of chiasmata in the euchromatin that separates the centromere from the start of the heterochromatin. In both carnifex and marmoratus, embryos that are homomorphic for chromosome 1 arrest and die at the late tailbud stage of development. The same applies to F1 hybrid embryos T.c. carnifex x T. marmoratus, and this has permitted identification of chromosomes 1A and 1B in both species. There is no correspondence between patterns of Giemsa or fluorochrome staining of the heteromorphic regions of chromosome 1 and any feature of the lampbrush chromosomes. However, the short euchromatic ends of the long arms of chromosomes 1 in both species are distinguished in the lampbrush form by a series of uniformly small loops of fine texture associated with very small chromomeres. The Giemsa C-staining patterns of both chromosomes 1A and 1B are different in each of the four subspecies of T. cristatus. T.c. karelinii stands out by having unusually large masses of Giemsa C-staining centromeric heterochromatin on all but 1 of its 12 chromosomes. A scheme is proposed for the evolution of chromosome 1 in T. cristatus and T. marmoratus, based on all available cytological and molecular data.  相似文献   

20.
Physical mapping of the 5S rDNA gene complex in rice (Oryza sativa).   总被引:2,自引:0,他引:2  
Y C Song  J P Gustafson 《Génome》1993,36(4):658-661
This study was designed to use biotin labelling in situ hybridization to physically map the 5S rDNA genes to a chromosome arm location in rice. Chromosome preparations were made using an improved protoplast technique, which resulted in more mitotic cells with less overlying cytoplasmic and cellular debris. Cells in which both chromatids were labelled were observed. The hybridization detection level for the 5S rDNA gene complex was 17.22%. The results established that the 5S rDNA gene complex of rice is located at the end of the short arm of chromosome 9 in rice cultivar IR36. The similarities and differences of the 5S rDNA gene complex location between rice and other cereals and advantages of in situ hybridization for physical mapping are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号