首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To improve the specific production rate of Rhizopus oryzae lipase (ROL) in Pichia pastoris, a protein that triggers the unfolded protein response in P. pastoris, the effect of sorbitol/methanol mixed substrates was tested in batch and fed-batch cultures. Remarkably, a different substrate consumption behaviour was observed depending on the host's phenotype (Mut(+) or Mut(s)) in batch cultures: when the methanol assimilation capacity is genetically reduced (Mut(s) phenotype), both substrates were consumed simultaneously, allowing not only a higher specific growth rate but also higher lipase levels (8.7-fold) compared to those obtained by cells growing on methanol as a sole carbon source in batch culture. This effect was not observed in Mut(+) phenotype, where the two substrates were consumed sequentially and the levels of heterologous product were only slightly higher (1.7-fold). A mixed substrate strategy was also applied to a Mut(s) fed-batch culture at a low methanol concentration set-point (0.5 gl(-1)). This resulted in a 2.2-fold increase in the heterologous protein level achieved, compared with the methanol-only feeding strategy. In addition, sorbitol co-feeding permitted the achievement of higher specific growth rates, and avoided the drastic decrease of the specific production rate observed after the start of the induction phase when methanol was used as sole carbon source This resulted in a significant increase in the overall bioprocess volumetric productivity (2.2-fold) and specific productivity (1.7-fold). Moreover, whereas increased ROL gene dosage in Mut(s) strains have been previously reported to be deleterious for P. pastoris cells growing on methanol, sorbitol co-feeding allowed for sustained cell growth and lipase production.  相似文献   

2.
3.
During exponential growth in batch culture, assimilation numbersof eleven algal species ranged from 1.6–20.8, with a meanvalue of 5.3 g C/g Chlorophyll a/hr. The highest assimilationnumber of 20.8 g C/g Chlorophyll a/hr was observed in Coccolithuspelagicus, due to the relatively low concentration of chlorophylla/cell. The assimilation number declined from exponential tostationary phase in batch cultures for ten algal species, butincreased with age in batch culture in Amphiprora paludasa (abenthic diatom). The assimilation number declined with decreasinggrowth rate in nitrate-limited chemostat cultures of Phaeodactylumtricornutum and in iron-limited chemostat cultures of Phaeodactylumtricornutum and Isochrysis galbana.  相似文献   

4.
The Pseudomonas putida KT2440 TOL upper pathway is repressed under nonlimiting conditions in cells growing in chemostat with succinate as a carbon source. We show that the ptsN gene product IIA(Ntr) participates in this repression. Crc, involved in yeast extract-dependent repression in batch cultures, did not influence expression when cells were growing in a chemostat with succinate at maximum rate.  相似文献   

5.
Heterotrophic growth of the facultatively chemolithoautotrophic acidophile Thiobacillus acidophilus was studied in batch cultures and in carbon-limited chemostat cultures. The spectrum of carbon sources supporting heterotrophic growth in batch cultures was limited to a number of sugars and some other simple organic compounds. In addition to ammonium salts and urea, a number of amino acids could be used as nitrogen sources. Pyruvate served as a sole source of carbon and energy in chemostat cultures, but not in batch cultures. Apparently the low residual concentrations in the steady-state chemostat cultures prevented substrate inhibition that already was observed at 150 M pyruvate. Molar growth yields of T. acidophilus in heterotrophic chemostat cultures were low. The Y max and maintenance coefficient of T. acidophilus grown under glucose limitation were 69 g biomass · mol–1 and 0.10 mmol · g–1 · h–1, respectively. Neither the Y max nor the maintenance coefficient of glucose-limited chemostat cultures changed when the culture pH was increased from 3.0 to 4.3. This indicates that in T. acidophilus the maintenance of a large pH gradient is not a major energy-requiring process. Significant activities of ribulose-1,5-bisphosphate carboxylase were retained during heterotrophic growth on a variety of carbon sources, even under conditions of substrate excess. Also thiosulphate- and tetrathionate-oxidising activities were expressed under heterotrophic growth conditions.  相似文献   

6.
The Pseudomonas putida KT2440 TOL upper pathway is repressed under nonlimiting conditions in cells growing in chemostat with succinate as a carbon source. We show that the ptsN gene product IIANtr participates in this repression. Crc, involved in yeast extract-dependent repression in batch cultures, did not influence expression when cells were growing in a chemostat with succinate at maximum rate.  相似文献   

7.
Production of the bacteriocin pediocin SM‐1 by Pediococcus pentosaceus Mees 1934 was investigated in pH‐controlled batch and chemostat cultures using a complex medium containing glucose, sucrose or fructose. In chemostat cultures operated at 150 rpm, 30°C, 60% dissolved oxygen tension, pH 6.5, and D = 0.148 h?1, the pediocin titer reached 185 AU/mL representing an increase of 32% compared with batch cultures in which glucose was used as the carbon source. Pediocin biosynthesis was markedly affected by the growth rate of the producer microorganism. For all carbon sources tested, pediocin production appeared to take place only at dilution rates lower than μmax. However, only glucose supported production at the very low dilution rate of 0.05 h?1 indicating a direct regulation of pediocin biosynthesis by the carbon source. Glucose supported higher biomass productivity and higher pediocin titers and yields compared with the other sugars used. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1481–1486, 2015  相似文献   

8.
9.
Summary Cellular and environmental factors affecting the synthesis of polygalacturonate lyase in batch and chemostat cultures ofBacillus subtilis were investigated. The lyase was produced constitutively during growth on a wide range of carbon sources in a defined minimal medium and in medium containing complex organic carbon and nitrogen sources. The highest activity was obtained during batch growth in minimal medium containing glucose and ammonium sulphate. Over 99% of the activity was present extracellularly in the supernatant medium at all stages of the batch growth cycle. Two distinct differential rates of synthesis were observed during exponential growth. The lyase was unable to attack pectin rapidly unless pectin methyl-esterase was also present. Pectin was a poor substrate for growth and polygalacturonate lyase induction because the organism did not produce pectin methyl-esterase. In continuous-flow chemostat cultures with glucose medium, polygalacturonate lyase activity declined to a very low level owing to the selection of non-productive mutant strains. Loss of activity did not occur when polypectate was the carbon source. Steady-state specific polygalacturonate lyase activity in polypectate medium was relatively independent of dilution rate in the range 0.04 to 0.36/h. When polypectate was supplied in excess of the growth requirement lyase activity was 5 times higher than during polypectate-limited growth.  相似文献   

10.
Summary Cell cultures of Cephalotaxus harringtonia were examined to characterize growth kinetics. The requirement for an undefined medium supplement (coconut water) was eliminated by maintaining high cell concentrations in semicontinuous and batch growth. Sucrose fed to batch-cultured cells was completely hydrolyzed and a diauxic growth pattern was observed corresponding to first glucose and then fructose uptake. Examination of increases in cell concentrations on the basis of fresh and dry weight showed that a substantial lag period existed between the initiation of substrate uptake and increases in cell volume. Specific growth rates were highest during periods of glucose uptake, but cell yields were comparable for the two sugars. In contrast, studies with glucose or fructose as the sole carbon source indicated that cell yields were significantly lower with fructose but specific growth rates were comparable for the two sugars.Offprint requests to: P. J. Westgate  相似文献   

11.
D-glucoside 3-dehydrogenase specific activity in Agrobacterium tumefaciens was maximal towards the end of the exponential growth phase of batch cultures; over 90% of the activity disappeared within the next 15 h. Manganese ions, although essential for growth of the organism, strongly repressed D-glucoside 3-dehydrogenase synthesis in sucrose medium but had little effect when the carbon source was methyl alpha-D-glucoside. D-Glucoside 3-dehydrogenase activity increased linearly with increasing specific growth rate in chemostat cultures limited by carbon, nitrogen, phosphate or manganese when methyl alpha-D-glucoside was the carbon source. High enzyme activity was found with sucrose as carbon source only when the growth medium was manganese-limited. D-Glucoside 3-dehydrogenase activity disappeared from A. tumefaciens incubated in carbon- and nitrogen-free medium or in nitrogen-free medium containing succinate, but on continued incubation the activity returned and was then stable. The recovery of activity could be prevented by chloramphenicol or erythromycin. Bacteria containing the recovered dehydrogenase activity could not convert sucrose to 3-ketosucrose when oxygen acted as the terminal electron acceptor, but produced 3-ketosucrose at the normal rate in the presence of ferricyanide. D-Glucoside 3-dehydrogenase activity disappeared irreversibly from bacteria incubated in nitrogen-free medium containing sucrose. Loss of activity followed first order kinetics in bacteria taken from nitrogen-, phosphate- or manganese-limited chemostat steady states; an accelerating rate of decay occurred in cells grown under carbon-limitation. 8-Hydroxyquinoline, chloramphenicol, erythromycin, 2,4-dinitrophenol and manganese ions could reduce the rate of decay.  相似文献   

12.
In dual substrate (5 g glucose l , 5 g xylose l ) batch fermentation of L. lactis IO-1 a classic diauxie was observed. In batch fermentations (5 g xylose l ) xylose isomerase activity was only detected in xylose grown cells. In mixed-substrate, carbon limited chemostat cultures (5 g glucose l , 5 g xylose l ) xylose utilisation was partially repressed by glucose at dilution rates above 0.01 h and completely repressed at 0.50 h .  相似文献   

13.
D B Drucker  J Greenman  T H Melville 《Microbios》1976,16(65-66):227-231
Streptococcus mutans NCTC 10832 was grown on synthetic medium in a chemostat, using various major carbon sources, viz, sorbitol, fructose and sucrose. Freeze-dried cells were methylated and the methyl esters analysed by GLC. The fatty acid profiles obtained showed small quantitative change with different sugars, sucrose concentrations and types of growth.  相似文献   

14.
Growth conditions for heterotrophic bacteria in the environment are characterized by low concentrations of carbon and energy sources and complex substrate mixtures. While mechanisms of starvation-survival in the absence of carbon substrates have been studied in considerable detail, information on the physiology of slow growth under oligotrophic conditions is limited. We intended to elucidate general strategies by which Escherichia coli adapts to low concentrations of a mixed carbon and energy source pool. A new screening method based on BIOLOG AN MicroPlates, which allowed us to distinguish repressed and induced catabolic functions in E. coli, was combined with the analysis of periplasmic high-affinity binding proteins. Extending previous findings for E. coli and other microbial species, we found that numerous alternative catabolic functions and high-affinity binding proteins are derepressed under either glucose- or arabinose-limited growth conditions, in spite of the absence of the respective inducers. Escherichia coli cells growing in carbon-limited complex medium chemostat cultures exhibited an even higher degree of catabolic flexibility and were able to oxidize 43 substrates. The BIOLOG respiration pattern indicated simultaneous dissimilation of diverse sugars, amino acids and dipeptides (mixed substrate growth). The observed physiological adaptations of E. coli to low concentrations of carbon and energy substrates presumably are advantageous in many natural growth situations and also offer an explanation why many heterotrophic bacteria have and maintain such a broad carbon substrate range.  相似文献   

15.
Growth of Thiobacillus ferrooxidans on Formic Acid   总被引:6,自引:2,他引:4       下载免费PDF全文
A variety of acidophilic microorganisms were shown to be capable of oxidizing formate. These included Thiobacillus ferrooxidans ATCC 21834, which, however, could not grow on formate in normal batch cultures. However, the organism could be grown on formate when the substrate supply was growth limiting, e.g., in formate-limited chemostat cultures. The cell densities achieved by the use of the latter cultivation method were higher than cell densities reported for growth of T. ferrooxidans on ferrous iron or reduced sulfur compounds. Inhibition of formate oxidation by cell suspensions, but not cell extracts, of formate-grown T. ferrooxidans occurred at formate concentrations above 100 μM. This observation explains the inability of the organism to grow on formate in batch cultures. Cells grown in formate-limited chemostat cultures retained the ability to oxidize ferrous iron at high rates. Ribulose 1,5-bisphosphate carboxylase activities in cell extracts indicated that T. ferrooxidans employs the Calvin cycle for carbon assimilation during growth on formate. Oxidation of formate by cell extracts was NAD(P) independent.  相似文献   

16.
Bacteroides ovatus was grown in batch culture on 12 different carbon sources (five polysaccharides, seven monosaccharides and disaccharides). Specific growth rates were determined for each substrate together with polysaccharidase and glycosidase activities. Growth rates on polymerized carbohydrates were as fast or faster than on corresponding simple sugars, demonstrating that the rate of polysaccharide depolymerization was not a factor limiting growth. Bacteroides ovatus synthesized a large range of polymer-degrading enzymes. These polysaccharidases and glycosidases were generally repressed during growth on simple sugars, but arabinose was required for optimal production of alpha-arabinofuranosidase. Polysaccharidase and glycosidase activities were measured in continuous cultures grown with either xylan or guar gum under putative carbon limitation. With the exception of beta-xylosidase, activities of the polymer-degrading enzymes were inversely related to growth rate. This correlated with polysaccharide utilization which was greatest at low dilution rates. These results show that Bact. ovatus is highly adapted for growth on polymerized carbohydrate in the human colon and confirm that the utilization of polysaccharides is partly regulated at the level of enzyme synthesis.  相似文献   

17.
Bacteroides ovatus was grown in batch culture on 12 different carbon sources (five polysaccharides, seven monosaccharides and disaccharides). Specific growth rates were determined for each substrate together with polysaccharidase and glycosidase activities. Growth rates on polymerized carbohydrates were as fast or faster than on corresponding simple sugars, demonstrating that the rate of polysaccharide depolymerization was not a factor limiting growth. Bacteroides ovatus synthesized a large range of polymer-degrading enzymes. These polysaccharidases and glycosidases were generally repressed during growth on simple sugars, but arabinose was required for optimal production of α-arabinofuranosidase. Polysaccharidase and glycosidase activities were measured in continuous cultures grown with either xylan or guar gum under putative carbon limitation. With the exception of β-xylosidase, activities of the polymer-degrading enzymes were inversely related to growth rate. This correlated with polysaccharide utilization which was greatest at low dilution rates. These results show that Bact. ovatus is highly adapted for growth on polymerized carbohydrate in the human colon and confirm that the utilization of polysaccharides is partly regulated at the level of enzyme synthesis. and accepted 8 June 1989  相似文献   

18.
The chemostat culture technique was used to study the control mechanisms which operate during utilization of mixtures of glucose and lactose and glucose and l-aspartic acid by populations of Escherichia coli B6. Constitutive mutants were rapidly selected during continuous culture on a mixture of glucose and lactose, and the beta-galactosidase level of the culture increased greatly. After mutant selection, the specific beta-galactosidase level of the culture was a decreasing function of growth rate. In cultures of both the inducible wild type and the constitutive mutant, glucose and lactose were simultaneously utilized at moderate growth rates, whereas only glucose was used in the inducible cultures at high growth rates. Catabolite repression was shown to be the primary mechanism of control of beta-galactosidase level and lactose utilization in continuous culture on mixed substrates. In batch culture, as in the chemostat, catabolite repression acting by itself on the lac enzymes was insufficient to prevent lactose utilization or cause diauxie. Interference with induction of the lac operon, as well as catabolite repression, was necessary to produce diauxic growth. Continuous cultures fed mixtures of glucose and l-aspartic acid utilized both substrates at moderate growth rates, even though the catabolic enzyme aspartase was linearly repressed with increasing growth rate. Although the repression of aspartase paralleled the catabolite repression of beta-galactosidase, l-aspartic acid could be utilized even at very low levels of the catabolic enzyme because of direct anabolic incorporation into protein.  相似文献   

19.
Although the facultatively autotrophic acidophile Thiobacillus acidophilus is unable to grow on formate and formaldehyde in batch cultures, cells from glucose-limited chemostat cultures exhibited substrate-dependent oxygen uptake with these C1-compounds. Oxidation of formate and formaldehyde was uncoupler-sensitive, suggesting that active transport was involved in the metabolism of these compounds. Formate- and formaldehyde-dependent oxygen uptake was strongly inhibited at substrate concentrations above 150 and 400 M, respectively. However, autotrophic formate-limited chemostat cultures were obtained by carefully increasing the formate to glucose ratio in the reservoir medium of mixotrophic chemostat cultures. The molar growth yield on formate (Y=2.5 g ·mol-1 at a dilution rate of 0.05 h-1) and RuBPCase activities in cell-free extracts suggested that T. acidophilus employs the Calvin cycle for carbon assimilation during growth on formate. T. acidophilus was unable to utilize the C1-compounds methanol and methylamine. Formate-dependent oxygen uptake was expressed constitutively under a variety of growth conditions. Cell-free extracts contained both dye-linked and NAD-dependent formate dehydrogenase activities. NAD-dependent oxidation of formaldehyde required reduced glutathione. In addition, cell-free extracts contained a dye-linked formaldehyde dehydrogenase activity. Mixotrophic growth yields were higher than the sum of the heterotrophic and autotrophic yields. A quantitative analysis of the mixotrophic growth studies revealed that formaldehyde was a more effective energy source than formate.  相似文献   

20.
Saccharomyces fragilis organisms, grown in batch cultures on coconut water and in continuous-flow cultures on either a defined medium (containing mixtures of glucose, fructose, sucrose and sorbitol) or coconut water, were analysed for macromolecular components, cell wall material and amino acids. The data were used to evaluate the suitability of the yeast as a source of single cell protein. Excess nitrogen was necessary to attain maximum cellular protein contents although the yeast yield was maximized at lower concentrations. Major macromolecular components were present in quantities similar to other food yeasts; the amino acid profile was satisfactory from a nutritional viewpoint and contained high levels of lysine. The product was slightly deficient in cystine and methionine. Some advantages of developing carbohydrate-based SCP processes, such as that proposed with coconut water, and as alternatives to hydrocarbon-based processes, are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号