首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biochemical and biophysical parameters, including D1-protein turnover, chlorophyll fluorescence, oxygen evolution activity and zeaxanthin formation were measured in the marine seagrassZostera capricorni (Aschers) in response to limiting (100 mol·m–2·–1), saturating (350 mol·m–2·s–1) or photoinhibitory (1100 mol·m–2·s–1) irradiances. Synthesis of D1 was maximal at 350 mol·m–2·s–1 which was also the irradiance at which the rate of photosynthetic O2 evolution was maximal. Degradation of D1 was saturated at 350 mol·m–2·s–1. The rate of D1 synthesis at 1100 mol·m–2·s–1 was very similar to that at 350 mol·m–2·s–1 for the first 90 min but then declined. At limiting or saturating irradiance little change was observed in the ratio of variable to maximal fluorescence (Fv/Fm) measured after dark adaptation of the leaves, while significant photoinhibition occurred at 1100 mol·m–2·s–1. The proportion of zeaxanthin in the total xanthophyll pool increased with increasing irradiance, indicative of the presence of a photoprotective xanthophyll cycle in this seagrass. These results are consistent with a high level of regulatory D1 turnover inZostera under non-photoinhibitory irradiance conditions, as has been found previously for terrestrial plants.We would like to thank Professor Peter Böger (Department of Plant Biochemistry, University of Konstanz, Germany) for the kind gift of D1 antibodies. This work was partly supported by a University of Queensland Enabling Grant to CC.  相似文献   

2.
Sailer H  Nick P  Schafer E 《Planta》1990,180(3):378-382
Gravitropic stimulation of maize (Zea mays L.) seedlings resulted in a continuous curvature of the coleoptiles in a direction opposing the vector of gravity when the seedlings were rotated on a horizontal clinostat. The orientation of this response, however, was reversed when the gravitropic stimulation was preceeded by symmetric preirradiation with blue light (12.7 mol photons·m–2). The fluence-response curve of this blue light exhibited a lower threshold at 0.5 mol·m–2, and could be separated into two parts: fluences exceeding 5 mol·m–2 reversed the direction of the gravitropic response, whereas for a range between the threshold and 4 mol·m–2 a split population was obtained. In all cases a very strong curvature resulted either in the direction of gravity or in the opposite orientation. A minor fraction of seedlings, however, curved towards the caryopsis. Furthermore, the capacity of blue light to reverse the direction of the gravitropic response disappeared with the duration of gravitropic stimulation and it depended on the delay time between both stimulations. Thistonic blue-light influence appears to be transient, which is in contrast to the stability observed fortropistic blue-light effects.This work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

3.
R. Behl  W. Hartung 《Planta》1986,168(3):360-368
Epidermal peels of Valerianella locusta were acid-treated for 1 h at pH 3.9 to kill all cells other than guard cells. These guard-cell preparations were used to explore the steady-state one-way fluxes and the cytoplasmic and vacuolar contents of abscisic acid (ABA). The method of compartmental analysis has been applied. The intracellular ABA concentrations were surprisingly high. At an external pH of 5.8 the cytoplasm contained 1.28 mmol·dm-3 of ABA, twice of the amount which accumulated in the vacuoles (0.57 mmol·dm-3). The fluxes of ABA at the plasmalemma (oc=oc=0.43 fmol · cell –1 · h –1) were higher than those at the tonoplast (cv=vc=0.12 fmol · cell –1 · h –1). Moderate stress (0.1 and 0.3 mol·dm-3 sorbitol in the medium) caused a change in the kinetics of ABA movement. The rate constants of the fluxes from the cytoplasm into the vacuole (cv) and into the apoplast (co) were increased while the rate constant of the flux from the vacuoles into the cytoplasm (vc) was decreased. As a consequence the amount of ABA sequestered in the vacuole remained unchanged; the cytoplasmic ABA content, however, was reduced to only 20% of that found in the control treatments (no sorbitol in the medium). Under moderate stress, one Valerianella guard cell released rapidly about 0.36 fmol·cell-1 to its direct cell-wall space. This surprising result is discussed in regard to rapid stomatal closure under reduced water supply.Abbreviations ABA abscisic acid - FC fusicoccin  相似文献   

4.
Isolated embryos ofKarwinskia humboldtiana were cultured in vitro. The growth of embryos and development to plantlets on woody plant medium supplemented with indole-3-acetic acid 6.10-2 mol l–1, gibberellic acid (GA3) 3.10-2 mol l–1, and 6-benzylaminopurine (BA) 2 mol l–1 was obtained. Multiplication of shoots and rooting of excised shoots has been achieved. Callus formation on modified Murashige-Skoog medium supplemented with 1-naphthaleneacetic acid 10 mol l–1, GA3 14 mol l–1, and kinetin 5 mol l–1 on hypocotyls, or on root cultures on medium supplemented with 2.4-dichlorophenoxyacetic acid 10 mol l–1 and BA 10 mol l–1 was induced.Abbreviations BA 6-benzylaminopurine - 2,4-d 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid - IAA indole-3-acetic acid - NAA 1-naphthaleneacetic acid - TEM transmission electron microscopy  相似文献   

5.
The mechanism of uptake of water-insoluble -sitosterol by a newly isolated strain of Arthrobacter simplex SS-7 was studied. The production of an extracellular sterol-pseudosolubilizing protein during growth of A. simplex on -sitosterol was demonstrated by isolating the factor from the cell-free supernatant and its subsequent purification by Sephadex G-150 column chromatography. The M r of the purified sterol-pseudosolubilizing protein determined by SDS–PAGE was 19kDa. The rate of sterol pseudosolubilization (5.2×10–3g l–1h–1) could not adequately account for the rate of sterol uptake (72×10–3g l–1h–1) and the specific growth rate (56×10–3 h–1). However in the unfavourable growth condition, when the cells were treated with sodium azide at the level of 30–60% of MIC, the sterol pseudosolubilization accounted for nearly 74% of the total growth containing 96% free cells. Cellular adherence to substrate particles was found to play an active role in the normal growth of the strain on -sitosterol. Unlike sodium acetate-grown cells, whose surface activity was negligible (60mNm–1), the sterol-grown cells had strong surface activity (40mNm–1). The high lipid content and long chain fatty acids in the cell-wall of -sitosterol-grown cells probably contribute to the high sterol adherence activity of the cells.  相似文献   

6.
Saccharomyces cerevisiae-based ethanol fermentations were conducted in batch culture, in a single stage continuous stirred tank reactor (CSTR), a multistage CSTR, and in a fermentor contaminated with Lactobacillus that corresponded to the first fermentor of the multistage CSTR system. Using a glucose concentration of 260 g l–1 in the medium, the highest ethanol concentration reached was in batch (116gl–1), followed by the multistage CSTR (106gl–1), and the single stage CSTR continuous production system (60gl–1). The highest ethanol productivity at this sugar concentration was achieved in the multistage CSTR system where a productivity of 12.7gl–1h–1 was seen. The other fermentation systems in comparison did not exceed an ethanol productivity of 3gl–1h–1. By performing a continuous ethanol fermentation in multiple stages (having a total equivalent working volume of the tested single stage), a 4-fold higher ethanol productivity was achieved as compared to either the single stage CSTR, or the batch fermentation.  相似文献   

7.
The production of erythritol and the erythritol yield from glucose by Torula sp. were improved, in increasing order, by supplementing with 10 mg MnSO44H2O l–1, 2 mg CuSO45H2O l–1, and both 10 mg MnSO44H2O l–1 and 2 mg CuSO45H2O l–1. Mn2+ decreased the intracellular concentration of erythritol, whereas Cu2+ increased the activity of erythrose reductase in cells. These results suggest that Mn2+ altered the permeability of cells, whereas Cu2+ increased the activity of erythrose reductase in cells.  相似文献   

8.
Uptake kinetics of nitrogen derived from sewage–seawater mixtures (2.5–20% v/v effluent) were determined in the laboratory for Ulva rigida (Chlorophyceae) native from Bahía Nueva (Golfo Nuevo, Patagonia, Argentine). In terms of nitrogen concentration, experimental enrichment levels varied between 53.7 and 362.3M of ammonium and between 0.77 and 6.21M of nitrate+nitrite. Uptake rates were fitted to the Michaelis–Menten equation, with the following kinetic parameters: ammonium: Vmax = 591.2molg–1h–1, K s=262.3M, nitrate+nitrite: V max=12.9molg–1h–1, K s=3.5M). Both nutrients were taken up simultaneously, but ammonium incorporation was faster in all cases. The results show a high capability of Ulva rigida to remove sewage-derived nitrogen from culture media. In the field, most of the nitrogen provided by the effluent would be tied up in algal biomass, supporting low nitrogen levels found at a short distance away from the source.  相似文献   

9.
Tobacco (Nicotiana tabacum L.) plants transformed with antisense rbcS to decrease the expression of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) have been used to investigate the contribution of Rubisco to the control of photosynthesis in plants growing at different irradiances. Tobacco plants were grown in controlled-climate chambers under ambient CO2 at 20°C at 100, 300 and 750 mol·m–2·s–1 irradiance, and at 28°C at 100, 300 and 1000 mol·m–2·s–1 irradiance. (i) Measurement of photosynthesis under ambient conditions showed that the flux control coefficient of Rubisco (C infRubisco supA ) was very low (0.01–0.03) at low growth irradiance, and still fairly low (0.24–0.27) at higher irradiance. (ii) Short-term changes in the irradiance used to measure photosynthesis showed that C infRubisco supA increases as incident irradiance rises, (iii) When low-light (100 mol·m–2·s–1)-grown plants are exposed to high (750–1000 mol·m–2·s–1) irradiance, Rubisco is almost totally limiting for photosynthesis in wild types. However, when high-light-grown leaves (750–1000 mol·m–2·s–1) are suddenly exposed to high and saturating irradiance (1500–2000 mol·m–2·s–1), C infRubisco supA remained relatively low (0.23–0.33), showing that in saturating light Rubisco only exerts partial control over the light-saturated rate of photosynthesis in sun leaves; apparently additional factors are co-limiting photosynthetic performance, (iv) Growth of plants at high irradiance led to a small decrease in the percentage of total protein found in the insoluble (thylakoid fraction), and a decrease of chlorophyll, relative to protein or structural leaf dry weight. As a consequence of this change, high-irradiance-grown leaves illuminated at growth irradiance avoided an inbalance between the light reactions and Rubisco; this was shown by the low value of C infRubisco supA (see above) and by measurements showing that non-photochemical quenching was low, photochemical quenching high, and NADP-malate dehydrogenase activation was low at the growth irradiance. In contrast, when a leaf adapted to low irradiance was illuminated at a higher irradiance, Rubisco exerted more control, non-photochemical quenching was higher, photochemical quenching was lower, and NADP-malate dehydrogenase activation was higher than in a leaf which had grown at that irradiance. We conclude that changes in leaf composition allow the leaf to avoid a one-sided limitation by Rubisco and, hence, overexcitation and overreduction of the thylakoids in high-irradiance growth conditions, (v) Antisense plants with less Rubisco contained a higher content of insoluble (thylakoid) protein and chlorophyll, compared to total protein or structural leaf dry weight. They also showed a higher rate of photosynthesis than the wild type, when measured at an irradiance below that at which the plant had grown. We propose that N-allocation in low light is not optimal in tobacco and that genetic manipulation to decrease Rubisco may, in some circumstances, increase photosynthetic performance in low light.Abbreviations A rate of photosynthesis - C infRubisco supA flux control coefficient of Rubisco for photosynthesis - ci internal CO2 concentration - qE energy-dependent quenching of chlorophyll fluorescense - qQ photochemical quenching of chlorophyll fluorescence - NADP-MDH NADP-dependent malate dehydrogenase - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase - RuBP ribulose-1,5-bisphosphate This work was supported by the Deutsche Forschungsgemeinschaft (SFB 137).  相似文献   

10.
The stationary radial volume flows across maize (Zea mays L.) root segments without steles (sleeves) were measured under isobaric conditions. The driving force of the volume flow is an osmotic difference between the internal and external compartment of the root preparations. It is generated by differences in the concentrations of sucrose, raffinose or polyethylene glycol. The flows are linear functions of the corresponding osmotic differences ( ) up to osmotic values which cause plasmolysis. The straight lines obtained pass through the origin. No asymmetry of the osmotic barrier could be detected within the range of driving forces applied ( =±0.5 MPa), corresponding to volume-flow densities of jv, s=±7·10–8 m·s–1. Using the literature values for the reflection coefficients of sucrose and polyethylene glycol in intact roots (E. Steudle et al. (1987) Plant Physiol.84, 1220–1234), values for the sleeve hydraulic conductivity of about 1·10–7 m·s–1 MPa–1 were calculated. They are of the same order of magnitude as those reported in the literature for the hydraulic conductivity of intact root segments when hydrostatic pressure is applied.Abbreviations and symbols a s outer surface of sleeve segment - c concentration of osmotically active solute - j v, s radial volume flow density across sleeve segment - Lps hydraulic conductivity of sleeves - Lpr hydraulic conductivity of intact roots - N thickness of Nernst diffusion layer - reflection coefficient of root for solute - osmotic value of bulk phase - osmotic coefficient  相似文献   

11.
A 20–40 m pellicular high density (3.7 g cm–3) expanded bed material has been designed for the capture of DNA and other large macromolecules. Anion exchangers fashioned out of these supports exhibited dramatically enhanced DNA binding capacities over commercial anion exchange adsorbents (6 mg ml–1, c.f. 50 g ml–1 at 10% breakthrough), due to a combination of small particle and fuzzy surface architecture created through the coupling of polyethylene imine chains.  相似文献   

12.
Annual nitrogen and phosphorus budgets for the whole North Sea taking into account the most recent data available were established. The area considered has a total surface of approximately 700,000km2 and corresponds to the definition by OSPARCOM (Oslo and Paris Commission) with the exclusion of the Skagerrak and Kattegat areas. Input and output fluxes were determined at the marine, atmospheric, sediment and continental boundaries, and riverine inputs based on river flows and nutrient concentrations at the river–estuary interface were corrected for possible estuarine retention. The results showed that the North Sea is an extremely complex system subjected to large inter-annual variability of marine water circulation and freshwater land run-off. Consequently, resulting total N (TN) and P (TP) fluxes are extremely variable from 1 year to another and this has an important influence on the budget of these elements. Total inputs to the North Sea are 8870±4860kTNyear–1 and 494±279kTPyear–1. Denitrification is responsible for the loss of 23±7% of the TN inputs while sediment burial is responsible for the retention of only of 2±2% of the TP input. For TN, due to the large variability on marine and estuarine fluxes, and to the uncertainty related to the denitrification rate, it was concluded that the North Sea could either be a source (1930kTNyear–1) or a sink (1700kTNyear–1) for the waters of the North Atlantic Ocean. For TP it was concluded that the North Sea is mostly a source (–4 to 52kTPyear–1) for the waters of the North Atlantic Ocean.  相似文献   

13.
Five hours after cut carnations had been treated with a pulse of 1 or 4 mM silver thiosulfate (STS), in vivo ethylene binding in petals was inhibited by 22 and 29%, respectively. When binding was measured 4 days after the 4-mM STS treatment, binding was inhibited by 81%. 2,5-Norbornadiene, which substantially delays carnation senescence, inhibited ethylene binding by 41% at a concentration of 1000 l/l. The Kd for ethylene binding in carnations was estimated to be 0.1 l/l in petals and 0.09 l/l in leaves. The concentration of binding sites was estimated to be 6.0×10–9 mol/kg of petals and 2.0×10–9 mol/kg of leaves  相似文献   

14.
The effects of eight microelements (I, BO3 3–, MoO4 2–, Co2+, Cu2+, Mn2+, Fe2+, Zn2+) on the biosynthesis of camptothecin and the growth of suspension cultures of Camptotheca acuminata were studied. The increase of I to 25 M l–1, Cu2+ to 1 M l–1, Co2+ to 2 M l–1 and MoO4 2– to 10 M l–1 in Murashige and Skoog (MS) medium resulted in 1.66, 2.84, 2.53 and 2.04 times higher of camptothecin yield than that in standard MS medium respectively. Combined treatment of I (25 M l–1), Cu2+ (1 M l–1), Co2+ (2 M l–1) and MoO4 2– (10 M l–1) lead to improve cell dry weight, camptothecin content, and camptothecin yield to 30.56 g l–1, 0.0299%, and 9.15 mg l–1, respectively, which were 20.2, 208.9 and 273.8% increment respectively when compared with those of control.  相似文献   

15.
The light-dependent rate of photosystem-II (PSII) damage and repair was measured in photoautotrophic cultures of Dunaliella salina Teod. grown at different irradiances in the range 50–3000 mol photons · m–2· s–1. Rates of cell growth increased in the range of 50–800 mol photons·m–2·s–1, remained constant at a maximum in the range of 800–1,500 mol photons·m–2 ·s–1, and declined due to photoinhibition in the range of 1500–3000 mol photons·m–2·s–1. Western blot analyses, upon addition of lincomycin to the cultures, revealed first-order kinetics for the loss of the PSII reaction-center protein (D1) from the 32-kDa position, occurring as a result of photodamage. The rate constant of this 32-kDa protein loss was a linear function of cell growth irradiance. In the presence of lincomycin, loss of the other PSII reaction-center protein (D2) from the 34-kDa position was also observed, occurring with kinetics similar to those of the 32-kDa form of D1. Increasing rates of photodamage as a function of irradiance were accompanied by an increase in the steady-state level of a higher-molecular-weight protein complex ( 160-kDa) that cross-reacted with D1 antibodies. The steady-state level of the 160-kDa complex in thylakoids was also a linear function of cell growth irradiance. These observations suggest that photodamage to D1 converts stoichiometric amounts of D1 and D2 (i.e., the D1/D2 heterodimer) into a 160-kDa complex. This complex may help to stabilize the reaction-center proteins until degradation and replacement of D1 can occur. The results indicated an intrinsic half-time of about 60 min for the repair of individual PSII units, supporting the idea that degradation of D1 after photodamage is the rate-limiting step in the PSII repair process.Abbreviations Chl chlorophyll - PSI photosystem I - PSII photosystem II - D1 the 32-kDa reaction-center protein of PSII, encoded by the chloroplast psbA gene - D2 the 34-kDa reactioncenter protein of PSII, encoded by the chloroplast psbD gene - QA primary electron-accepting plastoquinone of PSII The work was supported by grant 94-37100-7529 from the US Department of Agriculture, National Research Initiative Competitive Grants Program.  相似文献   

16.
Summary The indigogenic method for -D-galactosidase of Pearson et al. (1963) with 4-Cl-5-Br-3-indolyl--D-galactoside was tested and evaluated.The acid -D-galactosidase is not firmly associated with structures and escapes from cryostat sections prepared in the usual manner into incubation solutions. This leakage cannot be prevented by a short postfixation of these sections in cold acetone or Baker's formol-calcium chloride. The leakage is negligible from frozen sections prepared from tissue blocks fixed 12–24 h in cold Baker's solution or in 3% buffered glutaraldehyde (the latter fixation is preferred). Even if this fixation causes about 70–80% inactivation of acid -D-galactosidase it is a prerequisite for studies concerned with its localization. The brush border -D-galactosidase of enterocytes is more firmly structurally bound. Since its activity against 4-Cl-5-Br-3-indolyl--D-galactoside cannot be proved after overnight fixation in cold aldehyde fixatives its demonstration is to be performed in sections prepared from specimens fixed in cold Baker's solution for 2 h at the most, or in cold microtome sections.The localization obtained with the original method is not correct. The addition of horseradish peroxidase did not result in any improvement of the localization because the employed samples of this peroxidase contained a concomitant -D-galactosidase activity.A striking improvement of the localization was achieved by a mixture of ferri- and ferrocyanide which causes a 40–75% inhibition of acid -D-galactosidase when used in concentrations of 1 · 10–3 M to 1 · 10–2 M.A new medium was devised consisting of 0,1 M citrate phosphate buffer pH 3,5–5,5, 8 · 10–4M 4-Cl-5-Br-3-indolyL--D-galactoside, and 3,1 · 10–3M potassium ferri- and ferrocyanide. This medium enabled to achieve a very good correlation with biochemical studies and to localize acid and neutral -D-galactosidases in situ.The acid enzyme was demonstrated first of all in lysosomes of many cells. Its activity is inhibited by galactonolactone, lactose and p-chloromercuribenzoate. The nature of the diffuse extralysosomal staining cannot be decided at present. The distribution pattern of this enzyme in many animal organs is given.The neutral -D-galactosidase (lactase) was localized by the improved method in the brush border of differentiated rat, human and monkey enterocytes and is inhibited by galactonolactone, lactose, gluconolactone, and cellobiose. In patients with celiac sprue this activity is very much reduced or absent. It is restituted after a gluten-free diet.Our revised method proved also very useful in processing zymograms and immunoprecipitation lines of -D-galactosidase(s) with homologous antisera obtained by Ouchterlony's technic and by immunoelectrophoresis.  相似文献   

17.
The effect of repeated exposure to high light (1200 mol · m–2 · s–1 photosynthetic photon flux density, PPFD) at 5° C was examined in attached leaves of cold-grown spring (cv. Katepwa) and winter (cv. Kharkov) wheat (Triticum aestivum L.) over an eight-week period. Under these conditions, Kharkov winter wheat exhibited a daily reduction of 24% in FV/FM (the ratio of variable to maximal fluorescence in the dark-adapted state), in contrast to 41% for cold-grown Katepwa spring wheat. Both cultivars were able to recover from this daily suppression of FV/FM such that the leaves exhibited an average morning FV/FM of 0.651 ± 0.004. Fluorescence measurements made under steady-state conditions as a function of irradiance from 60 to 2000 mol · m–2 · s–1 indicated that the yield of photosystem II (PSII) electron transport under light-saturating conditions was the same for photoinhibited and control cold-grown plants, regardless of cultivar. Repeated daily exposure to high light at low temperature did not increase resistance to short-term photoinhibition, although zeaxanthin levels increased by three- to fourfold. In addition, both cultivars increased the rate of dry-matter accumulation, relative to control plants maintained at 5° C and 250 mol · m–2 · s–1 PPFD (10% and 28% for Katepwa and Kharkov, respectively), despite exhibiting suppressed fv/fm and reduced photon yields for O2 evolution following daily high-light treatments. Thus, although photosynthetic efficiency is suppressed by a longterm, photoinhibitory treatment, light-saturated rates of photosynthesis are sufficiently high during the high-light treatment to offset any reduction in photochemical efficiency of PSII. We suggest that in these cold-tolerant plants, photoinhibition of PSII may represent a longterm, stable, down-regulation of photochemistry to match the overall photosynthetic demand for ATP and reducing equivalents.Abbreviations and Symbols Chl chlorophyll - HL high light - PPFD photosynthetic photon flux density - FO minimum fluorescence in the dark-adapted state - FM maximum fluorescence in the dark-adapted state - FV maximum variable fluorescence in the dark-adapted state (FM-FO) - FV/FV photosynthetic efficiency of the dark-adapted state - fV/fM photosynthetic efficiency of the light-adapted steady state - qP photochemical quenching parameter - qN non-photochemical quenching parameter - e yield of electron transport and equals qP · fV/fM - 1-qO FO quenching parameter - app apparent photon yield. The assistance of Amy So is gratefully acknowledged. This research was supported by a Natural Sciences and Engineering Research Council of Canada (NSERCC) Operating Grant to N.P.A.H. G.Ö. was supported by an NSERCC International Exchange Award and the Swedish Natural Sciences Research Council.  相似文献   

18.
A tissue culture procedure was developed for the establishment and propagation of a colchi-autotetraploid of Rauvolfia serpentina for possible commercial exploitation. Multiplication of autotetraploid shoots was obtained either through axillary bud elongation on Murashige and Skoog [1] medium (MS) containing 2.65 M (0.5 mgl–1) -naphthaleneacetic acid and 0.33 M (0.05 mgl–1) kinetin, or via multiple shoot formation on MS medium supplemented with 4.44 M (1.0 mgl–1) 6-benzylaminopurine and 0.53 M (0.1 mgl–1) -naphthaleneacetic acid. Rooting could be induced by transferring the shoots to MS medium containing 7.95 M (1.5 mgl–1) -naphthaleneacetic acid alone. The plantlets, thus formed, were tetraploid in nature by cytological observations of the root tips. They exhibited 80–90% success in establishment under glass house and field conditions.  相似文献   

19.
To gain information on extended flight energetics, quasi-natural flight conditions imitating steady horizontal flight were set by combining the tetheredflight wind-tunnel method with the exhaustion-flight method. The bees were suspended from a two-component aerodynamic balance at different, near optimum body angle of attack and were allowed to choose their own speed: their body mass and body weight was determined before and after a flight; their speed, lift, wingbeat frequency and total flight time were measured throughout a flight. These values were used to determine thrust, resultant aerodynamic force (magnitude and tilting angle), Reynolds number, total flight distance and total flight impulse. Flights in which lift was body weight were mostly obtained. Bees, flown to complete exhausion, were refed with 5, 10, 15 or 20 l of a 1.28-mol·l-1 glucose solution (energy content w=18.5, 37.0, 55.5 or 74.0 J) and again flown to complete exhaustion at an ambient temperature of 25±1.5°C by a flight of known duration such that the calculation of absolute and relative metabolic power was possible. Mean body mass after exhaustion was 76.49±3.52 mg. During long term flights of 7.47–31.30 min similar changes in flight velocity, lift, thrust, aerodynamic force, wingbeat frequency and tilting angle took place, independent of the volume of feeding solution. After increasing rapidly within 15 s a more or less steady phase of 60–80% of total flight time, showing only a slight decrease, was followed by a steeper, more irregular decrease, finally reaching 0 within 20–30 s. In steady phases lift was nearly equal to resultant aerodynamic force; tilting angle was 79.8±4.0°, thrust to lift radio did not vary, thrust was 18.0±7.4% of lift, lift was somewhat higher/equal/lower than body mass in 61.3%, 16.1%, 22.6% of all totally analysable flights (n=31). The following parameters were varied as functions of volume of feeding solution (5–20 l in steps of 5 l) and energy content. (18.5–74.0 J in steps of 18.5 J): total flight time, velocity, total flight distance, mean lift, thrust, mean resultant aerodynamic force, tilting angle, total flight impulse, wingbeat frequency, metabolic power and metabolic power related to body mass, the latter related to empty, full and mean (=100 mg) body mass. The following positive correlations were found: L=1.069·10-9 f 2.538; R=1.629·10-9 f 2.464; P m=7.079·10-8 f 2.456; P m=0.008v+0.008; P m=18.996L+0.022; P m=19.782R+0.021; P m=82.143T+0.028; P m=1.245·bm f 1.424 ; P mrel e=6.471·bm f 1.040 ; =83.248+0.385. The following negative correlations were found: V=3.939–0.032; T=1.324·10-4–0.038·10-4. Statistically significant correlations were not found in T(f), L(), R(), f(), P m(bm e), P m rel e(bm e), P m rel f(bm e), P m rel f(bm f).Abbreviations A(m2) frontal area - bl(m) body length - bm(mg) body mass - c(mol·1-1) glucose concentration of feeding solution - c D (dimensionless) drag coefficient, related to A - D(N) drag - F w(N) body weight - F wp weight of paper fragment lost at flight start - f wingbeat frequency (s-1) - g(=9.81 m·s-2) gravitational acceleration - I(Ns)=R(t) dt total impulse of a flight - L(N) lift vertical sustaining force component - P m(J·s-1=W) metabolic power - Pm ret (W·g-1) metabolic power, related to body mass - R(N) resultant aerodynamic force - Re v·bl·v -1 (dimensionless) Reynolds number, related to body length - s(m) v(t) dt virtual flight distance of a flight - s(km) total virtual flight distance - T (N) thrust horizontal force component of horizontal flight - T a (°C) ambient temperature - t(s) time - t tot (s or min) total flight time - v(m·s-1) flight velocity - v(l) volume of feeding solution - W (J) energy and energy content of V - ( °) body angle of attack between body longitudinal axis and flow direction - ( °) tilting angle ( 90°) between R and the horizont in horizontal flight v(=1.53·10-5m2·s-1 for air at 25°) kinematic viscosity - (=1.2 kg·m-3 at 25°C) air density  相似文献   

20.
Atriplex gmelini plants were regenerated via organogensis from hypocotyl explants. Callus lines were induced from the hypocotyl explants on Linsmaier and Skoog (LS) medium supplemented with 1 M benzyladenine and 5 M -naphthaleneacetic acid in the dark. Shoots were regenerated from the callus lines on LS medium supplemented with 20 M thidiazuron and 0.1 M -naphthaleneacetic acid under a high-intensity light condition (450 mol m–2 s–1). The regenerated shoots were rooted on LS medium without growth regulators to obtain fully developed plants. We succeeded in transforming Atriplex gmelini from callus lines using Agrobacterium tumefaciens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号