首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Mozambique tilapia, Oreochromis mossambicus, is capable of surviving a wide range of salinities and temperatures. The present study was undertaken to investigate the influence of environmental salinity and temperature on osmoregulatory ability, organic osmolytes and plasma hormone profiles in the tilapia. Fish were acclimated to fresh water (FW), seawater (SW) or double-strength seawater (200% SW) at 20, 28 or 35 degrees C for 7 days. Plasma osmolality increased significantly as environmental salinity and temperature increased. Marked increases in gill Na(+), K(+)-ATPase activity were observed at all temperatures in the fish acclimated to 200% SW. By contrast, Na(+), K(+)-ATPase activity was not affected by temperature at any salinity. Plasma glucose levels increased significantly with the increase in salinity and temperature. Significant correlations were observed between plasma glucose and osmolality. In brain and kidney, content of myo-inositol increased in parallel with plasma osmolality. In muscle and liver, there were similar increases in glycine and taurine, respectively. Glucose content in liver decreased significantly in the fish in 200% SW. Plasma prolactin levels decreased significantly after acclimation to SW or 200% SW. Plasma levels of cortisol and growth hormone were highly variable, and no consistent effect of salinity or temperature was observed. Although there was no significant difference among fish acclimated to different salinity at 20 degrees C, plasma IGF-I levels at 28 degrees C increased significantly with the increase in salinity. Highest levels of IGF-I were observed in SW fish at 35 degrees C. These results indicate that alterations in gill Na(+), K(+)-ATPase activity and glucose metabolism, the accumulation of organic osmolytes in some organs as well as plasma profiles of osmoregulatory hormones are sensitive to salinity and temperature acclimation in tilapia.  相似文献   

2.
The green sturgeon is a long-lived, highly migratory species with populations that are currently listed as threatened. Their anadromous life history requires that they make osmo- and ionoregulatory adjustments in order to maintain a consistent internal milieu as they move between fresh-, brackish-, and seawater. We acclimated juvenile green sturgeon (121 ± 10.0 g) to 0 (freshwater; FW), 15 (estuarine; EST), and 24 g/l (SF Bay water; BAY) at 18°C for 2 weeks and measured the physiological and biochemical responses with respect to osmo- and ionoregulatory mechanisms. Plasma osmolality in EST- and BAY-acclimated sturgeon was elevated relative to FW-acclimated sturgeon (P < 0.01), but there was no difference in muscle water content or abundance of stress proteins. Branchial Na+, K+-ATPase (NKA) activity was also unchanged, but abundance within mitochondrion-rich cells (MRC) was greater in BAY-acclimated sturgeon (P < 0.01). FW-acclimated sturgeon had the greatest NKA abundance when assessed at the level of the entire tissue (P < 0.01), but there were no differences in v-type H+ATPase (VHA) activity or abundance between salinities. The Na+, K+, 2Cl co-transporter (NKCC) was present in FW-acclimated sturgeon gills, but the overall abundance was lower relative to sturgeon in EST or BAY water (P < 0.01) where this enzyme is crucial to hypoosmoregulation. Branchial caspase 3/7 activity was significantly affected by acclimation salinity (P < 0.05) where the overall trend was for activity to increase with salinity as has been commonly observed in teleosts. Sturgeon of this age/size class were able to survive and acclimate following a salinity transfer with minimal signs of osmotic stress. The presence of the NKCC in FW-acclimated sturgeon may indicate the development of SW-readiness at this age/size.  相似文献   

3.
The green sturgeon, Acipenser medirostris, is an anadromous species that migrates from freshwater (FW) to seawater (SW) relatively early in its life history, although the ages and sizes of juveniles at SW entry are not known. Developmental constraints of osmoregulatory organs may either prohibit (i.e., due to salinity tolerance limits) or minimize (i.e., due to substantial osmoregulatory or ionoregulatory energetic costs) SW entry in small fish. Interestingly, larger green sturgeon are often encountered in brackish water (BW) estuaries, perhaps due to an energetic advantage in occupying these near-isosmotic environments. To test hypotheses concerning fish-size effects on the energetic costs of occupying habitats of different salinities, we measured oxygen consumption rates in green sturgeon representing three age groups (100, 170, and 533 days post hatch; dph), which were acclimated for 5 weeks to one of three salinities (FW, <3‰; BW, 10‰; or SW, 33‰). Also, after 7 weeks, final wet masses were compared and blood and muscle tissue samples were taken to assess osmoregulatory abilities. There were no differences in body-mass-adjusted oxygen consumption rates between any salinities or ages, indicating that the energetic costs were not prohibitively high to occupy any of these salinities. The only mortalities occurred in the 100 dph SW group, where 23% of the fish died, from apparent starvation. Final wet masses were comparable between FW and BW for each age group and with the 533 dph SW group, but were lower in SW groups at 100 and 170 dph. Similarly, osmoregulatory abilities, in terms of plasma osmolality, Na+, K+, lactate, and protein concentrations, and muscle water content, were comparable in FW and BW groups at all ages, and with the SW group at 533 dph. These results indicated an age/body size effect in hyperosmotic adaptability, and that juvenile green sturgeon may be found in FW or BW at any age, but only have the ability to enter SW by 1.5 years (75 cm, 1.5 kg) of age.  相似文献   

4.
Freshwater (FW) spotted green pufferfish (Tetraodon nigroviridis) were transferred directly from a local aquarium to fresh water (FW; 0 per thousand ), brackish water (BW; 15 per thousand ), and seawater (SW; 35 per thousand ) conditions in the laboratory and reared for at least two weeks. No mortality was found. To investigate the efficient mechanisms of osmoregulation in the euryhaline teleost, distribution and expression of Na,K-ATPase (NKA) in gill and kidney of the pufferfish were examined and the osmolality, [Na+] and [Cl-] of the blood were assayed. The lowest levels of both relative protein abundance and activity were found to be exhibited in the BW group, and higher levels in the SW group than FW group. In all salinities, branchial NKA immunoreactivity was found in epithelial cells of the interlamellar region of the filament and not on the lamellae. Relative abundance of kidney NKA alpha-subunit, as well as the NKA activity, was found to be higher in the FW pufferfish than fish in BW or SW. Renal NKA appeared in the epithelial cells of distal tubules, proximal tubules, and collecting tubules, but not in glomeruli, in fish groups of various salinities. Plasma osmolality and chloride levels were significantly lower in FW pufferfish than those in BW and SW, whereas plasma sodium did not differ among the groups. Although identical distributions of NKA were found in either gill or kidney of FW-, BW- or SW-acclimated spotted green pufferfish, differential NKA expression in fish of various salinity groups was associated with physiological homeostasis (stable blood osmolality), and illustrated the impressive osmoregulatory ability of this freshwater and estuarine species in response to salinity challenge.  相似文献   

5.
This study was carried out to determine the effects of gradual salinity increase on osmoregulatory ability of the Caspian roach Rutilus caspicus, under conditions which mimic stocking conditions of hatchery-raised fish. Initially, 30 juvenile fish (mean ± S.D. 3.20 ± 0.34 g) were transferred to 20 l circular tanks, in which salinities were changed in a stepwise fashion, from 0 to 5, 10 or 15 at 48 h intervals. The fish at salinity 15 were held for an additional 48 h at this salinity. Forty-eight hours after salinity transfer, survival rate, haematocrit, plasma Cl(-) , Na(+) and K(+) concentrations, osmolality and gill Na(+) /K(+) -ATPase (NKA) activity were measured. The only effect of exposure to 5 was a significant reduction in haematocrit compared to the freshwater control group. Exposure to salinity 10 raised haematocrit, Cl(-) and Na(+) concentrations and osmolality. At 48 h exposure to salinity 15, haematocrit, Cl(-) and Na(+) concentrations and osmolality were significantly higher than freshwater controls, and gill NKA activity was significantly lower, but the effect on NKA was no longer evident at 96 h exposure. There were no effects on survival. These results indicate that R. caspicus juveniles experience an initial non-lethal iono-osmotic perturbation following salinity increase but can adapt to brackish water at salinity 15.  相似文献   

6.
Bull sharks (Carcharhinus leucas) were captured across a salinity gradient from freshwater (FW) to seawater (SW). Across all salinities, C. leucas were hyperosmotic to the environment. Plasma osmolarity in FW-captured animals (642 +/- 7 mosM) was significantly reduced compared to SW-captured animals (1067 +/- 21 mosM). In FW animals, sodium, chloride and urea were 208 +/- 3, 203 +/- 3 and 192 +/- 2 mmol l(-1), respectively. Plasma sodium, chloride and urea in SW-captured C. leucas were 289 +/- 3, 296 +/- 6 and 370 +/- 10 mmol l(-1), respectively. The increase in plasma osmolarity between FW and SW was not linear. Between FW (3 mosM) and 24 per thousand SW (676 mosM), plasma osmolarity increased by 22% or 0.92% per 1 per thousand rise in salinity. Between 24 per thousand and 33 per thousand, plasma osmolarity increased by 33% or 4.7% per 1 per thousand rise in salinity, largely due to a sharp increase in plasma urea between 28 per thousand and 33 per thousand. C. leucas moving between FW and SW appear to be faced with three major osmoregulatory challenges, these occur between 0-10 per thousand, 11-20 per thousand and 21-33 per thousand. A comparison between C. leucas captured in FW and estuarine environments (20-28 per thousand ) in the Brisbane River revealed no difference in the mass of rectal glands between these animals. However, a comparison of rectal gland mass between FW animals captured in the Brisbane River and Rio San Juan/Lake Nicaragua showed that animals in the latter system had a significantly smaller rectal gland mass at a given length than animals in the Brisbane River. The physiological challenges and mechanisms required for C. leucas moving between FW and SW, as well as the ecological implications of these data are discussed.  相似文献   

7.
Teleost fish experience passive osmotic water influx in fresh water (FW) and water outflux in salt water, which is normally compensated by water flow driven by active ion transport mechanisms. Euryhaline fish may also minimize osmotic energy demand by "behavioral osmoregulation", seeking a medium isotonic with their body fluids. Our goal was to evaluate the energy requirement for osmoregulation by the euryhaline fish Fundulus heteroclitus, to determine whether it is of sufficient magnitude to favor behavioral osmoregulation. We have developed a method of weighing small fish repetitively for long periods without apparent damage, which was used to assess changes in water content following changes in external salinity. We found that cold (4 degrees C) inhibits osmoregulatory active transport mechanisms in fish acclimated to warmer temperatures, leading to a net passive water flux which is reversed by rewarming the fish. A sudden change of salinity at room temperature triggers a transient change in water content and the initial slope can be used to measure the minimum passive flux at that temperature. With some reasonable assumptions as to the stoichiometry of the ion transport and ATP-generating processes, we can calculate the amount of respiration required for ion transport and compare it to the oxygen uptake measured previously under the same conditions. We conclude that osmoregulation in sea water requires from 6% to 10% of the total energy budget in sea water, with smaller percentages in FW, and that this fraction is probably sufficient to be a significant selective driving force favoring behavioral osmoregulation under some circumstances.  相似文献   

8.
9.
Many populations of shortnose sturgeon, Acipenser brevirostrum, in the southeastern United States continue to suffer from poor juvenile recruitment. High summer water temperatures, which may be exacerbated by anthropogenic activities, are thought to affect recruitment by limiting available summer habitat. However, information regarding temperature thresholds of shortnose sturgeon is limited. In this study, the thermal maximum method and a heating rate of 0.1°C min−1 was used to determine critical and lethal thermal maxima for young-of-the-year (YOY) shortnose sturgeon acclimated to temperatures of 19.5 and 24.1°C. Fish used in the experiment were 0.6 to 35.0 g in weight and 64 to 140 days post hatch (dph) in age. Critical thermal maxima were 33.7°C (±0.3) and 35.1°C (±0.2) for fish acclimated to 19.5 and 24.1°C, respectively. Critical thermal maxima significantly increased with an increase in acclimation temperature (p < 0.0001). Lethal thermal maxima were 34.8°C (±0.1) and 36.1°C (±0.1) for fish acclimated to 19.5 and 24.1°C, respectively. Lethal thermal maxima were significantly affected by acclimation temperature, the log10 (fish weight), and the interaction between log10(fish weight) and acclimation temperature (p < 0.0001). Thermal maxima were used to estimate upper limits of safe temperature, thermal preferences, and optimal growth temperatures of YOY shortnose sturgeon. Upper limits of safe temperature were similar to previous temperature tolerance information and indicate that summer temperatures in southeastern rivers may be lethal to YOY shortnose sturgeon if suitable thermal refuge cannot be found.  相似文献   

10.
The Mozambique tilapia (Oreochromis mossambicus) is prone to osmoregulatory disturbances when faced with fluctuating ambient temperatures. To investigate the underlying causes of this phenomenon, freshwater (FW)- and seawater (SW)-acclimated tilapia were transferred to 15, 25, or 35°C for 2 weeks, and along with typically used indicators of osmoregulatory status [plasma osmolality and branchial and intestinal specific Na+, K+-ATPase (NKA) activity], we used tissue microarrays (TMA) and laser-scanning cytometry (LSC) to characterize the effects of temperature acclimation. Tissue microarrays were stained with fluorescently labeled anti-Na+, K+-ATPase antibodies that allowed for the quantification of NKA abundance per unit area within individual branchial mitochondria-rich cells (MRCs) as well as sections of renal tissue. Mitochondria-rich cell counts and estimates of size were carried out for each treatment by the detection of DASPMI fluorescence. The combined analyses showed that SW fish have larger but fewer MRCs that contain more NKA per unit area. After a 2-week acclimation to 15°C tilapia experienced osmotic imbalances in both FW and SW that were likely due to low NKA activity. SW-acclimated fish compensated for the low activity by increasing MRC size and subsequently the concentration of NKA within MRCs. Although there were no signs of osmotic stress in FW-acclimated tilapia at 25°C, there was an increased NKA capacity that was most likely mediated by a higher MRC count. We conclude on the basis of the different responses to temperature acclimation that salinity-induced changes in the NKA concentration of MRCs alter thermal tolerance limits of tilapia.  相似文献   

11.
The effects of temperature on the salinity tolerance of Mozambique-Wami tilapia hybrids (Oreochromis mossambicus x O. urolepis hornorum) were investigated by transferring 35 g/l, 25 degrees C-acclimated fish to 35, 43, 51 or 60 g/l salinity at 15, 25 or 35 degrees C for 24 h, and by assaying gill tissue for branchial Na(+), K(+)-ATPase activity at the three temperatures after acclimating the fish to 15, 25 or 35 degrees C for 2 weeks. Tilapia survived all salinities at 25 and 35 degrees C; however, at 15 degrees C, mortality was 85.7% and 100% in the 51 g/l and 60 g/l groups, respectively. There was a significant interaction between temperature and salinity, as plasma osmolality, [Na(+)] and [Cl(-)] were significantly increased at 51 and 60 g/l salinity in 35 degrees C water (P<0.001). Additionally, muscle water content was significantly reduced at 43 g/l, 15 degrees C relative to pre-transfer values (P<0.001). Branchial Na(+), K(+)-ATPase activity was reduced at 15 degrees C regardless of acclimation temperature, and 25 degrees C-acclimated gill tissue did not show an increase in activity when assayed at 35 degrees C. Results indicate that the effects of a combined temperature-salinity transfer on plasma osmolality and ion concentrations, as well as muscle water content, are greater than when either challenge is given alone. Additionally, branchial Na(+), K(+)-ATPase activity is altered when assayed at varying temperatures; in the case of 15 degrees C, regardless of acclimation temperature. Our enzyme activity data may indicate the presence of a high temperature isoform of branchial Na(+), K(+)-ATPase enzyme.  相似文献   

12.
For the first time by the example of juveniles of Russian sturgeon Acipenser gueldenstaedtii Brandt, the role of growth hormone of hypophysis in the osmotic regulation of acipenserids was studied, also the process of transformation of reserve chloride was described. In Russian sturgeon juveniles, administration of growth hormone of carp Cyprinus carpio at a dose of 1 mg per 1 g body weight causes changes in the fine structure of numerous reserve (undifferentiated) gill epithelial cells and thus stimulates their transformation into mature chloride cells involved in transport of monovalent ions. Increase in the number of chloride cells, on account of reserve cells, was accompanied by higher enzymatic activity of Na+/K+-ATPase in gill homogenates of the injected fish adapting to a hyperosmotic environment of salinity 12.5‰ (403 mosm/l) than in the intact fish under the same conditions but without hormonal treatment. Morphophysiological changes observed in the injected juveniles provided the more efficient dynamics of blood serum osmolarity under saline exposure than that in the intact fish. Their serum osmolality during the maximum rise (24 hours after the transfer of fish into the water of 12.5‰ salinity) was lower (p <0.01), than that of the intact fish. The inclusion of growth hormone in the osmoregulatory process was established.  相似文献   

13.
14.
Salinity and its variations are among the key factors that affect survival, metabolism and distribution during the fish development. The successful establishment of a fish species in a given habitat depends on the ability of each developmental stage to cope with salinity through osmoregulation. It is well established that adult teleosts maintain their blood osmolality close to 300 mosM kg(-1) due to ion and water regulation effected at several sites: tegument, gut, branchial chambers, urinary organs. But fewer data are available in developing fish. We propose a review on the ontogeny of osmoregulation based on studies conducted in different species. Most teleost prelarvae are able to osmoregulate at hatch, and their ability increases in later stages. Before the occurrence of gills, the prelarval tegument where a high density of ionocytes (displaying high contents of Na+/K+-ATPase) is located appears temporarily as the main osmoregulatory site. Gills develop gradually during the prelarval stage along with the numerous ionocytes they support. The tegument and gill Na+/K+-ATPase activity varies ontogenetically. During the larval phase, the osmoregulatory function shifts from the skin to the gills, which become the main osmoregulatory site. The drinking rate normalized to body weight tends to decrease throughout development. The kidney and urinary bladder develop progressively during ontogeny and the capacity to produce hypotonic urine at low salinity increases accordingly. The development of the osmoregulatory functions is hormonally controlled. These events are inter-related and are correlated with changes in salinity tolerance, which often increases markedly at the metamorphic transition from larva to juvenile. In summary, the ability of ontogenetical stages of fish to tolerate salinity through osmoregulation relies on integumental ionocytes, then digestive tract development and drinking rate, developing branchial chambers and urinary organs. The physiological changes leading to variations in salinity tolerance are one of the main basis of the ontogenetical migrations or movements between habitats of different salinity regimes.  相似文献   

15.
This study focused on the acute physiological responses to saltwater exposure in juvenile shortnose sturgeon Acipenser brevirostrum. In two separate laboratory experiments, 2 year‐old A. brevirostrum were exposed to either full (32) or half‐strength (16) seawater for up to 24 h. First, oxygen consumption rates were used to estimate the metabolic costs over 24 h. Secondly, blood and muscle samples were analysed at 6, 12 and 24 h for water loss, various measures of osmoregulatory status (plasma osmolality and ions) and other standard haematological variables. Juveniles exposed to full‐strength seawater showed significant decreases in oxygen consumption rates during the 24 h exposure. Furthermore, seawater‐exposed fish had significantly increased plasma osmolality, ions (Na+ and Cl?) and a 17% decrease in total wet mass over the 24 h exposure period. To a lesser extent, increases in osmolality, ions and mass loss were observed in fish exposed to half‐strength seawater but no changes to oxygen consumption. Cortisol was also significantly increased in fish exposed to full‐strength seawater. While plasma protein was elevated following 24 h in full‐strength seawater, haemoglobin, haematocrit and plasma glucose levels did not change with increased salinity. These results imply an inability of juvenile A. brevirostrum to regulate water and ions in full‐strength seawater within 24 h. Nonetheless, no mortality occurred in any exposure, suggesting that juvenile A. brevirostrum can tolerate short periods in saline environments.  相似文献   

16.
Exposure to thermal stress was shown to have a significant effect on the osmotic pressure of the hemolymph, glucose levels, total count of hemocyte (TCH), and proPO activity in adult white shrimp Litopenaeus vannamei. Exposure of the shrimp to CTMax significantly increased the osmotic pressure of the hemolymph relative to the control group. In organisms reaching CTMax, temperature elicited a secondary stress response that included an increase in hemolymph glucose of 31?mg?mL?1. Metabolites in hemolymph such as cholesterol, acylglycerides, and total protein were not significantly affected by exposure to CTMax. CTMax exposure affected several immunological parameters causing decreases in TCH and proPO activity. We suggested that biomarkers such as osmolality, glucose levels, TCH, and proPO activity could be used as sensitive predictors of exposure to CTMax in white shrimp.  相似文献   

17.
This study aimed to examine effects of short- or long-term acclimation to brackish water or seawater on the climbing perch, Anabas testudineus, which is an aquatic air-breathing teleost living typically in freshwater. A. testudineus exhibits hypoosmotic and hypoinoic osmoregulation; the plasma osmolality, [Na+] and [Cl-] of fish acclimated to seawater were consistently lower than those of the external medium. However, during short-term (1 day) exposure to brackish water (15 per thousand) or seawater (30 per thousand), these three parameters increased significantly. There were also significant increases in tissue ammonia and urea contents, contents of certain free amino acids (FAAs) in the muscle, and rates of ammonia and urea excretion in the experimental fish. The accumulated FAAs might have a transient role in cell volume regulation. In addition, these results indicate that increases in protein degradation and amino acid catabolism had occurred, possibly providing energy for the osmoregulatory acclimation of the gills in fish exposed to salinity stress. Indeed, there was a significant increase in the branchial Na+/K+ -ATPase activity in fish exposed to seawater for a prolonged period (7 days), and the plasma osmolality, [Na+] and [Cl-] and the tissue FAA contents of these fish returned to control levels. More importantly, there was a significant increase in the dependence on water-breathing in fish acclimated to seawater for 7 days. This suggests for the first time that A. testudineus could alter its bimodal breathing pattern to facilitate the functioning of branchial Na+/K+ -ATPase for osmoregulatory purposes.  相似文献   

18.
This study investigated the relationships between behavioural responses of Atlantic salmon Salmo salar smolts to saltwater (SW) exposure and physiological characteristics of smolts in laboratory experiments. It concurrently described the behaviour of acoustically tagged smolts with respect to SW and tidal cycles during estuary migration. Salmo salar smolts increased their use of SW relative to fresh water (FW) from April to June in laboratory experiments. Mean preference for SW never exceeded 50% of time in any group. Preference for SW increased throughout the course of smolt development. Maximum continuous time spent in SW was positively related to gill Na+, K+‐ATPase (NKA) activity and osmoregulatory performance in full‐strength SW (measured as change in gill NKA activity and plasma osmolality). Smolts decreased depth upon reaching areas of the Penobscot Estuary where SW was present, and all fish became more surface oriented during passage from head of tide to the ocean. Acoustically tagged, migrating smolts with low gill NKA activity moved faster in FW reaches of the estuary than those with higher gill NKA activity. There was no difference in movement rate through SW reaches of the estuary based on gill NKA activity. Migrating fish moved with tidal flow during the passage of the lower estuary based on the observed patterns in both vertical and horizontal movements. The results indicate that smolts select low‐salinity water during estuary migration and use tidal currents to minimize energetic investment in seaward migration. Seasonal changes in osmoregulatory ability highlight the importance of the timing of stocking and estuary arrival.  相似文献   

19.
Changes in gill Na(+)K(+)ATPase activity were examined following the transfer of brook charr (Salvelinus fontinalis) from fresh water (FW) to seawater (SW). Gonadal development was altered at the hatching stage using three doses of ionizing radiation (IR): 6.2, 7.8, and 11.4 Gray (Gy). A non-irradiated control group was also included in the experimental set-up. Following 15 and 19 months of growth in FW, assessment of gill activity in regard to gonadal status (sterile vs. mature) and level of IR exposure was realized by conducting two estuarine challenge tests. A first introduction was performed during June (period of highest osmoregulatory capacities for this species) (summer experiment). A second introduction was conducted during October (period of diminished osmoregulatory capacities) (fall experiment). Gill Na(+)K(+)ATPase activity and water content were measured at different times and two FW control samplings were added in October and January. In the summer experiment (June-December), normal gonadal development of female brook charr was related to reduced gill Na(+)K(+)ATPase activity during the spawning period as compared to sterile fish (4.0+/-1.5 and 7.2+/-1.9 micromole Pi. mg protein(-1). hr(-1)) (P<0.0002). Similar results were not observed in FW conditions, implying that a lack of gonadal growth does not initiate a significant advantage when the osmoregulatory system including the gills are not highly in demand, i.e. in a FW environment. Ionizing radiation exposure of < or =11.4 Gy at the hatching stage had no significant negative or positive effect on Na(+)K(+)ATPase activity either in FW or SW conditions.  相似文献   

20.
小菜蛾是世界范围内十字花科蔬菜上的重要害虫.临界高温(critical thermal maxi-mum,CTMax)是昆虫耐热性的常用指标.采用动态加热方法,利用自行组装的装置测定了小菜蛾的临界高温,以此作为其耐热性指标,研究发育阶段、饲养温度、世代、性别和热激对小菜蛾耐热性的影响.结果表明:25℃下饲养的小菜蛾4龄幼虫的CTMax均值为50.31℃,显著高于1龄幼虫(43.03℃)、2龄幼虫(46.39℃)、3龄幼虫(49.67℃)以及雌性成虫(45.76℃)和雄性成虫(47.73℃);不同饲养温度(20、25和30℃)下成虫耐热性无显著差异;30℃下饲养1代、3代及6代的不同世代成虫CTMax也无显著变化;所有处理雌雄成虫的CTMax无显著差异;40℃下45 min热激可使5日龄雄成虫的CTMax值从45.51℃增加到46.49℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号