首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hypersensitive resistance (HR) is an efficient defense strategy in plants that restricts pathogen growth and can be activated during host as well as non-host interactions. HR involves programmed cell death and manifests itself in tissue collapse at the site of pathogen attack. A novel hypersensitivity gene, Ny-1, for resistance to Potato virus Y (PVY) was revealed in potato cultivar Rywal. This is the first gene that confers HR in potato plants both to common and necrotic strains of PVY. The locus Ny-1 mapped on the short arm of potato chromosome IX, where various resistance genes are clustered in Solanaceous genomes. Expression of HR was temperature-dependent in cv. Rywal. Strains PVYO and PVYN, including subgroups PVYNW and PVYNTN, were effectively localized when plants were grown at 20°C. At 28°C, plants were systemically infected but no symptoms were observed. In field trials, PVY was restricted to the inoculated leaves and PVY-free tubers were produced. Therefore, the gene Ny-1 can be useful for potato breeding as an alternative donor of PVY resistance, because it is efficacious in practice-like resistance conferred by Ry genes.  相似文献   

2.
Plants of several potato clones with major gene resistance to potato virus Y (PVY) developed necrotic local lesions and systemic necrosis after manual inoculation with common (PVYo) or veinal necrosis (PVYN) strains of the virus. The clones reacted similarly, although their resistance genes are thought to be derived from four different wild species of Solarium. Mesophyll protoplasts from each clone became infected when inoculated with RNA of PVYo by the polyethylene glycol method. The proportion of protoplasts infected, assessed by staining with fluorescent antibody to virus particles, was similar to that of protoplasts of susceptible potato cultivars. In contrast, plants of potato cultivars Corine and Pirola, which possess gene Ry from S. stoloniferum, developed few or no symptoms when manually inoculated or grafted with PVYo. Moreover, only very few protoplasts of these cultivars produced virus particle antigen after inoculation with PVYo RNA. The extreme resistance to PVY of cvs Corine and Pirola was therefore expressed by inoculated protoplasts whereas the resistance of the necrotic-reacting potato clones was not.  相似文献   

3.
Potato leafroll virus (PLRV) causes one of the most widespread and important virus diseases in potato. Resistance to PLRV is controlled by genetic factors that limit plant infection by viruliferous aphids or virus multiplication and accumulation. Quantitative trait locus (QTL) analysis of resistance to virus accumulation revealed one major and two minor QTL. The major QTL, PLRV.1, mapped to potato chromosome XI in a resistance hotspot containing several genes for qualitative and quantitative resistance to viruses and other potato pathogens. This QTL explained between 50 and 60% of the phenotypic variance. The two minor QTL mapped to chromosomes V and VI. Genes with sequence similarity to the tobacco N gene for resistance to Tobacco mosaic virus were tightly linked to PLRV.1. The cDNA sequence of an N-like gene was used to develop the sequence characterized amplified region (SCAR) marker N127(1164) that can assist in the selection of potatoes with resistance to PLRV.  相似文献   

4.
The Potato virus S resistance gene Ns maps to potato chromosome VIII   总被引:1,自引:0,他引:1  
The dominant allele Ns confers in potato resistance to Potato virus S (PVS). To identify the chromosomal location of Ns, we mapped the Ns-linked marker SCG17448 and the ISSR marker UBC811600 to linkage group VIII of the RFLP map of a population that did not segregate for Ns. The map position of the Ns locus on chromosome VIII was confirmed with the detection of linkage between Ns and three RFLP markers, GP126, GP189 and CP16, known to be located in a corresponding region on potato chromosome VIII. PCR-based assays were developed for these RFLP markers. The PCR primers specific for GP126 generated polymorphic products (STS marker). In the case of markers GP189 and CP16, informative polymorphism was revealed in the Ns population after digestion with the restriction enzymes HaeIII and HindIII, respectively. The genetic distance between Ns and the closest CP16 locus was 4.2 cM.  相似文献   

5.
6.
Aspects of resistance to sweet potato virus disease in sweet potato   总被引:3,自引:0,他引:3  
In field trials during the first and the second rainy season of 1996 in Uganda, whiteflies were similarly abundant and aphids were absent on three clones of sweet potato (NIS-93–63, cv. Tanzania and cv. New Kawogo) although the three clones differed considerably in their resistance to sweet potato virus disease (SPVD), a complex disease resulting from infection by both the aphid-borne sweet potato feathery mottle virus (SPFMV) and the whitefly-borne sweet potato chlorotic stunt virus (SPCSV). This suggests that vector resistance does not determine the relative SPVD resistance of these genotypes. SPFMV alone had only a low virus titre in sweet potato cvs Tanzania and New Kawogo, became increasingly difficult to detect in plants of these cultivars and was seldom acquired by aphids. However, this resistance to SPFMV was not apparent in plants which were also infected with SPCSV. Plants then had a high SPFMV titre, appeared unable to eliminate SPFMV and provided good sources for aphids to acquire it.  相似文献   

7.
Ry confers extreme resistance (ER) to all strains of potato virus Y (PVY). In previous work, we have shown that the protease domain of the nuclear inclusion a protease (NIaPro) from PVY is the elicitor of the Ry-mediated resistance and that integrity of the protease active site is required for the elicitation of the resistance response. Two possibilities arise from these results: first, the structure of the active protease has elicitor activity; second, NIa-mediated proteolysis is required to elicit the resistance response. To resolve these possibilities, the NIaPro from PVY was randomly mutagenised and the clones obtained were screened for elicitation of cell death as an indicator of resistance and proteolytic activity. We did not find any mutants that had retained the ability to elicit cell death but had lost protease activity, as measured by processing of the NIa cleavage site in the viral genome. This was consistent with the idea that protease activity is necessary for elicitor activity. However, protease activity was not sufficient because we found three elicitor-defective mutants in which there was a high level of protease activity in this assay.  相似文献   

8.
9.
The genes for the capsid protein (CP) and the 8K movement protein of PVX were introduced into potato (Solanum tuberosum L.) and expressed under the control of CaMV 35S promoter using a binary vector andAgrobacterium tumefaciens. Four commercial potato cultivars (Russet Burbank, Shepody, Desirée and Bintje) have been efficiently transformed. Eleven independent transgenic clones, with CP expression levels higher than 0.05% of the soluble leaf proteins, were analyzed for resistance to inoculation with PVX (5 and 50µg/ml). The resistance of the transgenic plants to PVX was observed with the lower titer of virus inoculation (5 µg/ml) but not with higher titer (50 µg/ml). A significant reduction in the accumulation of virus in the inoculated transgenic potato plants has been observed under greenhouse and field conditions. Furthermore, the CP gene is very stable and is transferred to new plants originated from stem cuttings or from tubers. The transgenic plants appeared to be phenotypically identical to the nontransformed controls.Abbreviations BAP benzyl-aminopurine - BCIP 5-bromo-4-chloro-3-indolylphosphate p-Toluidine salt - CaMV cauliflower mosaic virus - CP capsid protein - GA3 gibberellic acid - Kbp kilobase pair - NAA naphthalene acetic acid - NBT nitroblue tetrazolium chloride - NOS nopaline synthase - NPT II neomycin phosphotransferase II - PMSF phenyl methyl sulfonyl fluoride - PVX potato virus X - PVY potato virus Y  相似文献   

10.
Potato virus X (PVX) isolates were obtained from a simple seed potato production scheme or from ware potatoes produced by seed potatoes obtained from it. In this scheme, PVX infection is widespread in seed stocks and most of the potatoes grown lack PVX resistance genes. Thirteen PVX isolates were typed to strain group by inoculation to potato cultivars containing different combinations of hypersensitivity genes Nx and Nb. Six failed to overcome either gene and therefore belonged to strain group 1, four overcame Nb only and were placed in strain group 3 and three were mixtures of the two. All 13 isolates failed to overcome extreme resistance/immunity gene Rx. Naturally infected cultivars of genotype nx.nb contained strain group 1 alone or strain groups 1 and 3, while those of genotype nx:Nb contained only strain group 3. The widespread occurrence of strain group 1 contrasts with the predominant occurrence of strain group 3 in potatoes in the UK. However, it resembles the UK situation before sophisticated seed potato production schemes were introduced and before PVX hypersensitivity genes Nx and Nb were deliberately exploited in potato breeding. Prior infection with potato leafroll virus (PLRV) did not affect expression of hypersensitivity to PVX in inoculated leaves of an nx:Nb genotype.  相似文献   

11.
The Nc(tbr) and Ny(tbr) genes in Solanum tuberosum determine hypersensitive reactions, characterized by necrotic reactions and restriction of the virus systemic movement, toward isolates belonging to clade C and clade O of Potato virus Y (PVY), respectively. We describe a new resistance from S. sparsipilum which possesses the same phenotype and specificity as Nc(tbr) and is controlled by a dominant gene designated Nc(spl). Nc(spl) maps on potato chromosome IV close or allelic to Ny(tbr). The helper component proteinase (HC-Pro) cistron of PVY was shown to control necrotic reactions and resistance elicitation in plants carrying Nc(spl), Nc(tbr), and Ny(tbr). However, inductions of necrosis and of resistance to the systemic virus movement in plants carrying Nc(spl) reside in different regions of the HC-Pro cistron. Also, genomic determinants outside the HC-Pro cistron are involved in the systemic movement of PVY after induction of necroses on inoculated leaves of plants carrying Ny(tbr). These results suggest that the Ny(tbr) resistance may have been involved in the recent emergence of PVY isolates with a recombination breakpoint near the junction of HC-Pro and P3 cistrons in potato crops. Therefore, this emergence could constitute one of the rare examples of resistance breakdown by a virus which was caused by recombination instead of by successive accumulation of nucleotide substitutions.  相似文献   

12.
The chromosomal location of the major gene Ry adg controlling extreme resistance to potato virus Y (PVY) in Solanum tuberosum subsp. andigena was identified by RFLP analysis of a diploid potato population. A total of 64 tomato and potato RFLP markers were screened with the bulked segregant analysis (BSA) on segregants extremely resistant, hypersensitive or susceptible to PVY. Four markers TG508, GP125, CD17 and CT168 at the proximal end of chromosome XI showed close linkage with extremely resistant phenotypes. TG508 was identified as the closest marker linked with the Ry adg locus with the maximum map distance estimated as 2.0 cM. The 4 markers linked with the Ry adg locus were tested on independent tetraploid and diploid potato clones and were subsequently found useful for marker-assisted selection for plants containing Ry adg . Received: 5 July 1996 / Accepted: 19 July 1996  相似文献   

13.
14.
Location of the factor for resistance to potato virus Y in tobacco   总被引:2,自引:0,他引:2  
  相似文献   

15.
Closely linked PCR-based markers facilitate the tracing and combining of resistance factors that have been introgressed previously into cultivated potato from different sources. Crosses were performed to combine the Ry adg gene for extreme resistance to Potato virus Y (PVY) with the Gro1 gene for resistance to the root cyst nematode Globodera rostochiensis and the Rx1 gene for extreme resistance to Potato virus X (PVX), or with resistance to potato wart (Synchytrium endobioticum). Marker-assisted selection (MAS) using four PCR-based diagnostic assays was applied to 110 F1 hybrids resulting from four 2× by 4× cross-combinations. Thirty tetraploid plants having the appropriate marker combinations were selected and tested for presence of the corresponding resistance traits. All plants tested showed the expected resistant phenotype. Unexpectedly, the plants segregated for additional resistance to pathotypes 1, 2 and 6 of S. endobioticum, which was subsequently shown to be inherited from the PVY resistant parents of the crosses. The selected plants can be used as sources of multiple resistance traits in pedigree breeding and are available from a potato germplasm bank.  相似文献   

16.
Resistance to potato leafroll virus (PLRV), potato virus Y (PVYo) and potato virus X (PVX) was studied in symmetric and asymmetric somatic hybrids produced by electrofusion between Solanum brevidens (2n=2×=24) and dihaploid S. tuberosum (2n=2×=24), and also in regenerants (B-hybrids) derived through protoplast culture from a single somatic hybrid (chromosome number 48). All of the somatic hybrids between 5. brevidens and the two dihaploid lines of potato cv. Pito were extremely resistant to PLRV and PVYoand moderately resistant to PVX, irrespective of their chromosome number and ploidy level (tetraploid or hexaploid). Most (56%) of the asymmetric hybrids of irradiated S. brevidens and the dihaploid line of potato cv. Pentland Crown (PDH40) had high titres of PVYosimilar to those of PDH40, whereas the rest of the hybrids had PVYotitres less than a tenth of those in PDH40. Three B-hybrids had a highly reduced chromosome number (27, 30 and 34), but were however as resistant to PLRV, PVYoand PVX as 5. brevidens. Two asymmetric hybrids and one B-hybrid were extremely resistant to PLRV but susceptible to both PVY and PVX. The results suggested that resistance to PLRV in 5. brevidens is controlled by a gene or genes different from those controlling resistance to PVY and PVX, and the gene(s) for resistance to PVY and PVX are linked in S. brevidens.  相似文献   

17.
 The dominant Nb gene of potato confers strain-specific hypersensitive resistance against potato virus X (PVX). A population segregating for Nb was screened for resistance by inoculating with PVX strain CP2, which is sensitive to Nb. Through a combination of bulked segregant analysis and selective restriction fragment amplification, several amplified fragment length polymorphism (AFLP) markers linked to Nb were identified. These were cloned and converted into dominant cleaved amplified polymorphic sequence (CAPS) markers. The segregation of these markers in a Lycopersicon esculentum×L. pennellii mapping population suggested that Nb is located on chromosome 5. This was confirmed by examining resistant and susceptible potato individuals with several tomato and potato chromosome-5-specific markers. Nb maps to a region of chromosome 5 where several other resistance genes– including R1, a resistance gene against Phytophthora infestans, Gpa, a locus that confers resistance against Globodera pallida, and Rx2, a gene that confers extreme resistance against PVX–have previously been identified. Received: 2 January 1997/Accepted: 7 February 1997  相似文献   

18.
The Rx locus in potato confers extreme resistance to PVX. In the F1 progeny of crosses between the PVX-susceptible cultivar Huinkel and the cultivar Cara (Rx genotype) there was a 1?:?1 segregation of PVX resistance, indicating that Rx in Cara is present in the simplex condition. Using potato and tomato RFLP markers, we mapped Rx in Cara to the distal end of chromosome XII at a different position to the previously mapped Rx1 locus. To generate a high-resolution linkage map in the vicinity of Rx a total 728 AFLP primer combinations were screened using DNA of bulked resistant and susceptible segregants. We also screened segregating populations for chromosomal recombination events linked to the Rx locus and identified 82 plants with recombination events close to Rx. Using these recombinant plants we have identified AFLPs that flank Rx and span an interval of 0.23 cM in a region of the genome where 1 cM corresponds to approximately 400?kb.  相似文献   

19.
Potato virus X-induced gene silencing in leaves and tubers of potato   总被引:12,自引:0,他引:12  
Virus induced gene silencing (VIGS) is increasingly used to generate transient loss-of-function assays and has potential as a powerful reverse-genetics tool in functional genomic programs as a more rapid alternative to stable transformation. A previously described potato virus X (PVX) VIGS vector has been shown to trigger silencing in the permissive host Nicotiana benthamiana. This paper demonstrates that a PVX-based VIGS vector is also effective in triggering a VIGS response in both diploid and cultivated tetraploid Solanum species. We show that systemic silencing of a phytoene desaturase gene is observed and maintained throughout the foliar tissues of potato plants and was also observed in tubers. Here we report that VIGS can be triggered and sustained on in vitro micropropagated tetraploid potato for several cycles and on in vitro generated microtubers. This approach will facilitate large-scale functional analysis of potato expressed sequence tags and provide a noninvasive reverse-genetic approach to study mechanisms involved in tuber and microtuber development.  相似文献   

20.
The potato cv. Igor is susceptible to infection with Potato virus Y (PVY) and in Slovenia it has been so severely affected with NTN isolates of PVY causing potato tuber necrotic ringspot disease (PTNRD) that its cultivation has ceased. Plants of cv. Igor were transformed with two transgenes that contained coat protein gene sequence of PVYNTN. Both transgenes used PVY sequence in a sense (+) orientation, one in native translational context (N‐CP), and one with a frame‐shift mutation (FS‐CP). Although most transgenic lines were susceptible to infection with PVYNTN and PVYO, several lines showed resistance that could be classified into two types. Following manual or graft inoculation, plants of partially resistant lines developed some symptoms in foliage and tubers, and virus titre in the foliage, estimated by ELISA, was low or undetectable. In highly resistant (R) lines, symptoms did not develop in foliage and on tubers, and virus could not be detected in foliage by ELISA or infectivity assay. Four lines from 34 tested (two N‐CP and two FS‐CP) were R to PVYNTN and PVYO and one additional line was R to PVYO. When cv. Spey was transformed with the same constructs, they did not confer strong resistance to PVYO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号