首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Metabolic, biochemical and biomechanical differences between ankle and knee joint cartilage and chondrocytes including resistance to the effects of catabolic cytokines and fibronectin fragments may be relevant to differences in prevalence of OA in these joints. Although there is increasing information available on how chondrocytes from knee and hip joint cartilage recognise and respond to mechanical stimuli, knowledge of mechanotransduction in ankle joint chondrocytes is limited. This study was undertaken to (i) establish whether the response of normal ankle joint derived chondrocytes to mechanical stimulation in vitro was similar to that of normal and osteoarthritic knee joint derived chondrocytes and (ii) to investigate whether these chondrocytes showed differences in expression of integrin associated regulatory and signalling molecules. Unlike normal knee joint chondrocytes, ankle joint chondrocytes did not show an increase in relative levels of aggrecan mRNA when mechanically stimulated. No obvious change in protein tyrosine phosphorylation was seen in ankle chondrocytes subsequent to mechanical stimulation but these cells expressed elevated levels of tyrosine phosphorylated proteins at rest when compared to normal knee joint chondrocytes. Ankle joint chondrocytes showed an increase in protein kinase B phosphorylation following 1 min 0.33 Hz stimulation which was inhibited by the presence of antibodies to alpha5beta1 integrin. Ankle joint chondrocytes appeared to show significant differences in levels of the integrin-associated proteins CD98, CD147 and galectin 3, PKCgamma and differences in responses to glutamate were seen. Chondrocytes from ankle and knee joint cartilage respond differently to 0.33 Hz mechanical stimulation. This may be related to modified integrin-dependent mechanotransduction as a result of changes in expression of integrin regulatory molecules such as CD98 or differential expression and function of downstream components of the mechanotransduction pathway such as PKC or NMDA receptors.  相似文献   

3.
The importance of biomechanical forces in regulating normal chondrocyte metabolism is well established and the mechanisms whereby mechanical forces are transduced into biochemical responses by chondrocytes are beginning to be understood. Previous studies have indicated that cyclical mechanical stimulation induces increased aggrecan gene expression in normal but not osteoarthritic chondrocytes in monolayer. It remains unclear, however, whether these effects on gene expression are associated with changes in proteoglycan production and whether any changes in proteoglycan expression is dependent on integrins or integrin associated proteins. Normal and osteoarthritic articular chondrocytes in monolayer were exposed to 0.33 Hz mechanical stimulation for 20 min in the absence or presence of function modifying anti-integrin antibodies. Following stimulation GAG and proteoglycan (PG) synthesis was assessed by DMMB assay and western blotting. Mechanical stimulation of normal chondrocytes resulted in increased GAG synthesis that was blocked by the presence of antibodies to alpha5 and alphaVbeta5 integrins and CD47. Electrophoretic patterns of PGs released from normal chondrocytes following mechanical stimulation showed an increase in newly-synthesized aggrecan that was not fragmented or degraded. Chondrocytes from osteoarthritic cartilage showed lower levels of GAG production when compared to normal chondrocytes and synthesis was not influenced by mechanical stimulation. These studies show that chondrocytes derived from normal and OA cartilage have different matrix production responses to mechanical stimulation and suggest previously unrecognised roles for alphaVbeta5 integrin in regulation of chondrocyte responses to biomechanical stimulation.  相似文献   

4.
Mechanical forces influence articular cartilage structure by regulating chondrocyte activity. Mechanical stimulation results in activation of an alpha5beta1 integrin dependent intracellular signal cascade involving focal adhesion kinase and protein kinase C, triggering the release of interleukin-4 from the cell. In normal HAC the response to physiological mechanical stimulation is characterised by increased levels of aggrecan mRNA and a decrease in levels of mRNA for matrix metalloproteinase 3 (MMP-3), the net result of which would be to maintain and optimise cartilage structure and function. This protective/anabolic response is not seen when chondrocytes from osteoarthritic cartilage are subjected to an identical mechanical stimulation regime. Following the observation that the neurotransmitter substance P is involved in chondrocyte mechanotransduction the present study was undertaken to establish potential roles for glutamate receptors in the control of chondrocyte mechanical responses. Using immunohistochemistry and RTPCR normal and OA chondrocytes are shown to express NR1 and NR2a subunits of the NMDA receptor. Addition of NMDA receptor agonists to chondrocytes in primary culture resulted in changes in membrane potential consistent with expression of functional receptors. NMDA receptor antagonists inhibited the hyperpolarisation response of normal chondrocytes to mechanical stimulation but had no effect on the depolarisation response of osteoarthritic chondrocytes to mechanical stimulation. These studies indicate that at least one subset of the NMDA receptor family of molecules is expressed in cartilage and may have important modulatory effects on mechanotransduction and cellular responses following mechanical stimulation. Indeed the results suggest that there is an alteration of NMDA receptor signalling in OA chondrocytes, which may be critical in the abnormal response of OA chondrocytes to mechanical stimulation. Thus NMDA receptors appear to be involved in the regulation of human articular chondrocyte responses to mechanical stimulation, and in OA, mechanotransduction pathways may be modified as a result of altered activation and function of these receptors.  相似文献   

5.
ATP in the mechanotransduction pathway of normal human chondrocytes   总被引:5,自引:0,他引:5  
Extracellular nucleotides have been shown to have diverse effects on chondrocyte function, generally acting via P2 purinoceptors. We have previously shown that mechanical stimulation at 0.33 Hz of normal human chondrocyte cultures causes cellular hyperpolarisation, while chondrocytes derived from osteoarthritic (OA) cartilage depolarise. Experiments have been undertaken to establish whether ATP is involved in the response of the chondrocyte to mechanical stimulation. Chondrocytes, isolated from normal and OA cartilage obtained, with consent, from human knee joints following surgery, were cultured in non-confluent monolayer. Cells were mechanically stimulated at 0.33 Hz for 20 minutes at 37 degrees C in the presence or absence of inhibitors of ATP signalling, or were stimulated by the addition of exogenous ATP or derivatives, and electrophysiological measurements recorded. Samples of medium bathing the cells were collected before and after mechanical stimulation, and the concentration of ATP in the cell medium was measured. Total RNA was extracted from cultured chondrocytes, reverse-transcribed and used for RT-PCR with primers specific for P2Y2 purinoceptors. ATP, UTP 2-methylthioadenosine and alphabeta-methylene adenosine 5'-triphosphate all induced a hyperpolarisation response in normal human articular chondrocytes. No significant change was observed in the membrane potentials of chondrocytes isolated from OA cartilage following the addition of these nucleotides to the medium. In normal chondrocytes, the hyperpolarisation induced by ATP was blocked by the presence of apamin, indicating the involvement of small-conductance calcium-activated potassium channels. Following mechanical stimulation of normal chondrocytes, an increase was observed in ATP concentration in the cell culture medium bathing the cells. The presence within the culture medium of suramin or pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) prior to and during the period of mechanical stimulation abolished the hyperpolarisation response in normal chondrocytes. The presence of mRNA for P2Y2 purinoceptors was demonstrated in both normal and OA chondrocytes by RT-PCR. These results suggest that ATP has a role in the response of normal chondrocytes to mechanical stimulation, via P2Y2 purinoceptors. This response appears to be different in chondrocytes derived from OA cartilage, and may be important in the progression of this disease.  相似文献   

6.
Chondrocyte function is regulated partly by mechanical stimulation. Optimal mechanical stimulation maintains articular cartilage integrity, whereas abnormal mechanical stimulation results in development and progression of osteoarthritis (OA). The responses of signal transduction pathways in human articular chondrocytes (HAC) to mechanical stimuli remain unclear. Previous work has shown the involvement of integrins and integrin-associated signaling pathways in activation of plasma membrane apamin-sensitive Ca2+-activated K+ channels that results in membrane hyperpolarization of HAC after 0. 33 Hz cyclical mechanical stimulation. To further investigate mechanotransduction pathways in HAC and show that the hyperpolarization response to mechanical stimulation is a result of an integrin-dependent release of a transferable secreted factor, we used this response. Neutralizing antibodies to interleukin 4 (IL-4) and IL-4 receptor alpha inhibit mechanically induced membrane hyperpolarization and anti-IL-4 antibodies neutralize the hyperpolarizing activity of medium from mechanically stimulated cells. Antibodies to interleukin 1beta (IL-1beta) and cytokine receptors, interleukin 1 receptor type I and the common gamma chain/CD132 (gamma) have no effect on me- chanically induced membrane hyperpolarization. Chondrocytes from IL-4 knockout mice fail to show a membrane hyperpolarization response to cyclical mechanical stimulation. Mechanically induced release of the chondroprotective cytokine IL-4 from HAC with subsequent autocrine/paracrine activity is likely to be an important regulatory pathway in the maintenance of articular cartilage structure and function. Finally, dysfunction of this pathway may be implicated in OA.  相似文献   

7.
This study analyzes the molecular response of articular chondrocytes to short-term mechanical loading with a special focus on gene expression of molecules relevant for matrix turnover. Porcine cartilage explants were exposed to static and dynamic unconfined compression and viability of chondrocytes was assessed to define physiologic loading conditions. Cell death in the superficial layer correlated with mechanical loading and occurred at peak stresses >or=6 MPa and a cartilage compression above 45%. Chondrocytes in native cartilage matrix responded to dynamic loading by rapid and highly specific suppression of collagen expression. mRNA levels dropped 11-fold (collagen 2; 6 MPa, P=0.009) or 14-fold (collagen 1; 3 and 6 MPa, P=0.009) while levels of aggrecan, tenascin-c, matrix metalloproteinases (MMP1, 3, 13, 14), and their inhibitors (TIMP1-3) did not change significantly. Thus, dynamic mechanical loading rapidly shifted the balance between collagen and aggrecan/tenascin/MMP/TIMP expression. A better knowledge of the chondrocyte response to mechanical stress may improve our understanding of mechanically induced osteoarthrits.  相似文献   

8.
Abstract

Context: During osteoarthritis (OA), chondrocytes undergo de-differentiation, resulting in the acquisition of a fibroblast-like morphology, decreased expression of collagen type II (colII) and aggrecan, and increased expression of collagen type I (colI), metalloproteinase 13 (MMP13) and nitric oxide synthase (eNOS). Notch signaling plays a crucial role during embryogenesis. Several studies showed that Notch is expressed in adulthood. Objective: The aim of our study was to confirm the involvement of Notch signaling in human OA at in vitro and ex vivo levels. Materials and methods: Normal human articular chondrocytes were cultured during four passages either treated or not with a Notch inhibitor: DAPT. Human OA cartilage was cultured with DAPT for five days. Chondrocytes secreted markers and some Notch pathway components were analyzed using Western blotting and qPCR. Results: Passaging chondrocytes induced a decrease in the cartilage markers: colII and aggrecan. DAPT-treated chondrocytes and OA cartilage showed a significant increase in healthy cartilage markers. De-differentiation markers, colI, MMP13 and eNOS, were significantly reduced in DAPT-treated chondrocytes and OA cartilage. Notch1 expression was proportional to colI, MMP13 and eNOS expression and inversely proportional to colII and aggrecan expression in nontreated cultured chondrocytes. Notch ligand: Jagged1 increased in chondrocytes culture. DAPT treatment resulted in reduced Jagged1 expression. Notch target gene HES1 increased during chondrocyte culture and was reduced when treated with DAPT. Conclusion: Targeting Notch signaling during OA might lead to the restitution of the typical chondrocyte phenotype and even to chondrocyte redifferentiation during the pathology.  相似文献   

9.
Several factors are known to be involved in the destruction of the articular cartilage. Interleukin-1 (IL-1) plays an important role in the pathogenesis of osteoarthritis (OA) either directly or through the stimulation of catabolic factors. The action of IL-1 on articular cartilage is multifaceted and it most likely plays an important role in the mechanism of cartilage destruction. IL-1 suppresses the synthesis of the cartilage matrix components and promotes the degradation of cartilage matrix macromolecules. Diacerein is an anthraquinone molecule that has been shown to reduce the severity of OA, both in man and in animal models. The present study was designed to evaluate in vitro effects of diacerein on IL-1beta expression in LPS or IL-1alpha stimulated chondrocytes. Intracellular IL-1beta production was analysed in articular chondrocytes cultured in monolayer or in alginate 3D-biosystems in the presence of lipopolysaccharide (LPS) or IL-1alpha, with or without diacerein. The results show that LPS and IL-1alpha increase intracellular IL-1beta and Diacerein inhibited LPS-induced and IL-1alpha induced IL-1beta production by articular chondrocytes. Moreover, the effect of mechanical stimulation was analysed. An inhibitory effect of DAR at therapeutic concentrations on IL-1beta production in articular chondrocytes is suggested.  相似文献   

10.
Articular cartilage is optimised for bearing mechanical loads. Chondrocytes are the only cells present in mature cartilage and are responsible for the synthesis and integrity of the extracellular matrix. Appropriate joint loads stimulate chondrocytes to maintain healthy cartilage with a concrete protein composition according to loading demands. In contrast, inappropriate loads alter the composition of cartilage, leading to osteoarthritis (OA). Matrix metalloproteinases (MMPs) are involved in degradation of cartilage matrix components and have been implicated in OA, but their role in loading response is unclear. With this study, we aimed to elucidate the role of MMP-1 and MMP-3 in cartilage composition in response to mechanical load and to analyse the differences in aggrecan and type II collagen content in articular cartilage from maximum- and minimum-weight-bearing regions of human healthy and OA hips. In parallel, we analyse the apoptosis of chondrocytes in maximal and minimal load areas. Because human femoral heads are subjected to different loads at defined sites, both areas were obtained from the same hip and subsequently evaluated for differences in aggrecan, type II collagen, MMP-1, and MMP-3 content (enzyme-linked immunosorbent assay) and gene expression (real-time polymerase chain reaction) and for chondrocyte apoptosis (flow cytometry, bcl-2 Western blot, and mitochondrial membrane potential analysis). The results showed that the load reduced the MMP-1 and MMP-3 synthesis (p < 0.05) in healthy but not in OA cartilage. No significant differences between pressure areas were found for aggrecan and type II collagen gene expression levels. However, a trend toward significance, in the aggrecan/collagen II ratio, was found for healthy hips (p = 0.057) upon comparison of pressure areas (loaded areas > non-loaded areas). Moreover, compared with normal cartilage, OA cartilage showed a 10- to 20-fold lower ratio of aggrecan to type II collagen, suggesting that the balance between the major structural proteins is crucial to the integrity and function of the tissue. Alternatively, no differences in apoptosis levels between loading areas were found – evidence that mechanical load regulates cartilage matrix composition but does not affect chondrocyte viability. The results suggest that MMPs play a key role in regulating the balance of structural proteins of the articular cartilage matrix according to local mechanical demands.  相似文献   

11.
The expression of the chemokine, eotaxin-1, and its receptors in normal and osteoarthritic human chondrocytes was examined, and its role in cartilage degradation was elucidated in this study. Results indicated that plasma concentrations of eotaxin-1 as well as the chemokines, RANTES, and MCP-1alpha, were higher in patients with osteoarthritis (OA) than those in normal humans. Stimulation of chondrocytes with IL-1beta or TNF-alpha significantly induced eotaxin-1 expression. The production of eotaxin-1 induced expression of its own receptor of CCR3 and CCR5 on the cell surface of chondrosarcomas, suggesting that an autocrine/paracrine pathway is involved in eotaxin-1's action. In addition, eotaxin-1 markedly increased the expressions of MMP-3 and MMP-13 mRNA, but had no effect on TIMP-1 expression in chondrocytes. However, pretreatment of anti-eotaxin-1 antibody significantly decreased the MMP-3 expression induced by IL-1beta. These results first demonstrate that human chondrocytes express the chemokine, eotaxin-1, and that its expression is induced by treatment with IL-1beta and TNF-alpha. The cytokine-triggered induction of eotaxin-1 further results in enhanced expressions of its own receptor of CCR3, CCR5, and MMPs, suggesting that eotaxin-1 plays an important role in cartilage degradation in OA.  相似文献   

12.
While morphologic and biochemical aspects of degenerative joint disease (osteoarthritis [OA]) have been elucidated by numerous studies, the molecular mechanisms underlying the progressive loss of articular cartilage during OA development remain largely unknown. The main focus of the present study was to gain more insight into molecular changes during the very early stages of mechanically induced cartilage degeneration and to relate molecular alterations to histological changes at distinct localizations of the joint. Studies on human articular cartilage are hampered by the difficulty of obtaining normal tissue and early-stage OA tissue, and they allow no progressive follow-up. An experimental OA model in dogs with a slow natural history of OA (Pond–Nuki model) was therefore chosen. Anterior cruciate ligament transection (ACLT) was performed on 24 skeletally mature dogs to induce joint instability resulting in OA. Samples were taken from different joint areas after 6, 12, 24 and 48 weeks, and gene expression levels of common cartilage molecules were quantified in relation to the histological grading (modified Mankin score) of adjacent tissue. Histological changes reflected early progressive degenerative OA. Soon after ACLT, chondrocytes responded to the altered mechanical conditions by significant and stable elevation of collagen type II, collagen type I and YKL40 expression, which persisted throughout the study. In contrast to the mild to moderate histological alterations, these molecular changes were not progressive and were independent of the joint localization (tibia, femur, lateral, medial) and the extent of matrix degeneration. MMP13 remained unaltered until 24 weeks, and aggrecan and tenascinC remained unaltered until 48 weeks after ACLT. These findings indicate that elevated collagen type II, collagen type I and YKL40 mRNA expression levels are early and sensitive measures of ACLT-induced joint instability independent of a certain grade of morphological cartilage degeneration. A second phase of molecular changes in OA may begin around 48 weeks after ACLT with altered expression of further genes, such as MMP13, aggrecan and tenascin. Molecular changes observed in the present study suggest that dog cartilage responds to degenerative conditions by regulating the same genes in a similar direction as that observed for chondrocytes in late human OA.  相似文献   

13.
Chondrocytes comprise less than 10% of cartilage tissue but are responsible for sensing and responding to mechanical stimuli imposed on the joint. However, the effect of mechanical signals at the cellular level is not yet fully defined. The purpose of this study was to test the hypothesis that mechanical stimulation in the form of cyclic strain modulates proliferative capacity and integrin expression of chondrocytes from osteoarthritic knee joints. Chondrocytes isolated from articular cartilage during total knee arthroplasty were propagated on flexible silicone membranes. The cells were subjected to cyclic strain for 24 h using a computer-controlled vacuum device, with replicate samples maintained under static conditions. Our results demonstrated increase in proliferative capacity of the cells subjected to cyclic strain compared with cells maintained under static conditions. The flexed cells also exhibited upregulation of the chondrocytic gene markers type II collagen and aggrecan. In addition, cyclic strain resulted in increased expression of the alpha2 and alpha5 integrin subunits, as well as an increased expression of vimentin. There was also intracellular reconfiguration of the enzyme protein kinase C. Our findings suggest that these molecules may play a role in the signal transduction pathway, eliciting cellular response to mechanical stimulation.  相似文献   

14.
While morphologic and biochemical aspects of degenerative joint disease (osteoarthritis [OA]) have been elucidated by numerous studies, the molecular mechanisms underlying the progressive loss of articular cartilage during OA development remain largely unknown. The main focus of the present study was to gain more insight into molecular changes during the very early stages of mechanically induced cartilage degeneration and to relate molecular alterations to histological changes at distinct localizations of the joint. Studies on human articular cartilage are hampered by the difficulty of obtaining normal tissue and early-stage OA tissue, and they allow no progressive follow-up. An experimental OA model in dogs with a slow natural history of OA (Pond-Nuki model) was therefore chosen. Anterior cruciate ligament transection (ACLT) was performed on 24 skeletally mature dogs to induce joint instability resulting in OA. Samples were taken from different joint areas after 6, 12, 24 and 48 weeks, and gene expression levels of common cartilage molecules were quantified in relation to the histological grading (modified Mankin score) of adjacent tissue. Histological changes reflected early progressive degenerative OA. Soon after ACLT, chondrocytes responded to the altered mechanical conditions by significant and stable elevation of collagen type II, collagen type I and YKL40 expression, which persisted throughout the study. In contrast to the mild to moderate histological alterations, these molecular changes were not progressive and were independent of the joint localization (tibia, femur, lateral, medial) and the extent of matrix degeneration. MMP13 remained unaltered until 24 weeks, and aggrecan and tenascinC remained unaltered until 48 weeks after ACLT. These findings indicate that elevated collagen type II, collagen type I and YKL40 mRNA expression levels are early and sensitive measures of ACLT-induced joint instability independent of a certain grade of morphological cartilage degeneration. A second phase of molecular changes in OA may begin around 48 weeks after ACLT with altered expression of further genes, such as MMP13, aggrecan and tenascin. Molecular changes observed in the present study suggest that dog cartilage responds to degenerative conditions by regulating the same genes in a similar direction as that observed for chondrocytes in late human OA.  相似文献   

15.
Berberine, a plant alkaloid used in Chinese medicine, has broad cell‐protective functions in a variety of cell lines. Chondrocyte apoptosis contributes to the pathogenesis of cartilage degeneration in osteoarthritis (OA). However, little is known about the effect and underlying mechanism of berberine on OA chondrocytes. Here, we assessed the effects of berberine on cartilage degeneration in interleukin‐1β (IL‐1β)‐stimulated rat chondrocytes and in a rat model of OA. The results of an MTT assay and western blotting analysis showed that berberine attenuated the inhibitory effect of IL‐1β on the cell viability and proliferating cell nuclear antigen expression in rat chondrocytes. Furthermore, berberine activated Akt, which triggered p70S6K/S6 pathway and up‐regulated the levels of aggrecan and Col II expression in IL‐1β‐stimulated rat chondrocytes. In addition, berberine increased the level of proteoglycans in cartilage matrix and the thickness of articular cartilage, with the elevated levels of Col II, p‐Akt and p‐S6 expression in a rat OA model, as demonstrated by histopathological and immunohistochemistry techniques. The data thus strongly suggest that berberine may ameliorate cartilage degeneration from OA by promoting cell survival and matrix production of chondrocytes, which was partly attributed to the activation of Akt in IL‐1β‐stimulated articular chondrocytes and in a rat OA model. The resultant chondroprotective effects indicate that berberine merits consideration as a therapeutic agent in OA.  相似文献   

16.
Exacerbated production of matrix metalloproteinases (MMPs) is a key event in the progression of osteoarthritis (OA) and represents a promising target for the management of OA with nutraceuticals. In this study, we sought to determine the MMP-inhibitory activity of an ethanolic Caesalpinia sappan extract (CSE) in human OA chondrocytes. Thus, human articular chondrocytes isolated from OA cartilage and SW1353 chondrocytes were stimulated with Interleukin-1beta (IL1β), without or with pretreatment with CSE. Following viability assays, the production of MMP-2 and MMP-13 was assessed using ELISA, whereas mRNA levels of MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-13 and TIMP-1, TIMP-2, TIMP-3 were quantified using RT-qPCR assays. Chondrocytes were co-transfected with a MMP-13 luciferase reporter construct and NF-kB p50 and p65 expression vectors in the presence or absence of CSE. In addition, the direct effect of CSE on the proteolytic activities of MMP-2 was evaluated using gelatin zymography. We found that CSE significantly suppressed IL1β-mediated upregulation of MMP-13 mRNA and protein levels via abrogation of the NF-kB(p65/p50)-driven MMP-13 promoter activation. We further observed that the levels of IL1β-induced MMP-1, MMP-3, MMP-7, and MMP-9 mRNA, but not TIMP mRNA levels, were down-regulated in chondrocytes in response to CSE. Zymographic results suggested that CSE did not directly interfere with the proteolytic activity of MMP-2. In summary, this study provides evidence for the MMP-inhibitory potential of CSE or CSE-derived compounds in human OA chondrocytes. The data indicate that the mechanism of this inhibition might, at least in part, involve targeting of NF-kB-mediated promoter activation.  相似文献   

17.
Mechanical stress plays a key role in regulating cartilage degradation in osteoarthritis (OA). The aim of this study was to evaluate the effects and mechanisms of mechanical stress on articular cartilage. A total of 80 male Sprague-Dawley rats were randomly divided into eight groups (n = 10 for each group): control group (CG), OA group (OAG), and CG or OAG subjected to low-, moderate-, or high-intensity treadmill exercise (CL, CM, CH, OAL, OAM, and OAH, respectively). Chondrocytes were obtained from the knee joints of rats; they were cultured on Bioflex 6-well culture plates and subjected to different durations of cyclic tensile strain (CTS) with or without exposure to interleukin-1β (IL-1β). The results of the histological score, immunohistochemistry, enzyme-linked immunosorbent assay, and western-blot analyses indicated that there were no differences between CM and CG, but OAM showed therapeutic effects compared with OAG. However, CH and OAH experienced more cartilage damage than CG and OAG, respectively. CTS had no therapeutic effects on collagen II of normal chondrocytes, which is consistent with findings after treadmill exercise. However, CTS for 4 hr could alleviate the chondrocyte damage induced by IL-1β by activating AMP-activated protein kinase (AMPK) phosphorylation and suppressing nuclear translocation of nuclear factor (NF)-κB p65. Our findings indicate that mechanical stress had no therapeutic effects on normal articular cartilage and chondrocytes; mechanical stress only caused damage with excessive stimulation. Still, moderate biomechanical stress could reduce sensitization to the inflammatory response of articular cartilage and chondrocytes through the AMPK/NF-κB signaling pathway.  相似文献   

18.
Recent studies have shown that integrins act as mechanoreceptors in articular cartilage. In this study, we examined the effect of blocking RGD-dependent integrins on both ECM gene expression and ECM protein synthesis.Chondrocytes were isolated from full-depth porcine articular cartilage and seeded in 3% agarose constructs. These constructs were loaded in compression with 15% strain at 0.33 and 1 Hz for 12 h, in the presence or absence of GRGDSP, which blocks RGD-dependent integrin receptors. The levels of mRNA for aggrecan, collagen II and MMP-3 were determined by semi-quantitative PCR at several time points up to 24 h post-stimulation. DNA and sGAG content were determined at several time points up to 28 days post-stimulation.At 0.33 Hz, the mRNA levels for aggrecan and MMP-3 were increased after loading, but the mRNA levels for collagen II remained unchanged. Incubation with GRGDSP counteracted these effects. Loading at 1 Hz led to increased mRNA levels for all three molecules directly after loading and these effects were counteracted by incubation with GRGDSP. The constructs that were loaded at 0.33 Hz showed a lower amount of sGAG, compared to the unstrained control. In contrast, loading at 1 Hz caused an increase in sGAG deposition over the culture period. Blocking integrins had only a counteracting effect on the long-term biosynthetic response of constructs that were compressed at 1 Hz.The results confirmed the role of RGD-dependent integrins as mechanotransducers in the regulation of both ECM gene expression and matrix biosynthesis for chondrocytes seeded in agarose under the applied loading regime. Interestingly, this role seems to be dependent on the applied loading frequency.  相似文献   

19.
Prostaglandin E2 (PGE2) is one of pro‐inflammatory mediators. PGE2 maintains the homeostasis of many organs including articular cartilage, and a previous report showed that continuous inhibition of PGE2 accelerates the progression of osteoarthritis (OA). While PGE2 inhibits matrix metalloprotease (MMP) expression in several types of cells, little is known on direct effects of PGE2 on MMP expression in articular chondrocytes. The objective of this study was to investigate direct effects of PGE2 on IL‐1β‐induced MMP‐1 and MMP‐13 expression and the intracellular signaling in articular chondrocytes. PGE2 showed inhibitory effects on IL‐1β‐induced MMP‐1 and MMP‐13 expression demonstrated by immunoblotting both in OA and normal chondrocytes, which was further confirmed by enzyme‐linked immunosorbent assay and immunohistochemistry of explant cultures of articular cartilages. An EP4 agonist, ONO‐AE1‐329, mimicked the inhibitory effect of PGE2, while an EP4 antagonist, ONO‐AE3‐208, blocked the effects. PGE2 suppressed the phosphorylation of JNK and ERK MAP kinases, but only knockdown of JNK by specific siRNA mimicked the effect of PGE2. PGE2 further inhibited the phosphorylation of MKK4 without suppression of MKK7 phosphorylation, and of c‐JUN to decrease expression levels of MMP‐1 and MMP‐13. These results demonstrate that PGE2 inhibits IL‐1β‐induced MMP‐1 and MMP‐13 productions via EP4 by suppressing MKK4–JNK MAP kinase–c‐JUN pathway. J. Cell. Biochem. 109: 425–433, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Objective: Idiopathic osteoarthritis is the most common form of osteoarthritis (OA) world-wide and remains the leading cause of disability and the associated socio-economic burden in an increasing aging population. Traditionally, OA has been viewed as a degenerative joint disease characterized by progressive destruction of the articular cartilage and changes in the subchondral bone culminating in joint failure. However, the etiology of OA is multifactorial involving genetic, mechanical and environmental factors. Treatment modalities include analgesia, joint injection with steroids or hyaluronic acid, oral supplements including glucosamine and chondroitin sulfate, as well as physiotherapy. Thus, there is significant interest in the discovery of disease modifying agents. One such agent, glucosamine (GlcN) is commonly prescribed even though the therapeutic efficacy and mechanism of action remain controversial. Inflammatory cytokines, including IL-1β, and proteinases such as MMP-13 have been implicated in the pathogenesis and progression of OA together with an associated CpG demethylation in their promoters. We have investigated the potential of GlcN to modulate NF-kB activity and cytokine-induced abnormal gene expression in articular chondrocytes and, critically, whether this is associated with an epigenetic process. Method: Human chondrocytes were isolated from the articular cartilage of femoral heads, obtained with ethical permission, following fractured neck of femur surgery. Chondrocytes were cultured for 5 weeks in six separate groups; (i) control culture, (ii) cultured with a mixture of 2.5 ng/ml IL-1β and 2.5 ng/ml oncostatin M (OSM), (iii) cultured with 2 mM N-acetyl GlcN (Sigma–Aldrich), (iv) cultured with a mixture of 2.5 ng/ml IL-1β, 2.5 ng/ml OSM and 2 mM GlcN, (v) cultured with 1.0 μM BAY 11-7082 (BAY; NF-kB inhibitor: Calbiochem, Darmstadt, Germany) and, (vi) cultured with a mixture of 2.5 ng/ml IL-1β, 2.5 ng/ml OSM and 1.0 μM BAY. The levels of IL1B and MMP13 mRNA were examined using qRT-PCR. The percentage DNA methylation in the CpG sites of the IL1β and MMP13 proximal promoter were quantified by pyrosequencing. Result:IL1β expression was enhanced over 580-fold in articular chondrocytes treated with IL-1β and OSM. GlcN dramatically ameliorated the cytokine-induced expression by 4-fold. BAY alone increased IL1β expression by 3-fold. In the presence of BAY, IL-1β induced IL1B mRNA levels were decreased by 6-fold. The observed average percentage methylation of the -256 CpG site in the IL1β promoter was 65% in control cultures and decreased to 36% in the presence of IL-1β/OSM. GlcN and BAY alone had a negligible effect on the methylation status of the IL1B promoter. The cytokine-induced loss of methylation status in the IL1B promoter was ameliorated by both GlcN and BAY to 44% and 53%, respectively. IL-1β/OSM treatment increased MMP13 mRNA levels independently of either GlcN or BAY and no change in the methylation status of the MMP13 promoter was observed. Conclusion: We demonstrate for the first time that GlcN and BAY can prevent cytokine-induced demethylation of a specific CpG site in the IL1β promoter and this was associated with decreased expression of IL1β. These studies provide a potential mechanism of action for OA disease modifying agents via NF-kB and, critically, demonstrate the need for further studies to elucidate the role that NF-kB may play in DNA demethylation in human chondrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号