共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
S W Whiteheart P Shenbagamurthi L Chen R J Cotter G W Hart 《The Journal of biological chemistry》1989,264(24):14334-14341
Elongation Factor 1 alpha (EF-1 alpha), an important eukaryotic translation factor, transports charged aminoacyl-tRNA from the cytosol to the ribosomes during poly-peptide synthesis. Metabolic radiolabeling with [3H] ethanolamine shows that, in all cells examined, EF-1 alpha is the major radiolabeled protein. Radiolabeled EF-1 alpha has an apparent Mr = 53,000 and a basic isoelectric point. It is cytosolic and does not contain N-linked oligosaccharides. Trypsin digestion of murine EF-1 alpha generated two major [3H]ethanolamine-labeled peptides. Three peptides were sequenced and were identical to two distinct regions of the human EF-1 alpha protein. Blank sequencing cycles coinciding with glutamic acid in the human cDNA-derived sequence were also found to release [3H]ethanolamine, and compositional analysis of these peptides confirmed the presence of glutamic acid. Dansylation analysis demonstrates that the amine group of the ethanolamine is blocked. These results indicate that EF-1 alpha is posttranslationally modified by the covalent attachment of ethanolamine via an amide bond to at least two specific glutamic acid residues (Glu-301 and Glu-374). The hydroxyl group of the attached ethanolamine was shown by mass spectrometry and compositional analysis, to be further modified by the addition of a phosphoglycerol unit. This novel posttranslational modification may represent an important alteration of EF-1 alpha, comparable to the regulatory effects of posttranslational methylation of EF-1 alpha lysine residues. 相似文献
3.
Genes coding for the elongation factor EF-1 alpha in Artemia 总被引:8,自引:0,他引:8
J A Lenstra A Van Vliet A C Arnberg F J Van Hemert W M?ller 《European journal of biochemistry》1986,155(3):475-483
4.
Neurospora crassa had a heat-stable (up to 95 degrees C), soluble cyclic nucleotide phosphodiesterase (PDE). Both unheated and heat-stable PDE activities were inhibited by micromolar concentrations of Ca2+. This inhibition was reversed by EGTA or EDTA in molar excess of the Ca2+ concentration. Calmodulin was not involved in the Ca2+ inhibition, nor was Ca2+ inhibition of the heat-stable PDE due to cleavage inactivation of the enzyme by a Ca2+-stimulated protease. In addition to Ca2+, several other cations inhibited the activity of the heat-stable enzyme. Cyclic AMP and cGMP, but not 2'3' cAMP were substrates for both unheated and heat-stable PDEs. This is the first report of a PDE which is inhibited by micromolar concentrations of Ca2+. 相似文献
5.
Polypeptide chain elongation factor 1 alpha (EF-1 alpha) from yeast: nucleotide sequence of one of the two genes for EF-1 alpha from Saccharomyces cerevisiae. 总被引:28,自引:5,他引:28
下载免费PDF全文

S Nagata K Nagashima Y Tsunetsugu-Yokota K Fujimura M Miyazaki Y Kaziro 《The EMBO journal》1984,3(8):1825-1830
Messenger RNA for yeast cytosolic polypeptide chain elongation factor 1 alpha (EF-1 alpha) was partially purified from Saccharomyces cerevisiae. Double-stranded complementary DNA (cDNA) was synthesized and cloned in Escherichia coli with pBR327 as a vector. Recombinant plasmid carrying yEF-1 alpha cDNA was identified by cross-hybridization with the E. coli tufB gene and the yeast mitochondrial EF-Tu gene (tufM) under non-stringent conditions. A yeast gene library was then screened with the EF-1 alpha cDNA and several clones containing the chromosomal gene for EF-1 alpha were isolated. Restriction analysis of DNA fragments of these clones as well as the Southern hybridization of yeast genomic DNA with labelled EF-1 alpha cDNA indicated that there are two EF-1 alpha genes in S. cerevisiae. The nucleotide sequence of one of the two EF-1 alpha genes (designated as EF1 alpha A) was established together with its 5'- and 3'-flanking sequences. The sequence contained 1374 nucleotides coding for a protein of 458 amino acids with a calculated mol. wt. of 50 300. The derived amino acid sequence showed homologies of 31% and 32% with yeast mitochondrial EF-Tu and E. coli EF-Tu, respectively. 相似文献
6.
7.
Elongation factor 1 alpha (EF-1 alpha) was purified to homogeneity from full-grown oocytes of Xenopus laevis. This protein is encoded by a gene previously shown to be expressed in male and female germ cells, and repressed in somatic cells. The purified protein was identified with EF-1 alpha on criteria of molecular mass, cross-reaction with antibodies raised against Artemia salina EF-1 alpha, affinity for guanine nucleotides, and ability to promote the mRNA-dependent binding of aminoacyl tRNA to 80S ribosomes. 相似文献
8.
9.
Mechanism of elongation factor 2 (EF-2) inactivation upon phosphorylation. Phosphorylated EF-2 is unable to catalyze translocation 总被引:2,自引:0,他引:2
Previously we have found that elongation factor 2 (EF-2) from mammalian cells can be phosphorylated by a special Ca2+/calmodulin-dependent protein kinase (EF-2 kinase). Phosphorylation results in complete inactivation of EF-2 in the poly(U)-directed cell-free translation system. However, the partial function of EF-2 affected by phosphorylation remained unknown. Here we show that phosphorylated EF-2, unlike non-phosphorylated EF-2, is unable to switch ribosomes carrying poly(U) and Phe-tRNA in the A site to a puromycin-reactive state. Thus, phosphorylation of EF-2 seems to block its ability to promote a shift of the aminoacyl(peptidyl)-tRNA from the A site to the P site, i.e. translocation itself. 相似文献
10.
We examined survival, growth and protein synthesis in mosquito cells that had been maintained for up to 21 days in serum-free medium. On polyacrylamide gels, protein bands from "starved" cells remained discrete, and despite low levels of incorporation, radiolabeled bands were detectable, suggesting that low levels of protein synthesis were sustained. A prominent band that accumulated in serum-starved cells was digested with trypsin and analyzed by tandem mass spectrometry, which identified the protein as eukaryotic elongation factor (EF)-1 alpha EF-1 alpha is well-conserved among species, and differential accumulation of EF-1 alpha in serum-starved cells was verified by western blotting using a primary antibody to the homologous protein from Trypanosoma brucei. Aside from its importance in the elongation step of protein synthesis, EF-1 alpha has been shown to have a number of non-canonical functions, including interaction with viral RNA and a potential role in apoptosis. We anticipate that the prolonged viability of mosquito cells in serum-free medium may provide a system to explore whether EF-1 alpha accumulation is an adaptive response compatible with resumption of growth in the event that nutrients are replenished, or whether the excess EF-1 alpha represents an irreversible commitment to an apoptotic pathway. 相似文献
11.
12.
A bacterial clone carrying sequences coding for elongation factor EF-1 alpha from Artemia 总被引:2,自引:0,他引:2
A bacterial cDNA clone was identified carrying one third of the nucleotides coding for elongation factor EF-1 alpha from the brine shrimp Artemia. The sequence of codons corresponds with the known sequence of amino acids of EF-1 alpha in the region involved. 相似文献
13.
42Sp48 in previtellogenic Xenopus oocytes is structurally homologous to EF-1 alpha and may be a stage-specific elongation factor
下载免费PDF全文

N J Coppard K Poulsen H O Madsen J Frydenberg B F Clark 《The Journal of cell biology》1991,112(2):237-243
We have isolated the cDNA for 42Sp48 and EF-1 alpha from mixed stage oocytes and tailbud (stage 22) Xenopus laevis cDNA libraries by use of the cDNA for human elongation factor-1 alpha (EF-1 alpha) as probe. The nucleotide and deduced amino acid sequences of the entire coding region of 42Sp48 and EF-1 alpha cDNA were established. The proposed functional homology of the proteins is reflected in highly conserved amino acid sequences (91% identity), while the large number of silent mutations at the gene level may serve to prevent recombination at their loci. 42Sp48 is apparently encoded by two genes in Xenopus, while no sequences corresponding to 42Sp48 could be found in murine or human genomic DNA. 42Sp48 has been proposed to act as a stage-specific elongation factor in Xenopus. Comparison of the deduced amino acid sequences of 42Sp48 and EF-1 alpha with that of elongation factor Tu from E. coli, for which the three-dimensional structure including that of the GTP binding sites have been determined, supports this hypothesis. 相似文献
14.
Interaction of subunits of polypeptide chain elongation factor I from pig liver. Formation of EF-1alpha.EF-1betagamma and EF-1beta complexes 总被引:2,自引:0,他引:2
In the preceding papers, we showed that one of the two complementar factors of polypeptide chain elongation factor 1 (EF-1) from pig liver, EF-1alpha, functionally corresponds to bacterial EF-Tu (Nagata, S., Iwasaki, K., and Kaziro, Y. (1976) Arch. Biochem. Biophys. 172, 168), while the other, EF-1betagamma, as well as one of its subunits, EF-1beta, corresponds to bacterial EF-Ts (Motoyoshi, K. and Iwasaki, K. (1977) J. Biochem. 82, 703). Therefore, the interaction between EF-1alpha and EF-1 betagamma or EF-1beta was was examined and the following results were obtained. i) EF-1betagamma catalytically promoted the exchange of [14C]GDP bound to EF-1alpha with exogenous [3H]GDP. ii). In the absence of the exogenous guanine nucleotide, EF-1betagamma as well as EF-1beta could displace GDP bound to EF-1alpha to form an EF-1alpha.EF-1betagamma as well as an EF-1alpha.EF-1beta complex. iii) The occurrence of EF-1alpha.EF-1betagamma and EF-1alpha.EF-1beta complexes was demonstrated by gel filtration on Sephadex G-150. These results strongly indicate that the mechanism of the action of EF-1betagamma or EF-1beta in converting EF-1alpha.GDP into EF-1alpha.GTP is analogous to bacterial EF-Ts, and the reaction is accomplished by the following reactions; EF-1alpha.GDP + EF-1betagamma (or EF-1beta) in equilibrium EF-1alpha.EF-1betagamma (or EF-1beta) + GDP; EF-1alpha.EF-1beta (or EF-1beta) + GTP IN EQUILIBRIUM EF-1alpha.GTP + EF-1betagamma (or EF-1beta). 相似文献
15.
16.
The primary structure of elongation factor EF-1 alpha from the brine shrimp Artemia. 总被引:12,自引:3,他引:12
下载免费PDF全文

cDNA as well as amino acid sequencing has revealed the complete primary structure of elongation factor EF-1 alpha from the brine shrimp Artemia. A comparison with the published sequences of bacterial EF-Tu, mitochondrial EF-Tu and chloroplastic EF-Tu shows that distinct areas of these polypeptide chains are conserved in evolution. The evolutionary distance between prokaryotic and eukaryotic types of EF-Tu is larger than among bacterial and organellar EF- Tus . A number of regions present in both EF-Tu and EF-G from Escherichia coli are also found in EF-1 alpha from Artemia. 相似文献
17.
Anchoring of peptide elongation factor EF-1 alpha by phosphatidylinositol at the endoplasmic reticulum membrane 总被引:7,自引:0,他引:7
The cytoplasmic peptide elongation factor, EF-1 alpha, is anchored at the endoplasmic reticulum membrane by phosphatidylinositol via ethanolamine bridging presumably to Asp306 of the protein. 相似文献
18.
19.
20.
Identification of Nsp100 as elongation factor 2 (EF-2) 总被引:3,自引:0,他引:3
The nerve growth factor-sensitive phosphoprotein from PC12 cells, previously designated Nsp100, has been shown to be elongation factor 2 (EF-2). The criteria used for this identification include: (i) similarity of N-terminal sequence; (ii) phosphorylation by the same kinase; (iii) ADP-ribosylation mediated by diphtheria toxin; (iv) comparable function in cell-free protein synthesis. According to these criteria, Nsp100 and EF-2 are identical and the kinase that phosphorylates Nsp100 in PC12 cells is calcium/calmodulin kinase III. 相似文献