共查询到20条相似文献,搜索用时 15 毫秒
1.
The photo-activatable analogs of ATP, 3'-O-(4-benzoyl) benzoic adenosine 5'-triphosphate (BzATP) and 8-azidoadenosine 5'-triphosphate (8-N3-ATP) were used to study the relationship between the polymerase activity and the closely associated primase activity of calf DNA polymerase alpha. A substantial loss of DNA primase activity occurred during pre-incubation and irradiation of DNA polymerase alpha with either BzATP or 8-N3-ATP. In contrast, polymerase activity was only slightly affected. In reactions carried out after pre-incubation with BzATP or 8-N3-ATP in the absence of UV illumination, inhibition was still observed, but it could be reversed by ATP. The specificity of the inhibition for primase activity, plus the ability of ATP to act as a antagonist of BzATP and 8-N3-ATP, suggest that effective interaction of these analogs with the multisubunit polymerase-primase complex is occurring uniquely at the active site of the DNA primase. 相似文献
2.
Among multiple subspecies of DNA polymerase alpha of calf thymus, only 10 S DNA polymerase alpha had a capacity to initiate DNA synthesis on an unprimed single-stranded, circular M13 phage DNA in the presence of ribonucleoside triphosphates (DNA primase activity). The primase was copurified with 10 S DNA polymerase alpha through the purification and both activities cosedimented at 10 S through gradients of either sucrose or glycerol. Furthermore, these two activities were immunoprecipitated at a similar efficiency by a monoclonal antibody directed against calf thymus DNA polymerase alpha. These results indicate that the primase is tightly bound to 10 S DNA polymerase alpha. The RNA polymerizing activity was resistant to alpha-amanitin, required high concentration of all four ribonucleoside triphosphates (800 microM) for its maximal activity, and produced the limited length of oligonucleotides (around 10 nucleotides long) which were necessary to serve as a primer for DNA synthesis. Covalent bonding to RNA to DNA was strongly suggested by the nearest neighbour frequency analysis and the DNAase treatment. The DNA synthesis primed by the RNA oligomers may be carried out by the associating DNA polymerase alpha because it was strongly inhibited by araCTP, resistant to d2TTP, and was also inhibited by aphidicolin but at relatively high concentration. The primase preferred single-stranded DNA as a template, but it also showed an activity on the double-stranded DNA from calf thymus at an efficiency of approx. 10% of that with single-stranded DNA. 相似文献
3.
It has been shown that DNA primase activity is tightly associated with 10S DNA polymerase alpha from calf thymus (Yoshida, S. et al. (1983) Biochim. Biophys. Acta 741, 348-357). In the present study, the primase activity was separated from DNA polymerase alpha by treating purified 10S DNA polymerase alpha with 3.4 M urea followed by a fast column chromatography (Pharmacia FPLC, Mono Q column equilibrated with 2 M urea). Ten to 20 % of the primase activity was separated from 10S DNA polymerase alpha by this procedure but 80-90% remained in the complex. The separated primase activity sedimented at 5.6S through a gradient of glycerol. The separated primase was strongly inhibited by araATP (Ki = 10 microM) and was also sensitive to salts such as KCl (50% inhibition at 30 mM). The primase used poly(dT) or poly(dC) as templates efficiently, but showed little activity with poly(dA) or poly(dI). These properties agree well with those of the primase activity in the DNA polymerase alpha-primase complex (10S DNA polymerase alpha). These results indicate that the calf thymus primase may be a part of the 10S DNA polymerase alpha and its enzymological characters are preserved after separation from the complex. 相似文献
4.
DNA polymerase alpha-primase from calf thymus. Determination of the polypeptide responsible for primase activity 总被引:9,自引:0,他引:9
Immunoaffinity-purified DNA polymerase alpha-primase complex from calf thymus consists of subunits with molecular weights of 148,000-180,000, 73,000, 59,000, and 48,000 (Nasheuer, H.-P., and Grosse, F. (1987) Biochemistry 26, 8458-8466). Primase activity was separated from the immobilized complex by washing extensively with 2 M KCl or, alternatively, by shifting to pH 11.5 in the presence of 1 M KCl. From both elution procedures, the primase activity was found to be associated with the polypeptides with molecular weights of 59,000 and 48,000. The specific activity, using either elution procedure, was 30,000 units/mg. Both polypeptides sedimented together at 5.7 S upon zonal centrifugation on a sucrose gradient. Primase activity was found in the flow-through fraction after DEAE-cellulose chromatography of the free primase. Analysis of this fraction by sodium dodecyl sulfate gel electrophoresis revealed only one band with a Mr of 48,000. Polyclonal antibodies were raised against the Mr 59,000 and 48,000 polypeptides. The anti-Mr 59,000 antibody affected the primase activity only marginally, whereas the anti-Mr 48,000 antibody inhibited the primase activity nearly completely. UV cross-linking of the DNA polymerase alpha-primase complex with alpha-32P-labeled GTP revealed a binding site at the Mr 48,000 polypeptide, but none at the other subunits of the complex. Taken together, these results suggest that the Mr 48,000 polypeptide bears the active site of the DNA primase activity. The Mr 59,000 polypeptide stabilizes the primase activity. 相似文献
5.
K Tamai K Kojima T Hanaichi S Masaki M Suzuki H Umekawa S Yoshida 《Biochimica et biophysica acta》1988,950(3):263-273
The DNA polymerase alpha-DNA primase complex was purified over 17,000-fold to near homogeneity from calf thymus using an immunoaffinity column. Sodium dodecyl sulfate gel electrophoresis revealed three polypeptides with molecular weights of 140, 50 and 47 kDa, in a ratio of 1:2:0.25. The complex showed a sedimentation coefficient of 9.7 S, a Stokes radius of 56 A and a native molecular weight of 250-260 kDa. Taken together, the data suggest that the calf thymus dNA polymerase alpha-DNA primase complex is essentially a heterotrimer of large (140 kDa) and small (50 kDa) subunits in a ratio of 1:2, with a globular conformation. Electron-microscopic studies of the complex revealed a spherical particle of 120 A in diameter, in agreement with the physiochemical results. The binding of the complex to DNA was also demonstrated. 相似文献
6.
The elongation of mismatched primers by DNA polymerase alpha from calf thymus 总被引:2,自引:2,他引:2 下载免费PDF全文
The ability of the 9S and 5.7S DNA polymerase alpha subspecies from calf thymus in elongating a mismatched primer terminus has been investigated. With poly(dA) as template, the elongation rate for (dT)8dG, (dT)8dC and (dT)10dGdT is 20-fold lower for the 9S enzyme and 5-fold lower for the 5.7S enzyme as compared to (dT)10. The presence of a second mismatch at the primer terminus reduces the elongation rate further by a factor of two. Exonucleolytic excision of the mismatches can be excluded. With (dT)8dG (dT)n as primer we show, that at least five T-residues have to follow the mismatch in order to establish the elongation rate of a perfectly paired primer. The KM value for (dT)10 dG as primer is 400 nM as compared to 10 nM for (dT)10. Addition of Mn2+ increases the relative efficiency of elongation of the mismatched primers. 相似文献
7.
Shonen Yoshida Rika Suzuki Shigeo Masaki Osamu Koiwai 《Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression》1983,741(3):348-357
Among multiple subspecies of DNA polymerase α of calf thymus, only 10 S DNA polymerase α had a capacity to initiate DNA synthesis on an unprimed single-stranded, circular M13 phage DNA in the presence of ribonucleoside triphosphates (DNA primase activity). The primase was copurified with 10 S DNA polymerase α through the purification and both activities cosedimented at 10 S through gradients of either sucrose or glycerol. Furthermore, these two activities were immunoprecipitated at a similar efficiency by a monoclonal antibody directed against calf thymus DNA polymerase α. These results indicate that the primase is tightly bound to 10 S DNA polymerase α. The RNA polymerizing activity was resistant to α-amanitin, required high concentration of all four ribonucleoside triphosphates (800 μM) for its maximal activity, and produced the limited length of oligonucleotides (around 10 nucleotides long) which were necessary to serve as a primer for DNA synthesis. Covalent bonding to RNA to DNA was strongly suggested by the nearest neighbour frequency analysis and the DNAase treatment. The DNA synthesis primed by the RNA oligomers may be carried out by the associating DNA polymerase α because it was strongly inhibited by araCTP, resistant to d2TTP, and was also inhibited by aphidicolin but at relatively high concentration. The primase preferred single-stranded DNA as a template, but it also showed an activity on the double-stranded DNA from calf thymus at an efficiency of approx. 10% of that with single-stranded DNA. 相似文献
8.
Calf thymus DNA primase was examined to determine the kinetic parameters that define its unusual processivity. At 37 degrees C, the major products were 8-9 and 2-3 nucleotides long. The 2-mer was the predominant product when considered on a molar basis. At each polymerization cycle en route to synthesis of a unit length primer (7-10 nucleotides), processivity was defined by competition of enzyme dissociation with ATP binding as well as an ATP independent step(s). Reducing the temperature to 25 degrees C had relatively little effect on the production of primers less than or equal to 6 nucleotides long, but greatly enhanced production of primers twice (16-18 nucleotides) the normal unit length. Kinetic analysis revealed that synthesis of these longer primers largely involves dissociation of the primase after completion of the unit length primer. After synthesis of a primer, the primase-polymerase complex normally switches to polymerase activity. Only primers greater than or equal to 7 nucleotides long were utilized by the polymerase regardless of the dNTP concentration, indicating that the signal for the primase to polymerase activity switch is primer completion. During the switch, either the primer-template does not dissociate from the complex or the complex has extraordinarily high affinity for the primers. At 25 degrees C and physiological dNTP concentrations the activity switch is very efficient, greater than 90% of the primers are elongated. However, at 37 degrees C the switch is much less efficient, likely due to primer-template denaturation. 相似文献
9.
A RNA dependent-DNA polymerase was purified about 450-fold from the soluble fraction of calf thymus. This enzyme was able to copy the polyribonucleic acid strand of synthetic ribonucleic acid primed with complementary oligodeoxynucleotides, i.e., poly(rA)·(dT)10. This enzyme activity was separated from the DNA-dependent DNA polymerases by both DEAE-cellulose columm chromatography and glycerol gradient centrifugation. Some properties of this enzyme were described. 相似文献
10.
Mammalian DNA polymerase alpha: a replication-competent holoenzyme form from calf thymus 总被引:1,自引:0,他引:1
U Hübscher M Gassmann S Spadari N C Brown E Ferrari H J Buhk 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》1987,317(1187):421-428
Calf thymus DNA polymerase alpha, like the replication-specific DNA polymerase III holoenzyme of Escherichia coli, can be isolated as a distinct complex. A specific multiprotein form of the polymerase alpha, a form designated replication-competent (RC) holoenzyme, consists of a complex of a polymerase-primase core and at least six other polypeptides. The RC holoenzyme can efficiently replicate several naturally occurring templates, including the genomic DNA of the porcine circovirus (PCV). The DNA of this virion consists of a single-stranded circle with a defined replication origin, and its replication requires the cellular DNA replication machinery. It might therefore provide an invaluable opportunity to investigate chromosomal replication mechanisms, analogous to the way that studies on E. coli bacteriophage DNA replication elucidated host DNA replication mechanisms. Calf RC holoenzyme alpha selectively initiates PCV DNA replication in vitro at a site that possibly represents a consensus sequence of cellular DNA replication origins. The cell-free PCV replication system will be exploited for the in vitro dissection and reconstitution of the RC holoenzyme and the functional analysis of its component polypeptides. 相似文献
11.
An immunoabsorbent column, prepared by covalently linking mouse monoclonal anti-calf thymus DNA polymerase-alpha to Protein A-Sepharose, was used as the primary purification step for rapid isolation of DNA polymerase-alpha from calf thymus-gland extracts. In a 4-step procedure consisting of the removal of nucleic acids by protamine sulfate precipitation, chromatography on the immunoabsorbent column, desalting on Sephadex G-50, and removal of bovine immunoglobulins on Protein A-Sepharose, DNA polymerase-alpha activity was purified about 5000-fold from the crude extract with greater than 40% recovery of total enzyme activity. The antibody column-purified DNA polymerase-alpha fraction contains a DNA primase activity that is efficient in replication of single-stranded DNA and poly(dT) when rNTPs are included in the replication reactions. Synthesis by calf thymus DNA polymerase-primase is totally dependent on added template. Complete replication of circular single-stranded phage DNA is achieved with polymerase-primase producing a nicked circular DNA containing oligoribonucleotide primer in the final product. Primers synthesized with single-stranded phage DNA as template were up to 10 nucleotides long when dNTPs were omitted from the reaction and 8 or less nucleotides long when dNTPs were present. Primers synthesized using poly(dT) consisted of three populations when dATP was absent from the reaction, averaging 20 nucleotides, 10 nucleotides, and 3-4 nucleotides. The 20-nucleotide population was not found when dATP was included in the reaction. 相似文献
12.
Katsuyuki Tamai Kiyohide Kojima Takamasa Hanaichi Shigeo Masaki Motoshi Suzuki Hayato Umekawa Shonen Yoshida 《Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression》1988,950(3)
The DNA polymerase α-DNA primase complex was purified over 17 000-fold to near homogeneity from calf thymus using an immunoaffinity column. Sodium dodecyl sulfate gel electrophoresis revealed three polypeptides with molecular weights of 140, 50 and 47 kDa, in a ratio of 1:2:0.25. The complex showed a sedimentation coefficient of 9.7 S, a Stokes radius of 56 Å and a native molecular weight of 250–260 kDa. Taken together, the data suggest that the calf thymus dNA polymerase α-DNA primase complex is essentially a heterotrimer of large (140 kDa) and small (50 kDa) subunits in a ratio of 1:2, with a globular conformation. Electron-microscopic studies of the complex revealed a spherical particle of 120 Å in diameter, in agreement with the physicochemical results. The binding of the complex to DNA was also demonstrated. 相似文献
13.
It has been shown that DNA primase activity is tightly associated with 10S DNA polymerase alpha from calf thymus and that the ribonucleotide-dependent DNA synthesis is more sensitive to araCTP than DNA-primed DNA synthesis (Yoshida, S., et al. (1983) Biochim. Biophys. Acta 741, 348-357). Here we measured DNA primase activity using poly(dT) template or M13 bacteriophage single-stranded DNA template and primer RNA synthesis was coupled to the reaction by Escherichia coli DNA polymerase I Klenow fragment. By this method, the primer RNA synthesis can be measured independently of the associating DNA polymerase alpha. Using poly(dT) template, it was found that arabinosyladenine 5'-triphosphate (araATP) strongly inhibited DNA primase in competition with rATP. The apparent Ki for araATP was 21 microM and the ratio of Ki/Km (for rATP) was as low as 0.015. With poly(dI, dT) or M13 DNA, it was shown that araCTP also inhibited DNA primase in the similar manner. Product analysis using [alpha-32P]rATP showed that araATP inhibited the elongation of primer RNA. However, it is not likely that arabinosylnucleotides act as chain-terminators, since incubation of primer RNA with araATP did not abolish its priming activity. From these results, it is suggested that arabinosylnucleotide inhibits the initiation as well as elongation of Okazaki fragments in mammalian cells. 相似文献
14.
The mechanism by which millimolar concentrations of ATP stimulate the activity and increase the processivity of calf thymus DNA polymerase alpha has been investigated with poly(dA)/oligo(dT) as template/primer to eliminate possible effects due to primer synthesis. The effect of ATP on the rate of DNA synthesis with this template/primer was found to be dependent upon whether or not the ATP was neutralized and the species of buffer used in the reaction. The present studies suggest that ATP stimulation of calf thymus DNA polymerase can be attributed to changes in the pH of the reaction mixture, a shift in the magnesium ion optimum, or both. Furthermore, effects of ATP on the processivity of DNA polymerase alpha could be mimicked by lowering the pH of the reaction mixture. 相似文献
15.
Purification and partial characterization of a DNA polymerase alpha species from calf thymus. 总被引:5,自引:4,他引:5 下载免费PDF全文
We have purified a DNA polymerase alpha species from calf thymus to near homogeneity. The enzyme sediments at 5.7 S and contains two polypeptides of 123000 and 134000 daltons in about equimolar ratio. The enzyme is inhibited by aphidicolin and N-ethylmaleimide, and retains its activity in buffers containing moderate salt conditions. Activated DNA is a better substrate than poly-(dA) . (dT) 10. 相似文献
16.
Purified calf thymus DNA polymerase alpha is inactive with native DNA as template and shows little activity with denatured DNA. DNA synthesis with denatured DNA as template is greatly stimulated by the addition of a nuclease which initially copurifies with DNA polymerase but is separated from the polymerase on DEAE-cellulose chromatography. A limit digest of nuclease treated native DNA which is then denatured is replicated 80-95%; extensive replication is also obtained with native DNA partially degraded by pancreatic DNase and then denatured. The product of the reaction with calf thymus nuclease-treated DNA as template is double-stranded DNA with a hairpin (looped back) structure. 相似文献
17.
Ramadan K Shevelev IV Maga G Hübscher U 《The Journal of biological chemistry》2002,277(21):18454-18458
A new gene (POLL), has been identified encoding the novel DNA polymerase lambda and mapped to mouse chromosome 19 and at human chromosome 10. DNA polymerase lambda contains all the critical residues involved in DNA binding, nucleotide binding, nucleotide selection, and catalysis of DNA polymerization and has been assigned to family X based on sequence homology with polymerase beta, lambda, mu, and terminal deoxynucleotidyltransferase. Here we describe a purification of DNA polymerase lambda from calf thymus that preferentially can replicate damaged DNA. By testing polymerase activity on non-damaged and damaged DNA, DNA polymerase lambda was purified trough five chromatographic steps to near homogeneity and identified as a 67-kDa polypeptide that cross-reacted with monoclonal antibodies against DNA polymerase beta and polyclonal antibodies against DNA polymerase lambda. DNA polymerase lambda had no detectable nuclease activities and, in contrast to DNA polymerase beta, was aphidicolin-sensitive. DNA polymerase lambda was a 6-fold more accurate enzyme in an M13mp2 forward mutation assay and 5-fold more accurate in an M13mp2T90 reversion system than human recombinant DNA polymerase beta. The biochemical properties of the calf thymus DNA polymerase lambda, described here for the first time, are discussed in relationship to the proposed role for this DNA polymerase in vivo. 相似文献
18.
Purification of a DNA polymerase from calf thymus nuclei 总被引:2,自引:0,他引:2
19.
Mammalian DNA polymerase alpha: a replication competent holoenzyme form from calf thymus. 总被引:7,自引:5,他引:2 下载免费PDF全文
A complex "replication competent" holoenzyme form of DNA polymerase alpha (RC-alpha) was purified 10,000 fold from calf thymus through the use of an assay employing primed single stranded circular DNA template. The RC-alpha form could partially replicate a double-stranded oligo(dT)-tailed linear DNA and could completely convert primed single-stranded circular DNA to its double stranded form. The RC-alpha was resolved by denaturing gel electrophoresis into at least 10 discrete polypeptide species ranging in apparent molecular mass from 200 to 47 kilodaltons; three of the bands (apparent Mr of 200, 118 and 63 kilodaltons) displayed DNA polymerase activity in denaturing gel activity assay. The isolation of RC-alpha required the use of absolutely fresh calf thymus, the inclusion of ATP and protease inhibitors throughout the purification procedure. Treatment of the RC-alpha with the neutralizing anti-DNA polymerase alpha monoclonal antibody SJK 132-20 (Tanaka et al. (1982), J. Biol. Chem. 257, 8386-8390) in nondenaturing conditions selected the complete set of 10 polypeptides, whereas treatment in denaturing conditions selected the 200 kilodalton catalytic DNA polymerase active polypeptide. The properties and the behaviour of the RC-alpha preparation following removal of specific polypeptides strongly suggested that the capacity of RC-alpha to extend and replicate long template requires the function of nonproteolysed form of the 200 kilodaltons catalytic DNA polymerase core and at least 6 other auxiliary polypeptides of, respectively, 98, 87, 63, 54, 49 and 47 kilodaltons. 相似文献
20.
The interactions of calf thymus DNA polymerase alpha (pol alpha) with primer/templates were examined. Simply changing the primer from DNA to RNA had little effect on primer/template binding or dNTP polymerization (Km, Vmax and processivity). Surprisingly, however, adding a 5'-triphosphate to the primer greatly changed its interactions with pol alpha (binding, Vmax and Km and processivity). While changing the primer from DNA to RNA greatly altered the abilit of pol alpha to discriminate against nucleotide analogs, it did not compromise the ability of pol alpha to discriminate against non-cognate dNTPs. Thus the nature of the primer appears to affect 'sugar fidelity', without altering 'base fidelity'. DNase protection assays showed that pol alpha strongly protected 9 nt of the primer strand, 13 nt of the duplex template strand and 14 nt of the single-stranded template from hydrolysis by DNase I and weakly protected several bases outside this core region. This large DNA binding domain may account for the ability of a 5'-triphosphate on RNA primers to alter the catalytic properties of pol alpha. 相似文献