首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Myoglobin content is found to be higher in skeletal than in cardiac muscle of Tursiops truncatus and Phocaena phocaena and much higher than that in skeletal muscles of terrestrial mammals. According to the myoglobin content muscle fibres are devided into five types: red, white and three intermediate types. Deep muscles contain more red fibres and less intermediate fibres than superficial ones. White fibres compose almost one half of all fibres of the superficial skeletal muscles of the dolphins. The role of myoglobin distribution and higher content in oxygen supply of muscular tissue is discussed in relation to the peculiarities of dolphin breathing and blood circulation.  相似文献   

2.
Neurons sending fibers to different loci of the suprasylvian gyrus (SSG) of the porpoise(Phocaena phocaena) cortex were located in the thalamus by retrograde horseradish peroxidase transport and fluorescent tracing techniques. Horseradish peroxidase injection into the anterior section of the suprasylvian gyrus led to retrograde labelling of neurons in the lateral portion of the ventrobasal complex of nuclei and the ventroposteroinferior nucleus. A group of labelled cells was found in the ventral section of the main medial geniculate nucleus. Injecting bisbenzimide into different loci of the medial suprasylvian gyrus also led to retrograde labelling of neurons belonging to the ventral division of the main medial geniculate nucleus. Somewhat lower numbers of labelled cells were found in the inferior nucleus of the pulvinar. Small groups of labelled neurons were also found in the lateral nucleus of the pulvinar, the medioventral nucleus of the medial geniculate body, and the posterior complex of nuclei. A similar distribution of labelled cells was also observed after injecting bisbenzimide into the more caudal portion of the gyrus, although the location of labelled cells in the ventral division of the main medial geniculate nucleus and the lower pulvinar nucleus were shifted in a lateral direction.A. N. Severtsov Institute of Animal Evolutionary Moprhology and Ecology, Academy of Sciences of the USSR, Moscow. National University, Singapore. Translated from Neirofiziologiya, Vol. 21, No. 4, pp. 529–539, July–August, 1989.  相似文献   

3.
Despite the outstanding auditory capabilities of dolphins, there is only limited information available on the cytology of the auditory brain stem nuclei in these animals. Here, we investigated the cochlear nuclei (CN) of five brains of common dolphins (Delphinus delphis) and La Plata dolphins (Pontoporia blainvillei) using cell and fiber stain microslide series representing the three main anatomical planes. In general, the CN in dolphins comprise the same set of subnuclei as in other mammals. However, the volume ratio of the dorsal cochlear nucleus (DCN) in relation to the ventral cochlear nucleus (VCN) of dolphins represents a minimum among the mammals examined so far. Because, for example, in cats the DCN is necessary for reflexive orientation of the head and pinnae towards a sound source, the massive restrictions in head movability in dolphins and the absence of outer ears may be correlated with the reduction of the DCN. Moreover, the same set of main neuron types were found in the dolphin CN as in other mammals, including octopus and multipolar cells. Because the latter two types of neurons are thought to be involved in the recognition of complex sounds, including speech, we suggest that, in dolphins, they may be involved in the processing of their communication signals. Comparison of the toothed whale species studied here revealed that large spherical cells were present in the La Plata dolphin but absent in the common dolphin. These neurons are known to be engaged in the processing of low‐frequency sounds in terrestrial mammals. Accordingly, in the common dolphin, the absence of large spherical cells seems to be correlated with a shift of its auditory spectrum into the high‐frequency range above 20 kHz. The existence of large spherical cells in the VCN of the La Plata dolphin, however, is enigmatic asthis species uses frequencies around 130 kHz. J. Morphol. 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

4.
Dolphins have developed a specialized system for sound reception. Their pinnae are reduced and shifted under the skin, and sound is transduced via the lower jaw to the auditory ossicles. In line with their auditory functions (notably echolocation), most auditory nuclei in the brain stem of dolphins are extremely well‐developed. In contrast, the dorsal cochlear nucleus is drastically reduced. In the La Plata dolphin the volume of the dorsal cochlear nucleus is 4 mm3, while that of the ventral cochlear nucleus is 98 mm3. The reduction in size of the dorsal cochlear nucleus is also seen in baleen whales, which do not echolocate and are, in contrast to dolphins, tuned to deep frequencies. However, dolphins and baleen whales have the reduction of the outer ear in common. In humans, cats, bats and seals, there is a correlation between the development of pinnae and the dorsal cochlear nucleus. So, we conclude that the function of the dorsal cochlear nucleus in mammals could be to eliminate “auditory artifacts”; arising from the operation of the pinnae.  相似文献   

5.
In order to understand better the organisation of the ventral lateral geniculate nucleus of the ventral thalamus, this paper has examined the patterns of connections that this nucleus has with various nuclei of the dorsal thalamus in rats. Injections of biotinylated dextran or cholera toxin subunit B were made into the parafascicular, central lateral, posterior thalamic, medial dorsal, lateral dorsal, lateral posterior, dorsal lateral geniculate, anterior, ventral lateral, ventrobasal and medial geniculate nuclei of Sprague-Dawley rats and their brains were processed using standard tracer detection methods. Three general patterns of ventral lateral geniculate connectivity were seen. First, the parafascicular, central lateral, medial dorsal, posterior thalamic and lateral dorsal nuclei had heavy connections with the parvocellular (internal) lamina of the ventral lateral geniculate nucleus. This geniculate lamina has been shown previously to receive heavy inputs from many functionally diverse brainstem nuclei. Second, the visually related dorsal lateral geniculate and lateral posterior nuclei had heavy connections with the magnocellular (external) lamina of the ventral lateral geniculate nucleus. This geniculate lamina has been shown by previous studies to receive heavy inputs from the visual cortex and the retina. Finally, the anterior, ventral lateral, ventrobasal and medial geniculate nuclei had very sparse, if any, connections with the ventral lateral geniculate nucleus. Overall, our results strengthen the notion that one can package the ventral lateral geniculate nucleus into distinct visual (magnocellular) and non-visual (parvocellular) components.  相似文献   

6.
In a two-choice discrimination paradigm, a bottlenose dolphin discriminated relational dimensions between visual numerosity stimuli under monocular viewing conditions. After prior binocular acquisition of the task, two monocular test series with different number stimuli were conducted. In accordance with recent studies on visual lateralization in the bottlenose dolphin, our results revealed an overall advantage of the right visual field. Due to the complete decussation of the optic nerve fibers, this suggests a specialization of the left hemisphere for analysing relational features between stimuli as required in tests for numerical abilities. These processes are typically right hemisphere-based in other mammals (including humans) and birds. The present data provide further evidence for a general right visual field advantage in bottlenose dolphins for visual information processing. It is thus assumed that dolphins possess a unique functional architecture of their cerebral asymmetries.  相似文献   

7.
D. Ann  Pabst 《Journal of Zoology》1996,238(1):35-52
The subdermal connective tissue sheath (SDS) of dolphins is a fibre-reinforced membrane connected to other locomotor tissues, including blubber, axial muscles and tendons, and vertebral column. The complicated connections between the SDS and other locomotor tissues suggest that the SDS acts as a peripheral skeletal element for the axial locomotor muscles and as an anchor for a de novo dermal appendage, the dorsal fin. The morphology of the SDS suggests that the dolphin can be modelled as a fibre-wound, thin-walled, pressurized cylinder. Existing cylinder models predict that the SDS functions to resist torsional forces, prevent aneurysms, and limit wrinkling when the dolphin bends in locomotion. I present a new functional model that more accurately represents the morphology of the dolphin cylinder wrapped by the SDS. The new model predicts that the SDS: (1) acts as a retinaculum for the terminal tendons of the axial locomotor muscles; and (2) plays a role in maintaining the laterally flattened cross-sectional shape of the caudal peduncle. The model is based on external morphological features of dolphins shared by other steady swimming aquatic vertebrates, such as carangiform and thunniform fishes. These features, which include a streamlined body shape and narrow necking of the caudal peduncle have been identified as adaptions to reduce drag. The new model offers insight into some of the structural features of the body wall required to maintain the hydrodynamicallytuned, external morphology of steady-swimming vertebrates.  相似文献   

8.
In this paper on the ontogenesis and evolutionary biology of odontocete cetaceans (toothed whales), we investigate the head morphology of three perinatal pantropical spotted dolphins (Stenella attenuata) with the following methods: computer-assisted tomography, magnetic resonance imaging, conventional X-ray imaging, cryo-sectioning as well as gross dissection. Comparison of these anatomical methods reveals that for a complete structural analysis, a combination of modern imaging techniques and conventional morphological methods is needed. In addition to the perinatal dolphins, we include series of microslides of fetal odontocetes (S. attenuata, common dolphin Delphinus delphis, narwhal Monodon monoceros). In contrast to other mammals, newborn cetaceans represent an extremely precocial state of development correlated to the fact that they have to swim and surface immediately after birth. Accordingly, the morphology of the perinatal dolphin head is very similar to that of the adult. Comparison with early fetal stages of dolphins shows that the ontogenetic change from the general mammalian bauplan to cetacean organization was characterized by profound morphological transformations of the relevant organ systems and roughly seems to parallel the phylogenetic transition from terrestrial ancestors to modern odontocetes.  相似文献   

9.
In response to a visual stimulation, "replicated triplets" of impulses may appear in many spike trains recorded from the cat dorsal lateral geniculate nucleus (dLGN). The number and the temporal structure of these triplets depend upon the general organization of the geniculate impulse trains. In this study, we show that a pharmacological blockade of the corticothalamic activity, obtained through microinjection of GABA into area 17, affects the replicated triplet production and leads to an increase in the dispersal of their structure. These results suggest that the corticothalamic pathway closely influences the fine temporal organization of the geniculate messages.  相似文献   

10.
At birth, the locomotor muscles of precocial, terrestrial mammals are similar to those of adults in both mass, as a percent of total body mass, and fiber-type composition. It is hypothesized that bottlenose dolphins (Tursiops truncatus), marine mammals that swim from the instant of birth, will also exhibit precocial development of locomotor muscles. Body mass data from neonatal and adult dolphins are used to calculate Grand's (1992) Neural and Muscular Indices of Development. Using these indices, the bottlenose dolphin is a Condition "3.5" neonate, where Condition 4 is the documented extreme of precocial development in terrestrial mammals. Moreover, myosin ATPase (alkaline preincubation) analyses of the epaxial locomotor m. extensor caudae lateralis show that neonatal dolphins have fiber-type profiles very similar to those of adults. Thus, based on mass and myosin ATPase activity, muscle development in dolphins is precocial. However, succinic dehydrogenase and Nile red histochemistry demonstrate that neonatal dolphin muscle has mitochondrial and lipid distributions different from those found in adults. These data suggest that neonates have a lower aerobic capacity than adults. Dolphin neonates may compensate for an apparent lack of aerobic stamina in two ways: 1) by being positively buoyant, with a relatively increased investment of their total body mass in blubber, and 2) by "free-riding" off their mothers. This study investigates quantitatively the development of a dolphin locomotor muscle and offers suggestions about adaptations required for a completely aquatic existence.  相似文献   

11.
<正>南瓶鼻海豚(Tursiops aduncus)是我国二级重点保护的水生哺乳动物,属于鲸目(Cetacea),海豚科(Delphinidae),瓶鼻海豚属(Tursiops)(Mller and Beheregaray,2001;Wells and Scott,2002)。南瓶鼻海豚是人工主要饲养的鲸类品种之一(刘仁俊等,2002;Zhang et al.,2012)。2011年4月30日,厦门市小嶝岛休闲渔村从福建东山引进两头南瓶鼻海豚进行人工饲养。饲养池位于北  相似文献   

12.
Some modifications in the vascular system of marine mammals provide adaptive advantages for diving. This study analyses the organisation of the aortic wall in dolphins, observing artery changes in volume and blood pressure for diving behaviour. Samples of three aortic segments (ascending, thoracic and abdominal) of three dolphin species were processed for histological and morphometric studies. The three dolphin species used, striped dolphin (Stenella coeruleoalba), Atlantic spotted dolphin (Stenella frontalis) and common dolphin (Delphinus delphis), have shallow or intermediate diving habits. Our results indicated that the components of the aortic wall of the dolphins had different dispositions in the three selected segments. The aortic wall decreased in thickness along its length due to a loss of the lamellar units in the tunica media and a thinning of the main elements of the lamellar units along the artery. The life stage had little influence on the thickness of the aortic wall except for the ascending aorta. The weight, body length, species or sex of the specimen did not significantly influence the thickness of the wall or the lamellar units. In summary, the histological and morphometric aortic structure in dolphins, in relation to the studied parameters, seems to be similar to that previously described of terrestrial mammals such as pigs, except for a larger difference in the proportion of lamellar units between the ascending and thoracic segments.  相似文献   

13.
Cortical projections from the visual region and adjacent polysensory region of the superior temporal sulcus (STs) to the lateral geniculate body (LGb) were investigated in the macaque monkey using an autoradiographic tracing method. Solutions of tritiated aminoacids were injected into different parts of the caudal half of the STs of five animals. A survival time of 7 days was allowed. Labels were found in both subdivisions of the LGb: the dorsal lateral geniculate nucleus (DLGn) and the pregeniculate nucleus (PGn). In particular, part of the visual cortical region adjacent to the middle temporal area (MT) projects into the DLGn as well as the PGn, whereas the MT itself and the superior temporal polysensory region project into the PGn only. Afferents to the DLGn terminate in the magnocellular layers and in their adjoining interlaminar zones, completely sparing the parvocellular layers. Afferents to the PGn terminate in separate regions of this nucleus; the MT and adjacent visual cortices project into the internal layer of the PGn, whereas the polysensosy region of the STs projects into the external retinorecipient layer of the PGn. Possible functional implications of these projections are discussed.  相似文献   

14.
Selective qualitative and quantitative distinctions, most markedly expressed in dolphins as compared with man, were found in the lateral vestibular nucleus of the brain. In man it is the least nucleus (according to the territory) in the whole vestibular complex, while in dolphins it is the largest nucleus (9-16 times as great as in man), which has the largest area but the least density of cells. The above selectivity of changes in the structural organization of the lateral vestibular nucleus is considered as a result of ecological and physiological differences in the organization and coordination of the volume of motor acts and muscle tone when changing the position of the body in space.  相似文献   

15.
The primary visual pathways, in particular those to the lateral geniculate body, of 11 albino and 7 pigmented rabbits, were studied using the method of anterograde labelling with horseradish peroxidase following injection of the tracer into the vitreous body of one eye. A heavy projection to the contralateral dorsal lateral geniculate nucleus was seen in all animals. In both albino and pigmented animals a region devoid of label was present in the medial part of the alpha sector of the nucleus. This region corresponded to a compact, oval or wedge-shaped field of terminal label in the ipsilateral nucleus, which was much heavier in pigmented than in albino rabbits. In the ventral lateral geniculate nucleus, contralateral retinal input was almost entirely confined to the caudal half of the lateral sector of the nucleus, where two laminae of dense terminal label, separated by a less densely labelled area, were oriented parallel to one another and to the optic tract. This bilaminar distribution of retinal afferents to the ventral lateral geniculate nucleus has not been described in previous studies. The ipsilateral projection was to the dorsal part of the lateral sector and was most prominent in pigmented animals. The "intergeniculate leaflet" received a prominent contralateral input in all animals, and a clear ipsilateral input in pigmented animals, which overlapped with the contralateral input. Projections to other primary visual centres (pretectal nuclei, superior colliculus, nuclei of the accessory optic tract) are also described.  相似文献   

16.
Eye movements evoked by local electrical stimulation of the dorsal nucleus of the lateral geniculate body were analyzed after removal of the visual cortex and in intact animals during trials on awake cats. No significant difference was observed between the eye movement patterns of the two animal groups evoked by electrical stimulation. These movements could be classed into three main groups: those unassociated with the starting position of the eyes in orbit (or unidirectional movements), goal-directed, and centered movements, with direction depending on the initial position of the eyes in their orbits. Our findings indicate that the cortical visual areas are neither the principal nor an indispensable link in the chain for transmitting signals evoked by (electrically) stimulating the geniculate body from the cortical structures of the direct visual pathway towards the operative links of the oculomotor system. Potential pathways for conducting information from the dorsal nucleus of the lateral geniculate body to oculomotor system structures are discussed.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 19, No. 2, pp. 164–170, March–April, 1987.  相似文献   

17.

Background

Apart from findings on both functional and motor asymmetries in captive aquatic mammals, only few studies have focused on lateralized behaviour of these species in the wild.

Methodology/Principal Findings

In this study we focused on lateralized visual behaviour by presenting wild striped dolphins with objects of different degrees of familiarity (fish, ball, toy). Surveys were conducted in the Gulf of Taranto, the northern Ionian Sea portion delimited by the Italian regions of Calabria, Basilicata and Apulia. After sighting striped dolphins from a research vessel, different stimuli were presented in a random order by a telescopic bar connected to the prow of the boat. The preferential use of the right/left monocular viewing during inspection of the stimuli was analysed.

Conclusion

Results clearly showed a monocular viewing preference with respect to the type of the stimulus employed. Due to the complete decussation of the optical nerves in dolphin brain our results reflected a different specialization of brain hemispheres for visual scanning processes confirming that in this species different stimuli evoked different patterns of eye use. A preferential use of the right eye (left hemisphere) during visual inspection of unfamiliar targets was observed supporting the hypothesis that, in dolphins, the organization of the functional neural structures which reflected cerebral asymmetries for visual object recognition could have been subjected to a deviation from the evolutionary line of most terrestrial vertebrates.  相似文献   

18.
Capture‐recapture methods relying on dorsal fin natural markings have never been applied successfully to striped dolphins, Stenella coeruleoalba, and were rarely used to assess abundance of short‐beaked common dolphins, Delphinus delphis. We used digital photo‐identification to obtain abundance estimates of striped and common dolphins living in mixed groups in the Gulf of Corinth, Greece. The proportion of either species was calculated based on the relative number of photographs of adult animals showing relevant portions of their body during conspicuous surfacings. Striped dolphins and common dolphins averaged 95.0% and 3.2% of all individuals, respectively. Animals showing intermediate pigmentation accounted for another 1.8%. Striped dolphin numbers were relatively high, with a point estimate of 835 animals (95% CI = 631–1,106). Common dolphins numbers were low (point estimate 28 animals; 95% CI = 11–73) and individuals were scattered within striped dolphin groups, indicating that this common dolphin population may be nonviable. Within a semiclosed Gulf exposed to considerable anthropogenic impact, the future of both dolphin species is of concern due to their suspected geographic isolation and restricted extent of occurrence. Information provided here can be used to inform timely conservation efforts.  相似文献   

19.
Long‐term studies often rely on natural markings for individual identification across time. The primary method for identification in small cetaceans relies on dorsal fin shape, scars, and other natural markings. However, dorsal fin markings can vary substantially over time and the dorsal fin can become unrecognizable after an encounter with a boat or shark. Although dorsal fins have the advantage in that they always break the water surface when the cetacean breathes, other physical features, such as body scars and pigmentation patterns can supplement. The goal of this study was to explore the use of dorso‐lateral pigment patterns to identify wild bottlenose dolphins. We employed photographic pigment matching tests to determine if pigmentation patterns showed (1) longitudinal consistency and (2) bilateral symmetry using a 30 yr photographic database of bottlenose dolphins (Tursiops aduncus). We compared experienced dolphin researchers and inexperienced undergraduate student subjects in their ability to accurately match images. Both experienced and inexperienced subjects correctly matched dolphin individuals at a rate significantly above chance, even though they only had 10 s to make the match. These results demonstrate that pigment patterns can be used to reliably identify individual wild bottlenose dolphins, and likely other small cetacean species at other sites.  相似文献   

20.
Visual and auditory projections to the cat caudate nucleus were investigated using the horseradish peroxidase retrograde axonal transport technique in conjunction with that of experimental degeneration of retinal axons. It was found that visual information may reach the caudate nucleus not just through well-known polysynaptic pathways from the cerebral cortex but also following oligosynaptic (transpulvinar, lateroposterior nucleus, suprageniculate nucleus, and nucleus limitans of the thalamus) as well as bisynaptic pathways (via the medial and lateral terminal nuclei of the accessory optical tract, pulvinar, pretectum, intermediary layer of the superior colliculus, and the supraoptic nucleus); some of these pathways were identified for the first time. Direct retinal inputs were found in the suprageniculate nucleus. Additional structures were discovered through which auditory information may reach the caudate nucleus, i.e., the dorsal nucleus of the parvocellular portion of the lateral geniculate body, the deep-lying superior colliculus, and the dorsal and ventral nuclei of the lateral lemniscus. The physiological significance of the pathways described for possible transmission of visual and auditory impulses is discussed and a new principle underlining the organization of sensory inputs into the caudate nucleus is put forward.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 4, pp. 512–520, July–August, 1987.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号