首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
It has been established that reactive oxygen species (ROS) such as H2O2 or superoxide anion is involved in bone loss-related diseases by stimulating osteoclast differentiation and bone resorption and that receptor activator of NF-kappaB ligand (RANKL) is a critical osteoclastogenic factor expressed on stromal/osteoblastic cells. However, the roles of ROS in RANKL expression and signaling mechanisms through which ROS regulates RANKL genes are not known. Here we report that increased intracellular ROS levels by H2O2 or xanthine/xanthine oxidase-generated superoxide anion stimulated RANKL mRNA and protein expression in human osteoblast-like MG63 cell line and primary mouse bone marrow stromal cells and calvarial osteoblasts. Further analysis revealed that ROS promoted phosphorylation of cAMP response element-binding protein (CREB)/ATF2 and its binding to CRE-domain in the murine RANKL promoter region. Moreover, the results of protein kinase A (PKA) inhibitor KT5720 and CREB1 RNA interference transfection clearly showed that PKA-CREB signaling pathway was necessary for ROS stimulation of RANKL in mouse osteoblasts. In human MG63 cells, however, we found that ROS promoted heat shock factor 2 (HSF2) binding to heat shock element in human RANKL promoter region and that HSF2, but not PKA, was required for ROS up-regulation of RANKL as revealed by KT5720 and HSF2 RNA interference transfection. We also found that ROS stimulated phosphorylation of extracellular signal-regulated kinases (ERKs) and that PD98059, the inhibitor for ERKs suppressed ROS-induced RANKL expression either in mouse osteoblasts or in MG63 cells. These results demonstrate that ROS stimulates RANKL expression via ERKs and PKA-CREB pathway in mouse osteoblasts and via ERKs and HSF2 in human MG63 cells.  相似文献   

12.
Runx2参与调控Osterix 启动子活性及其基因表达   总被引:2,自引:0,他引:2  
尽管Runx2和Osterix都是成骨细胞分化途径中关键的转录因子,但是Runx2是否能够调控Osterix,还不为所知.研究发现,在非成骨细胞系,无论是间充质干细胞还是已分化的细胞,以及成骨细胞系中,Runx2都能诱导Osterix的表达.同时Runx2能够上调3.2kb人的Osterix基因启动子活性.进一步实验证明,在这一段启动子中存在Runx2功能性的结合位点.因而,实验结果有力地支持了这样一个假设,即Runx2参与了Osterix基因的表达调控.瞬时转染和荧光素酶双报告分析结果显示,在非成骨细胞中,Osterix明显上调2.3kb的Ⅰ型胶原蛋白启动子活性,但Runx2却不能.这样的差别暗示,在成骨细胞分化过程中位于Runx2下游的转录因子Osterix是刺激Ⅰ型胶原蛋白基因表达所必需的.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号