首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural classification of zinc fingers: survey and summary   总被引:1,自引:0,他引:1  
  相似文献   

2.
3.
4.
Ovarian follicles of the stick insect Carausius morosus were analyzed by confocal laser microscopy and immunocytochemistry with a view to studying cell polarity in the follicular epithelium. Such probes as anti-α-tubulin antibodies and Rh-phalloidin were employed to establish how the follicle cell cytoskeleton changes during ovarian development. Data show that α-tubulin prevails over the basal end, while F-actin appears more abundant along the apical end of the follicle cells. This finding was further corroborated by immunogold cytochemistry, showing that label along the basal end is primarily associated with microtubules, while that along the apical end is due to follicle cell microvilli interdigitating with the oocyte plasma membrane. A monoclonal antibody specifically raised against a vitellin polypeptide was used to investigate the role the follicular epithelium might play in relation to vitellogenin (Vg) uptake by the oocyte. Data show that under these conditions label is restricted to the intercellular channels of the follicular epithelium, thus providing further support to the notion that Vg enters the oocyte through the extracellular pathway leading from the basement lamina to the oocyte surface. By contrast, the use of a monoclonal antibody raised against a fat-body-derived protein of 85 kDa that is specifically sulfated within the follicle cells provides evidence for the existence of an alternative way of gaining access to the oocyte surface, that is by transcytosis through the follicular cell epithelium. These findings confirm our earlier observations on stick insect ovarioles whereby polarization in the follicular epithelium is primarily addressed to sustain a transcytotic vesicular traffic between opposite poles of the follicle cell of Vg toward the oocyte surface.  相似文献   

5.
The zinc finger domain of the Wilms tumor suppressor protein (WT1) contains four canonical Cys(2)His(2) zinc fingers. WT1 binds preferentially to DNA sequences that are closely related to the EGR-1 consensus site. We report the structure determination by both X-ray crystallography and NMR spectroscopy of the WT1 zinc finger domain in complex with DNA. The X-ray structure was determined for the complex with a cognate 14 base-pair oligonucleotide, and composite X-ray/NMR structures were determined for complexes with both the 14 base-pair and an extended 17 base-pair DNA. This combined approach allowed unambiguous determination of the position of the first zinc finger, which is influenced by lattice contacts in the crystal structure. The crystal structure shows the second, third and fourth zinc finger domains inserted deep into the major groove of the DNA where they make base-specific interactions. The DNA duplex is distorted in the vicinity of the first zinc finger, with a cytidine twisted and tilted out of the base stack to pack against finger 1 and the tip of finger 2. By contrast, the composite X-ray/NMR structures show that finger 1 continues to follow the major groove in the solution complexes. However, the orientation of the helix is non-canonical, and the fingertip and the N terminus of the helix project out of the major groove; as a consequence, the zinc finger side-chains that are commonly involved in base recognition make no contact with the DNA. We conclude that finger 1 helps to anchor WT1 to the DNA by amplifying the binding affinity although it does not contribute significantly to binding specificity. The structures provide molecular level insights into the potential consequences of mutations in zinc fingers 2 and 3 that are associated with Denys-Drash syndrome and nephritic syndrome. The mutations are of two types, and either destabilize the zinc finger structure or replace key base contact residues.  相似文献   

6.
During nervous system development, neurons form synaptic contacts with distant target cells. These connections are formed by the extension of axonal processes along predetermined pathways. Axon outgrowth is directed by growth cones located at the tips of these neuronal processes. Although the behavior of growth cones has been well-characterized in vitro, it is difficult to observe growth cones in vivo. We have observed motor neuron growth cones migrating in living Caenorhabditis elegans larvae using time-lapse confocal microscopy. Specifically, we observed the VD motor neurons extend axons from the ventral to dorsal nerve cord during the L2 stage. The growth cones of these neurons are round and migrate rapidly across the epidermis if they are unobstructed. When they contact axons of the lateral nerve fascicles, growth cones stall and spread out along the fascicle to form anvil-shaped structures. After pausing for a few minutes, they extend lamellipodia beyond the fascicle and resume migration toward the dorsal nerve cord. Growth cones stall again when they contact the body wall muscles. These muscles are tightly attached to the epidermis by narrowly spaced circumferential attachment structures. Stalled growth cones extend fingers dorsally between these hypodermal attachment structures. When a single finger has projected through the body wall muscle quadrant, the growth cone located on the ventral side of the muscle collapses and a new growth cone forms at the dorsal tip of the predominating finger. Thus, we observe that complete growth cone collapse occurs in vivo and not just in culture assays. In contrast to studies indicating that collapse occurs upon contact with repulsive substrata, collapse of the VD growth cones may result from an intrinsic signal that serves to maintain growth cone primacy and conserve cellular material.  相似文献   

7.
The epithelium of the small intestine is composed of a single layer of cells that line two functionally distinct compartments, the villi that project into the lumen of the gut and the crypts that descend into the underlying connective tissue. Stem cells are located in crypts, where they divide and give rise to transit-amplifying cells that differentiate into secretory and absorptive epithelial cells. Most differentiated cells travel upwards from the crypt towards the villus tip, where they shed into the lumen. While some of these cell behaviors are an intrinsic property of the epithelium, it is becoming evident that tight coordination between the epithelium and the underlying fibroblasts plays a critical role in tissue morphogenesis, stem-cell niche maintenance and regionalized gene expression along the crypt-villus axis. Here, we will review the current literature describing the interaction between epithelium and fibroblasts during crypt-villus axis development and intestinal epithelium renewal during homeostasis.  相似文献   

8.
9.
Sensing DNA damage by PARP-like fingers   总被引:2,自引:0,他引:2  
PARP-like zinc fingers are protein modules, initially described as nick-sensors of poly(ADP-ribosyl)-polymerases (PARPs), which are found at the N-terminus of different DNA repair enzymes. I chose to study the role of PARP-like fingers in AtZDP, a 3′ DNA phosphoesterase, which is the only known enzyme provided with three such finger domains. Here I show that PARP-like fingers can maintain AtZDP onto damaged DNA sites without interfering with its DNA end repair functions. Damage recognition by AtZDP fingers, in fact, relies on the presence of flexible joints within double-strand DNA and does not entail DNA ends. A single AtZDP finger is already capable of specific recognition. Two fingers strengthen the binding and extend the contacts on the bound DNA. A third finger further enhances the specific binding to damaged DNA sites. Unexpectedly, gaps but not nicks are bound by AtZDP fingers, suggesting that nicks on a naked DNA template do not provide enough flexibility for the recognition. Altogether these results indicate that AtZDP PARP-like fingers, might have a role in positioning the enzyme at sites of enhanced helical flexibility, where single-strand DNA breaks are present or are prone to occur.  相似文献   

10.
Finger-like structures of the cellular slime mold, Dictyostelium discoideum , were disrupted with a fine needle and the resulting cell masses were allowed to develop. When complete fingers formed under overhead lighting were disrupted, the cell masses rapidly became transformed into fruiting bodies. Development of similar cell masses from fingers reared in the dark was affected by the lighting conditions after disruption: under overhead lighting the cell masses rapidly culminated; under unilateral lighting, they formed fingers again and then migrating slugs.
In contrast, the cell masses from mounds with tips formed fingers regardless of the lighting conditions.
It is concluded from these findings that the cells become competent for culmination during finger formation under overhead lighting.  相似文献   

11.
Cell polarity, mitotic spindle orientation and asymmetric division play a crucial role in the self-renewal/differentiation of epithelial cells, yet little is known about these processes and the molecular programs that control them in embryonic lung distal epithelium. Herein, we provide the first evidence that embryonic lung distal epithelium is polarized with characteristic perpendicular cell divisions. Consistent with these findings, spindle orientation-regulatory proteins Insc, LGN (Gpsm2) and NuMA, and the cell fate determinant Numb are asymmetrically localized in embryonic lung distal epithelium. Interfering with the function of these proteins in vitro randomizes spindle orientation and changes cell fate. We further show that Eya1 protein regulates cell polarity, spindle orientation and the localization of Numb, which inhibits Notch signaling. Hence, Eya1 promotes both perpendicular division as well as Numb asymmetric segregation to one daughter in mitotic distal lung epithelium, probably by controlling aPKCζ phosphorylation. Thus, epithelial cell polarity and mitotic spindle orientation are defective after interfering with Eya1 function in vivo or in vitro. In addition, in Eya1(-/-) lungs, perpendicular division is not maintained and Numb is segregated to both daughter cells in mitotic epithelial cells, leading to inactivation of Notch signaling. As Notch signaling promotes progenitor cell identity at the expense of differentiated cell phenotypes, we test whether genetic activation of Notch could rescue the Eya1(-/-) lung phenotype, which is characterized by loss of epithelial progenitors, increased epithelial differentiation but reduced branching. Indeed, genetic activation of Notch partially rescues Eya1(-/-) lung epithelial defects. These findings uncover novel functions for Eya1 as a crucial regulator of the complex behavior of distal embryonic lung epithelium.  相似文献   

12.
The function of several known oncogenes is restricted to specific host cells in vitro, suggesting that new genes may be identified by using alternate hosts. RK3E cells exhibit characteristics of epithelia and are susceptible to transformation by the G protein RAS and the zinc finger protein GLI. Expression cloning identified the major transforming activities in squamous cell carcinoma cell lines as c-MYC and the zinc finger protein gut-enriched Kruppel-like factor (GKLF)/epithelial zinc finger. In oral squamous epithelium, GKLF expression was detected in the upper, differentiating cell layers. In dysplastic epithelium, expression was prominently increased and was detected diffusely throughout the entire epithelium, indicating that GKLF is misexpressed in the basal compartment early during tumor progression. The results demonstrate transformation of epithelioid cells to be a sensitive and specific assay for oncogenes activated during tumorigenesis in vivo, and identify GKLF as an oncogene that may function as a regulator of proliferation or differentiation in epithelia.  相似文献   

13.
14.
While GDNF signaling through the Ret receptor is critical for kidney development, its specific role in branching morphogenesis of the epithelial ureteric bud (UB) is unclear. Ret expression defines a population of UB "tip cells" distinct from cells of the tubular "trunks," but how these cells contribute to UB growth is unknown. We have used time-lapse mosaic analysis to investigate normal cell fates within the growing UB and the developmental potential of cells lacking Ret. We found that normal tip cells are bipotential, contributing to both tips and trunks. Cells lacking Ret are specifically excluded from the tips, although they contribute to the trunks, revealing that the tips form and expand by GDNF-driven cell proliferation. Surprisingly, the mutant cells assumed an asymmetric distribution in the UB trunks, suggesting a model of branching in which the epithelium of the tip and the adjacent trunk is remodeled to form new branches.  相似文献   

15.
Orientation of cell divisions is a key mechanism of tissue morphogenesis. In the growing Drosophila wing imaginal disc epithelium, most of the cell divisions in the central wing pouch are oriented along the proximal–distal (P–D) axis by the Dachsous‐Fat‐Dachs planar polarity pathway. However, cells at the periphery of the wing pouch instead tend to orient their divisions perpendicular to the P–D axis despite strong Dachs polarization. Here, we show that these circumferential divisions are oriented by circumferential mechanical forces that influence cell shapes and thus orient the mitotic spindle. We propose that this circumferential pattern of force is not generated locally by polarized constriction of individual epithelial cells. Instead, these forces emerge as a global tension pattern that appears to originate from differential rates of cell proliferation within the wing pouch. Accordingly, we show that localized overgrowth is sufficient to induce neighbouring cell stretching and reorientation of cell division. Our results suggest that patterned rates of cell proliferation can influence tissue mechanics and thus determine the orientation of cell divisions and tissue shape.  相似文献   

16.
There are several treatment modalities for zone 1 or zone 2 fingertip amputations that cannot be replanted by using microsurgical techniques, such as delayed secondary healing, stump revision, skin graft, local flaps, distant flaps, and composite graft. Among these, composite graft of the amputated digit tip is the only possible means of achieving a full-length digit with a normal nail complex. The pocket principle can provide an extra blood supply for survival of the composite graft of the amputated finger by enlarging the area of vascular contact. The surgery was performed in two stages. The amputated digit was debrided, deepithelialized, and reattached to the proximal stump. The reattached finger was inserted into the abdominal pocket. About 3 weeks later, the finger was removed from the pocket and covered with a skin graft. We have consecutively replanted 29 fingers in 25 adult patients with fingertip amputations by using the pocket principle. All were complete amputations with crushing or avulsion injuries. Average age was 33.64 years, and men were predominant. The right hand, the dominant one, was more frequently injured, with the middle finger being the most commonly injured. Of the 29 fingers, 16 (55.2 percent) survived completely and 10 (34.5 percent) had partial necrosis less than one-quarter of the length of the amputated part. The results of the above 26 fingers were satisfactory from both functional and cosmetic aspects. Twenty of the 29 fingers, which had been followed up for more than 6 months (an average of 16 months), were included in a sensory evaluation. Fifteen of these 20 fingers (75 percent) were classified as "good" (static two-point discrimination of less than 8 mm and normal use). From the overall results and our experience, we suggest that the pocket principle is a safe and valuable method in replantation of zone 1 or zone 2 fingertip amputation, an alternative to microvascular replantation, even in adults.  相似文献   

17.
Multiple genes encoding zinc finger domains are expressed in human T cells   总被引:13,自引:0,他引:13  
Proteins containing zinc finger domains have been implicated in developmental control of gene expression in Drosophila, Xenopus, mouse, and humans. Multiple cDNAs encoding zinc (II) finger structures were isolated from human cell lines of T-cell origin to explore whether zinc finger genes participate in the differentiation of human hematopoietic cells. Initial restriction analysis, genomic Southern blotting, and partial sequence comparisons revealed at least 30 nonoverlapping cDNAs designated cKox(1-30) encoding zinc finger motifs. Analysis of cKox1 demonstrated that Kox1 is a single-copy gene that is expressed in a variety of hematopoietic and nonhaematopoietic cell lines. cKox1 encodes 11 zinc fingers that were shown to bind zinc when expressed as a beta-gal-Kox1 fusion protein. Further analysis of the predicted amino acid sequence revealed a heptad repeat of leucines NH2-terminal to the finger region, which suggests a potential domain for homo- or heterodimer protein formation. On the basis of screening results it was estimated that approximately 70 zinc finger genes are expressed in human T cells. Zinc finger motifs are probably present in a large family of proteins with quite diverse and distinct functions. However, comparisons of individual finger regions in cKox1 with finger regions of cKox2 to cKox30 showed that some zinc fingers are highly conserved in their putative alpha-helical DNA binding region, supporting the notion of a zinc finger-specific DNA recognition code.  相似文献   

18.
19.
20.
Tactile acuity is known to decline with age in adults, possibly as the result of receptor loss, but less is understood about how tactile acuity changes during childhood. Previous research from our laboratory has shown that fingertip size influences tactile spatial acuity in young adults: those with larger fingers tend to have poorer acuity, possibly because mechanoreceptors are more sparsely distributed in larger fingers. We hypothesized that a similar relationship would hold among children. If so, children’s tactile spatial acuity might be expected to worsen as their fingertips grow. However, concomitant CNS maturation might result in more efficient perceptual processing, counteracting the effect of fingertip growth on tactile acuity. To investigate, we conducted a cross-sectional study, testing 116 participants ranging in age from 6 to 16 years on a precision-controlled tactile grating orientation task. We measured each participant''s grating orientation threshold on the dominant index finger, along with physical properties of the fingertip: surface area, volume, sweat pore spacing, and temperature. We found that, as in adults, children with larger fingertips (at a given age) had significantly poorer acuity, yet paradoxically acuity did not worsen significantly with age. We propose that finger growth during development results in a gradual decline in innervation density as receptive fields reposition to cover an expanding skin surface. At the same time, central maturation presumably enhances perceptual processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号