共查询到20条相似文献,搜索用时 0 毫秒
1.
Quantitative Imaging of Molecular Order in Lipid Membranes Using Two-Photon Fluorescence Polarimetry
We present a polarimetric two-photon microscopy technique to quantitatively image the local static molecular orientational behavior in lipid and cell membranes. This approach, based on a tunable excitation polarization state complemented by a polarized readout, is easily implementable and does not require hypotheses on the molecular angular distribution such as its mean orientation, which is a main limitation in traditional fluorescence anisotropy measurements. The method is applied to the investigation of the molecular angular distribution in giant unilamellar vesicles formed by liquid-ordered and liquid-disordered micro-domains, and in COS-7 cell membranes. The highest order contrast between ordered and disordered domains is obtained for dyes locating within the membrane acyl chains. 相似文献
2.
Sofia Johansson Mali Salmon-Divon Maria H. Johansson Yishai Pickman Petter Brodin Klas K?rre Ramit Mehr Petter H?glund 《PloS one》2009,4(6)
Murine natural killer (NK) cells express inhibitory Ly49 receptors for MHC class I molecules, which allows for “missing self” recognition of cells that downregulate MHC class I expression. During murine NK cell development, host MHC class I molecules impose an “educating impact” on the NK cell pool. As a result, mice with different MHC class I expression display different frequency distributions of Ly49 receptor combinations on NK cells. Two models have been put forward to explain this impact. The two-step selection model proposes a stochastic Ly49 receptor expression followed by selection for NK cells expressing appropriate receptor combinations. The sequential model, on the other hand, proposes that each NK cell sequentially expresses Ly49 receptors until an interaction of sufficient magnitude with self-class I MHC is reached for the NK cell to mature. With the aim to clarify which one of these models is most likely to reflect the actual biological process, we simulated the two educational schemes by mathematical modelling, and fitted the results to Ly49 expression patterns, which were analyzed in mice expressing single MHC class I molecules. Our results favour the two-step selection model over the sequential model. Furthermore, the MHC class I environment favoured maturation of NK cells expressing one or a few self receptors, suggesting a possible step of positive selection in NK cell education. Based on the predicted Ly49 binding preferences revealed by the model, we also propose, that Ly49 receptors are more promiscuous than previously thought in their interactions with MHC class I molecules, which was supported by functional studies of NK cell subsets expressing individual Ly49 receptors. 相似文献
3.
We review the main trends in the development of fluorescence probes to obtain information about the structure, dynamics, and interactions in biomembranes. These probes are efficient for studying the microscopic analogs of viscosity, polarity, and hydration, as well as the molecular order, environment relaxation, and electrostatic potentials at the sites of their location. Progress is being made in increasing the information content and spatial resolution of the probe responses. Multichannel environment-sensitive probes that can distinguish between different membrane physicochemical properties through multiple spectroscopic parameters show considerable promise. 相似文献
4.
James E. Reeve Alex D. Corbett Igor Boczarow Tony Wilson Hagan Bayley Harry L. Anderson 《Biophysical journal》2012,103(5):907-917
Numerous dyes are available or under development for probing the structural and functional properties of biological membranes. Exogenous chromophores adopt a range of orientations when bound to membranes, which have a drastic effect on their biophysical behavior. Here, we present a method that employs optical anisotropy data from three polarization-imaging techniques to establish the distribution of orientations adopted by molecules in monolayers and bilayers. The resulting probability density functions, which contain the preferred molecular tilt μ and distribution breadth γ, are more informative than an average tilt angle 〈φ〉. We describe a methodology for the extraction of anisotropy data through an image-processing technology that decreases the error in polarization measurements by about a factor of four. We use this technique to compare di-4-ANEPPS and di-8-ANEPPS, both dipolar dyes, using data from polarized 1-photon, 2-photon fluorescence and second-harmonic generation imaging. We find that di-8-ANEPPS has a lower tilt but the same distributional width. We find the distribution of tilts taken by di-4-ANEPPS in two phospholipid membrane models: giant unilamellar vesicles and water-in-oil droplet monolayers. Both models result in similar distribution functions with average tilts of 52° and 47°, respectively. 相似文献
5.
Matthew?R. Angle Andrew Wang Aman Thomas Andreas?T. Schaefer Nicholas?A. Melosh 《Biophysical journal》2014,107(9):2091-2100
Nanoscale devices have been proposed as tools for measuring and controlling intracellular activity by providing electrical and/or chemical access to the cytosol. Unfortunately, nanostructures with diameters of 50–500 nm do not readily penetrate the cell membrane, and rationally optimizing nanoprobes for cell penetration requires real-time characterization methods that are capable of following the process of membrane penetration with nanometer resolution. Although extensive work has examined the rupture of supported synthetic lipid bilayers, little is known about the applicability of these model systems to living cell membranes with complex lipid compositions, cytoskeletal attachment, and membrane proteins. Here, we describe atomic force microscopy (AFM) membrane penetration experiments in two parallel systems: live HEK293 cells and stacks of synthetic lipid bilayers. By using the same probes in both systems, we were able to clearly identify membrane penetration in synthetic bilayers and compare these events with putative membrane penetration events in cells. We examined membrane penetration forces for three tip geometries and 18 chemical modifications of the probe surface, and in all cases the median forces required to penetrate cellular and synthetic lipid bilayers with nanoprobes were greater than 1 nN. The penetration force was sensitive to the probe''s sharpness, but not its surface chemistry, and the force did not depend on cell surface or cytoskeletal properties, with cells and lipid stacks yielding similar forces. This systematic assessment of penetration under various mechanical and chemical conditions provides insights into nanoprobe-cell interactions and informs the design of future intracellular nanoprobes. 相似文献
6.
Matthew R. Angle Andrew Wang Aman Thomas Andreas T. Schaefer Nicholas A. Melosh 《Biophysical journal》2014
Nanoscale devices have been proposed as tools for measuring and controlling intracellular activity by providing electrical and/or chemical access to the cytosol. Unfortunately, nanostructures with diameters of 50–500 nm do not readily penetrate the cell membrane, and rationally optimizing nanoprobes for cell penetration requires real-time characterization methods that are capable of following the process of membrane penetration with nanometer resolution. Although extensive work has examined the rupture of supported synthetic lipid bilayers, little is known about the applicability of these model systems to living cell membranes with complex lipid compositions, cytoskeletal attachment, and membrane proteins. Here, we describe atomic force microscopy (AFM) membrane penetration experiments in two parallel systems: live HEK293 cells and stacks of synthetic lipid bilayers. By using the same probes in both systems, we were able to clearly identify membrane penetration in synthetic bilayers and compare these events with putative membrane penetration events in cells. We examined membrane penetration forces for three tip geometries and 18 chemical modifications of the probe surface, and in all cases the median forces required to penetrate cellular and synthetic lipid bilayers with nanoprobes were greater than 1 nN. The penetration force was sensitive to the probe's sharpness, but not its surface chemistry, and the force did not depend on cell surface or cytoskeletal properties, with cells and lipid stacks yielding similar forces. This systematic assessment of penetration under various mechanical and chemical conditions provides insights into nanoprobe-cell interactions and informs the design of future intracellular nanoprobes. 相似文献
7.
The stability and shapes of domains with different bending rigidities in lipid membranes are investigated. These domains can
be formed from the inclusion of an impurity in a lipid membrane or from the phase separation within the membrane. We show
that, for weak line tensions, surface tensions and finite spontaneous curvatures, an equilibrium phase of protruding circular
domains or striped domains may be obtained. We also predict a possible phase transition between the investigated morphologies. 相似文献
8.
Dahai Liu Xiu-Da Shen Yuan Zhai Wengsi Lam Jingying Liao Ronald W. Busuttil Rafik M. Ghobrial 《PloS one》2009,4(6)
Background
Allograft tolerance of ACI (RT1a) recipients to WF (RT1u) hearts can be induced by allochimeric class I MHC molecules containing donor-type (RT1Au) immunogenic epitopes displayed on recipient-type (RT1Aa) sequences. Here, we sought the mechanisms by which allochimeric sequences may affect responding T cells through T cell receptor (TCA) repertoire restriction.Methodology/Principal Findings
The soluble [α1h u]-RT1.Aa allochimeric molecule was delivered into ACI recipients of WF hearts in the presence of sub-therapeutic dose of cyclosporine (CsA). The TCR Vβ spectrotyping of the splenocytes and cardiac allografts showed that the Vβ gene families were differentially expressed within the TCR repertoire in allochimeric- or high-dose CsA-treated tolerant recipients at day +5 and +7 of post-transplantation. However, at day 30 of post-transplantation the allochimeric molecule-treated rats showed the restriction of TCR repertoire with altered dominant size peaks representing preferential clonal expansion of Vβ7, Vβ11, Vβ13, Vβ 14, and Vβ15 genes. Moreover, we found a positive correlation between the alteration of Vβ profile, restriction of TCR repertoire, and the establishment of allograft tolerance.Conclusions
Our findings indicate that presentation of allochimeric MHC class I sequences that partially mimic donor and recipient epitopes may induce unique tolerant state by selecting alloresponsive Vβ genes. 相似文献9.
Adriana R. Mantegazza Joao G. Magalhaes Sebastian Amigorena Michael S. Marks 《Traffic (Copenhagen, Denmark)》2013,14(2):135-152
Phagocytosis provides innate immune cells with a mechanism to take up and destroy pathogenic bacteria, apoptotic cells and other large particles. In some cases, however, peptide antigens from these particles are preserved for presentation in association with major histocompatibility complex (MHC) class I or class II molecules in order to stimulate antigen‐specific T cells. Processing and presentation of antigens from phagosomes presents a number of distinct challenges relative to antigens internalized by other means; while bacterial antigens were among the first discovered to be presented to T cells, analyses of the cellular mechanisms by which peptides from phagocytosed antigens assemble with MHC molecules and by which these complexes are then expressed at the plasma membrane have lagged behind those of conventional model soluble antigens. In this review, we cover recent advances in our understanding of these processes, including the unique cross‐presentation of phagocytosed antigens by MHC class I molecules, and in their control by signaling modalities in phagocytic cells. 相似文献
10.
Carmine Di Rienzo Enrico Gratton Fabio Beltram Francesco Cardarelli 《Journal of visualized experiments : JoVE》2014,(92)
It has become increasingly evident that the spatial distribution and the motion of membrane components like lipids and proteins are key factors in the regulation of many cellular functions. However, due to the fast dynamics and the tiny structures involved, a very high spatio-temporal resolution is required to catch the real behavior of molecules. Here we present the experimental protocol for studying the dynamics of fluorescently-labeled plasma-membrane proteins and lipids in live cells with high spatiotemporal resolution. Notably, this approach doesn’t need to track each molecule, but it calculates population behavior using all molecules in a given region of the membrane. The starting point is a fast imaging of a given region on the membrane. Afterwards, a complete spatio-temporal autocorrelation function is calculated correlating acquired images at increasing time delays, for example each 2, 3, n repetitions. It is possible to demonstrate that the width of the peak of the spatial autocorrelation function increases at increasing time delay as a function of particle movement due to diffusion. Therefore, fitting of the series of autocorrelation functions enables to extract the actual protein mean square displacement from imaging (iMSD), here presented in the form of apparent diffusivity vs average displacement. This yields a quantitative view of the average dynamics of single molecules with nanometer accuracy. By using a GFP-tagged variant of the Transferrin Receptor (TfR) and an ATTO488 labeled 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine (PPE) it is possible to observe the spatiotemporal regulation of protein and lipid diffusion on µm-sized membrane regions in the micro-to-milli-second time range. 相似文献
11.
Alexis Morice Béatrice Charreau Bérangère Neveu Sophie Brouard Jean-Paul Soulillou Marc Bonneville Elisabeth Houssaint Nicolas Degauque 《PloS one》2010,5(8)
Although association between persistent viral infection and allograft rejection is well characterized, few examples of T-cell cross-reactivity between self-MHC/viral and allogeneic HLA molecules have been documented so far. We appraised in this study the alloreactivity of CD8 T cell lines specific for immunodominant epitopes from human cytomegalovirus (HCMV) and Epstein-Barr virus (EBV). CD8 T cell lines were generated after sorting with immunomagnetic beads coated with either pp65495–503/A*0201, BMLF1259–267/A*0201, or BZLF154–64/B*3501 multimeric complexes. Alloreactivity of the CD8 T cell lines against allogeneic class I MHC alleles was assessed by screening of (i) TNF-α production against COS-7 cells transfected with as many as 39 individual HLA class I-encoding cDNA, and (ii) cytotoxicity activity toward a large panel of HLA-typed EBV-transformed B lymphoblastoid cell lines. We identified several cross-reactive pp65/A*0201-specific T cell lines toward allogeneic HLA-A*3001, A*3101, or A*3201. Moreover, we described here cross-recognition of HLA-Cw*0602 by BZLF1/B*3501-specific T cells. It is noteworthy that these alloreactive CD8 T cell lines showed efficient recognition of endothelial cells expressing the relevant HLA class I allele, with high level TNF-α production and cytotoxicity activity. Taken together, our data support the notion that herpes virus-specific T cells recognizing allo-HLA alleles may promote solid organ rejection. 相似文献
12.
《Biophysical journal》2020,118(8):1861-1875
Many membrane proteins are thought to function as dimers or higher oligomers, but measuring membrane protein oligomerization in lipid membranes is particularly challenging. Förster resonance energy transfer (FRET) and fluorescence cross-correlation spectroscopy are noninvasive, optical methods of choice that have been applied to the analysis of dimerization of single-spanning membrane proteins. However, the effects inherent to such two-dimensional systems, such as the excluded volume of polytopic transmembrane proteins, proximity FRET, and rotational diffusion of fluorophore dipoles, complicate interpretation of FRET data and have not been typically accounted for. Here, using FRET and fluorescence cross-correlation spectroscopy, we introduce a method to measure surface protein density and to estimate the apparent Förster radius, and we use Monte Carlo simulations of the FRET data to account for the proximity FRET effect occurring in confined two-dimensional environments. We then use FRET to analyze the dimerization of human rhomboid protease RHBDL2 in giant plasma membrane vesicles. We find no evidence for stable oligomers of RHBDL2 in giant plasma membrane vesicles of human cells even at concentrations that highly exceed endogenous expression levels. This indicates that the rhomboid transmembrane core is intrinsically monomeric. Our findings will find use in the application of FRET and fluorescence correlation spectroscopy for the analysis of oligomerization of transmembrane proteins in cell-derived lipid membranes. 相似文献
13.
William H. McCoy IV Xiaoli Wang Wayne M. Yokoyama Ted H. Hansen Daved H. Fremont 《PLoS biology》2012,10(11)
One of the hallmarks of viral immune evasion is the capacity to disrupt major histocompatibility complex class I (MHCI) antigen presentation to evade T-cell detection. Cowpox virus encoded protein CPXV203 blocks MHCI surface expression by exploiting the KDEL-receptor recycling pathway, and here we show that CPXV203 directly binds a wide array of fully assembled MHCI proteins, both classical and non-classical. Further, the stability of CPXV203/MHCI complexes is highly pH dependent, with dramatically increased affinities at the lower pH of the Golgi relative to the endoplasmic reticulum (ER). Crystallographic studies reveal that CPXV203 adopts a beta-sandwich fold similar to poxvirus chemokine binding proteins, and binds the same highly conserved MHCI determinants located under the peptide-binding platform that tapasin, CD8, and natural killer (NK)-receptors engage. Mutagenesis of the CPXV203/MHCI interface identified the importance of two CPXV203 His residues that confer low pH stabilization of the complex and are critical to ER retrieval of MHCI. These studies clarify mechanistically how CPXV203 coordinates with other cowpox proteins to thwart antigen presentation. 相似文献
14.
At some point in life’s development, membranes formed, providing barriers between the environment and the interior of the
‘cell.’ This paper evaluates the research to date on the prebiotic origin of cell membranes and highlights possible areas
of continuing study. A careful review of the literature uncovered unexpected factors that influence membrane evolution. The
major stages in primitive membrane formation and the transition to contemporary cell membranes appear to require an exacting
relationship between environmental conditions and amphiphile composition and phase behavior. Also, environmental and compositional
requirements for individual stages are in some instances incompatible with one another, potentially stultifying the pathway
to contemporary membranes. Previous studies in membrane evolution have noted the effects composition and environment have
on membrane formation but the crucial dependence and interdependence on these two factors has not been emphasized. This review
makes clear the need to focus future investigations away from proof-of-principle studies towards developing a better understanding
of the roles that environmental factors and lipid composition and polymorphic phase behavior played in the origin and evolution
of cell membranes. 相似文献
15.
Intracellular Assembly and Trafficking of MHC Class I Molecules 总被引:2,自引:0,他引:2
The presentation of antigenic peptides by class I molecules of the major histocompatibility complex begins in the endoplasmic reticulum (ER) where the co-ordinated action of molecular chaperones, folding enzymes and class I-specific factors ensures that class I molecules are loaded with high-affinity peptide ligands that will survive prolonged display at the cell surface. Once assembled, class I molecules are released from the quality-control machinery of the ER for export to the plasma membrane where they undergo dynamic endocytic cycling and turnover. We review recent progress in our understanding of class I assembly, anterograde transport and endocytosis and highlight some of the events targeted by viruses as a means to evade detection by cytotoxic T cells and natural killer cells. 相似文献
16.
Susanne Fritzsche Esam T. Abualrous Britta Borchert Frank Momburg Sebastian Springer 《Traffic (Copenhagen, Denmark)》2015,16(6):591-603
The anterograde transport of secretory proteins from the endoplasmic reticulum (ER) to the plasma membrane is a multi‐step process. Secretory proteins differ greatly in their transport rates to the cell surface, but the contribution of each individual step to this difference is poorly understood. Transport rates may be determined by protein folding, chaperone association in the ER, access to ER exit sites (ERES) and retrieval from the ER‐Golgi intermediate compartment or the cis‐Golgi to the ER. We have used a combination of folding and trafficking assays to identify the differential step in the cell surface transport of two natural allotypes of the murine major histocompatibility complex (MHC) class I peptide receptor, H‐2Db and H‐2Kb. We find that a novel pre‐ER exit process that acts on the folded lumenal part of MHC class I molecules and that drastically limits their access to ERES accounts for the transport difference of the two allotypes. Our observations support a model in which the cell surface transport of MHC class I molecules and other type I transmembrane proteins is governed by the affinity of all their folding and maturation states to the proteins of the ER matrix. 相似文献
17.
The diffusion of proteins in the cell membrane is investigated using computer simulations of a two-dimensional model. The membrane is assumed to be divided into compartments, with adjacent compartments separated by a barrier of stationary obstacles. Each compartment contains traps represented by stationary attractive disks. Depending on their size, these traps are intended to model either smaller compartments or binding sites. The simulations are intended to model the double-compartment model, which has been used to interpret single molecule experiments in normal rat kidney cells, where five regimes of transport are observed. The simulations show, however, that five regimes are observed only when there is a large separation between the sizes of the traps and large compartments, casting doubt on the double compartment model for the membrane. The diffusive behavior is sensitive to the concentration and size of traps and the strength of the barrier between compartments suggesting that the diffusion of proteins can be effectively used to characterize the structure of the membrane. 相似文献
18.
Gemma Palomar Katarzyna Dudek Magdalena Migalska J W Arntzen G Francesco Ficetola Duan Jeli Elizabeth Jockusch Inigo Martínez-Solano Masatoshi Matsunami H Bradley Shaffer Judit Vrs Bruce Waldman Ben Wielstra Wiesaw Babik 《Molecular biology and evolution》2021,38(11):5092
Proteins encoded by antigen-processing genes (APGs) provide major histocompatibility complex (MHC) class I (MHC-I) with antigenic peptides. In mammals, polymorphic multigenic MHC-I family is served by monomorphic APGs, whereas in certain nonmammalian species both MHC-I and APGs are polymorphic and coevolve within stable haplotypes. Coevolution was suggested as an ancestral gnathostome feature, presumably enabling only a single highly expressed classical MHC-I gene. In this view coevolution, while optimizing some aspects of adaptive immunity, would also limit its flexibility by preventing the expansion of classical MHC-I into a multigene family. However, some nonmammalian taxa, such as salamanders, have multiple highly expressed MHC-I genes, suggesting either that coevolution is relaxed or that it does not prevent the establishment of multigene MHC-I. To distinguish between these two alternatives, we use salamanders (30 species from 16 genera representing six families) to test, within a comparative framework, a major prediction of the coevolution hypothesis: the positive correlation between MHC-I and APG diversity. We found that MHC-I diversity explained both within-individual and species-wide diversity of two APGs, TAP1 and TAP2, supporting their coevolution with MHC-I, whereas no consistent effect was detected for the other three APGs (PSMB8, PSMB9, and TAPBP). Our results imply that although coevolution occurs in salamanders, it does not preclude the expansion of the MHC-I gene family. Contrary to the previous suggestions, nonmammalian vertebrates thus may be able to accommodate diverse selection pressures with flexibility granted by rapid expansion or contraction of the MHC-I family, while retaining the benefits of coevolution between MHC-I and TAPs. 相似文献
19.
Nathan P. Croft Claire Shannon-Lowe Andrew I. Bell Dani?lle Horst Elisabeth Kremmer Maaike E. Ressing Emmanuel J. H. J. Wiertz Jaap M. Middeldorp Martin Rowe Alan B. Rickinson Andrew D. Hislop 《PLoS pathogens》2009,5(6)
The gamma-herpesvirus Epstein-Barr virus (EBV) persists for life in infected individuals despite the presence of a strong immune response. During the lytic cycle of EBV many viral proteins are expressed, potentially allowing virally infected cells to be recognized and eliminated by CD8+ T cells. We have recently identified an immune evasion protein encoded by EBV, BNLF2a, which is expressed in early phase lytic replication and inhibits peptide- and ATP-binding functions of the transporter associated with antigen processing. Ectopic expression of BNLF2a causes decreased surface MHC class I expression and inhibits the presentation of indicator antigens to CD8+ T cells. Here we sought to examine the influence of BNLF2a when expressed naturally during EBV lytic replication. We generated a BNLF2a-deleted recombinant EBV (ΔBNLF2a) and compared the ability of ΔBNLF2a and wild-type EBV-transformed B cell lines to be recognized by CD8+ T cell clones specific for EBV-encoded immediate early, early and late lytic antigens. Epitopes derived from immediate early and early expressed proteins were better recognized when presented by ΔBNLF2a transformed cells compared to wild-type virus transformants. However, recognition of late antigens by CD8+ T cells remained equally poor when presented by both wild-type and ΔBNLF2a cell targets. Analysis of BNLF2a and target protein expression kinetics showed that although BNLF2a is expressed during early phase replication, it is expressed at a time when there is an upregulation of immediate early proteins and initiation of early protein synthesis. Interestingly, BNLF2a protein expression was found to be lost by late lytic cycle yet ΔBNLF2a-transformed cells in late stage replication downregulated surface MHC class I to a similar extent as wild-type EBV-transformed cells. These data show that BNLF2a-mediated expression is stage-specific, affecting presentation of immediate early and early proteins, and that other evasion mechanisms operate later in the lytic cycle. 相似文献
20.
Only a limited number of noninvasive techniques are available to directly measure the dynamic behavior of lipids in model and cell membranes. Here, we explored whether a commercial instrument could be used for fluorescence correlation spectroscopy (FCS) under pulsed stimulated emission depletion (STED). To overcome issues with photobleaching and poor distinction between confocal and STED signals, we implemented resonant line-scan STED with filtered FCS, which has the additional benefit of autocalibrating the dimensions of the point-spread function and obtaining spatially resolved molecular mobility at subdiffraction resolution. With supported lipid bilayers, we achieved a detection spot radius of 40 nm, although at the expense of decreased molecular brightness. We also used this approach to map the dynamics of Atto646N-labeled sphingomyelin and phosphatidylethanolamine in the plasma membrane. Despite the reliability of the method and the demonstration that photobleaching and the photophysical properties of the dye did not influence diffusion measurements, we found great heterogeneities even within one cell. For both lipids, regions of high local density correlated with slow molecular diffusion, indicating trapping of Atto646N-labeled lipids. Future studies with new dyes are needed to reveal the origin of the trapping. 相似文献