首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Circular dichroism (CD) spectroscopy is an essential tool for determining the conformation of proteins and peptides in membranes. It can be particularly useful for measuring the free energy of partitioning of peptides into lipid vesicles. The belief is broadly held that such CD measurements can only be made using sonicated small unilamellar vesicles (SUVs) because light scattering associated with extruded large unilamellar vesicles (LUVs) is unacceptably high. We have examined this issue using several experimental approaches in which a chiral object (i.e., peptide or protein) is placed both on the membrane and outside the membrane. We show that accurate CD spectra can be collected in the presence of LUVs. This is important because SUVs, unlike LUVs, are metastable and consequently unsuitable for equilibrium thermodynamic measurements. Our data reveal that undistorted CD spectra of peptides can be measured at wavelengths above 200 nm in the presence of up to 3 mM LUVs and above 215 nm in the presence of up to 7 mM LUVs. We introduce a simple way of characterizing the effect on CD spectra of light scattering and absorption arising from suspensions of vesicles of any diameter. Using melittin as an example, we show that CD spectroscopy can be used to determine the fractional helical content of peptides in LUVs and to measure their free energy of partitioning of into LUVs.  相似文献   

2.
Recently, DNA packaged within nuclease-resistant membrane vesicles of Neisseria gonorrhoeae and Borrelia burgdorferi was described. This study assayed 18 species of gram-negative and gram-positive eubacteria for nuclease-protected DNA associated with extracellular membrane vesicles. Vesicles from only the gram-negative bacteria contained nuclease-protected linear or supercoiled DNAs or both.  相似文献   

3.
A long-standing question about membrane structure and function is the degree to which the physical properties of the inner and outer leaflets of a bilayer are coupled to one another. Using our recently developed methods to prepare asymmetric vesicles, coupling was investigated for vesicles containing phosphatidylcholine (PC) in the inner leaflet and sphingomyelin (SM) in the outer leaflet. The coupling of both lateral diffusion and membrane order was monitored as a function of PC and SM acyl chain structure. The presence in the outer leaflet of brain SM, which decreased outer-leaflet lateral diffusion, had little effect upon lateral diffusion in inner leaflets composed of dioleoyl PC (i.e., diffusion was only weakly coupled in the two leaflets) but did greatly reduce lateral diffusion in inner leaflets composed of PC with one saturated and one oleoyl acyl chain (i.e., diffusion was strongly coupled in these cases). In addition, reduced outer-leaflet diffusion upon introduction of outer-leaflet milk SM or a synthetic C24:0 SM, both of which have long interdigitating acyl chains, also greatly reduce diffusion of inner leaflets composed of dioleoyl PC, indicative of strong coupling. Strikingly, several assays showed that the ordering of the outer leaflet induced by the presence of SM was not reflected in increased lipid order in the inner leaflet, i.e., there was no detectable coupling between inner and outer leaflet membrane order. We propose a model for how lateral diffusion can be coupled in opposite leaflets and discuss how this might impact membrane function.  相似文献   

4.
Abstract: The time dependence of N -acetyl-aspartate (NAA) concentrations relative to lactate and pyruvate in the injured rat spinal cord was investigated. Segments of spinal cord from regions rostral, caudal, and at the epicenter of the injury were analyzed. NAA concentrations were determined by gas chromatography-mass spectrometry and lactate and pyruvate concentrations were determined by UV spectroscopy at 20 min, 60 min, 2 h, 8 h, 24 h, 3 days, and 1 week after injury. NAA levels fell most significantly at the epicenter of the injury, reaching 30% of basal levels within 24 h. In all segments, lactate levels increased significantly shortly after injury, peaking at two to five times normal basal levels between 20 and 60 min after injury. Rostral and caudal to the injury site, lactate elevations and NAA reductions were less dramatic. Pyruvate concentrations were not significantly altered in any of the sections after injury. The temporal and spatial relationships of NAA and lactate changes indicated that ischemic conditions due to injury in the upper thoracic rat spinal cord were distributed asymmetrically. Acute ischemia was more severe caudal to the injury site, and NAA concentrations were more severely impaired in the rostral direction. The results suggest that the extent of neuronal degeneration due to spinal cord injury does not correlate directly with acute ischemic severity as measured by the lactate/pyruvate ratio, and may be more closely related to secondary changes in the neuronal environment.  相似文献   

5.
The excess heat capacity functions (ΔCp) associated with the main phase transition of large unilamellar vesicles (LUVs) and multilamellar vesicles (MLVs) are very different. Two explanations are possible. First, the difference in vesicle size (curvature) results in different gel-fluid interactions in the membrane; those interactions have a large effect on the cooperativity of the phase transition. Second, there is communication between the bilayers in an MLV when they undergo the gel-fluid transition; this communication results in thermodynamic coupling of the phase transitions of the bilayers in the MLV and, consequently, in an apparent increase in the cooperativity of the transition. To test these hypotheses, differential scanning calorimetry was performed on giant unilamellar vesicles (GUVs) of pure dipalmitoylphosphatidylcholine. The ΔCp curve of GUVs was found to resemble that of the much smaller LUVs. The transition in GUVs and LUVs is much broader (half-width ∼1.5°C) than in MLVs (∼0.1°C). This similarity in GUVs and LUVs indicates that their size has little effect on gel-fluid interactions in the phase transition. The result suggests that coupling between the transitions in the bilayers of an MLV is responsible for their apparent higher cooperativity in melting.  相似文献   

6.
Axonal transport of peptide and hormone-containing large dense core vesicles (LDCVs) is known to be a microtubule-dependent process. Here, we suggest a role for the actin-based motor protein myosin Va specifically in retrograde axonal transport of LDCVs. Using live-cell imaging of transfected hippocampal neurons grown in culture, we measured the speed, transport direction, and the number of LDCVs that were labeled with ectopically expressed neuropeptide Y fused to EGFP. Upon expression of a dominant-negative tail construct of myosin Va, a general reduction of movement in both dendrites and axons was observed. In axons, it was particularly interesting that the retrograde speed of LDCVs was significantly impaired, although anterograde transport remained unchanged. Moreover, particles labeled with the dominant-negative construct often moved in the retrograde direction but rarely in the anterograde direction. We suggest a model where myosin Va acts as an actin-dependent vesicle motor that facilitates retrograde axonal transport.  相似文献   

7.
Giant unilamellar vesicles (GUVs) are presumably the current most popular biomimetic membrane model. Preparation of GUVs in physiological conditions using the classical electroformation method is challenging. To circumvent these difficulties, a new method was recently reported, by which GUVs spontaneously swell from hybrid films of agarose and lipids. However, agarose is left encapsulated in the vesicles in different amounts. In this work, we thoroughly characterize the mechanical properties of these agarose-GUVs in response to electric pulses, which induce vesicle deformation and can lead to membrane poration. We show that the relaxation dynamics of deformed vesicles, both in the presence and absence of poration, is significantly slowed down for agarose-GUVs when compared to agarose-free GUVs. In the presence of poration, agarose polymers prevent complete pore closure and lead to high membrane permeability. A fraction of the vesicles were found to encapsulate agarose in the form of a gel-like meshwork. These vesicles rupture and open up after electroporation and the meshwork is expelled through a macropore. When the agarose-GUVs are heated above the melting temperature of agarose for 2 h before use, vesicle response is (partially) recovered due to substantial release of encapsulated agarose during temperature treatment. Our findings reveal potential artifactual behavior of agarose-GUVs in processes involving morphological changes in the membrane as well as poration.  相似文献   

8.
Giant unilamellar vesicles (GUVs) are presumably the current most popular biomimetic membrane model. Preparation of GUVs in physiological conditions using the classical electroformation method is challenging. To circumvent these difficulties, a new method was recently reported, by which GUVs spontaneously swell from hybrid films of agarose and lipids. However, agarose is left encapsulated in the vesicles in different amounts. In this work, we thoroughly characterize the mechanical properties of these agarose-GUVs in response to electric pulses, which induce vesicle deformation and can lead to membrane poration. We show that the relaxation dynamics of deformed vesicles, both in the presence and absence of poration, is significantly slowed down for agarose-GUVs when compared to agarose-free GUVs. In the presence of poration, agarose polymers prevent complete pore closure and lead to high membrane permeability. A fraction of the vesicles were found to encapsulate agarose in the form of a gel-like meshwork. These vesicles rupture and open up after electroporation and the meshwork is expelled through a macropore. When the agarose-GUVs are heated above the melting temperature of agarose for 2 h before use, vesicle response is (partially) recovered due to substantial release of encapsulated agarose during temperature treatment. Our findings reveal potential artifactual behavior of agarose-GUVs in processes involving morphological changes in the membrane as well as poration.  相似文献   

9.
Abstract

Proton sensitive large unilamellar vesicles (LUV) were constructed by immobilization of the pH sensitive synthetic polymer poly(2-ethylacrylic acid) onto the outer monolayer. Thiolated poly(2-ethylacrylic acid) (PEAA-SH) was covalently conjugated to the surface of LUVs composed of egg phosphatidylcholine (EPC) and cholesterol (Choi) through the thiol-reactive maleimide lipid MPB-DSPE (N-(4-(p-maleimidophenyl)butyryl)-1,2-distearoyl-sn-glyc-ero-3-phosphoethanolamine). The resulting PEAA- LUVs were shown to be stable at neutral pH (pH 7.0 to 8.0). Under acidic conditions, however, proton-ation of PEAA resulted in interaction with both the membrane it was linked to and the membrane of target vesicles, causing membrane destabilization and release of vesicle contents. Moreover, conjugated PEAA is shown to mediate fusion with target membranes in a pH dependent manner. PEAA-mediated permeabilization and vesicle-vesicle fusion occurred only when the polymer was covalently linked to the LUV surface. Proton dependent fusion of PEAA-LUVs was also observed with erythrocyte ghosts. This pH-dependent release of vesicle contents and fusion of PEAA-LUVs occurred below pH 6.8, which is well within the pH range expected to be encountered inside the endosomes in the endocytic pathway, indicating the potential of PEAA-LUVs as a drug carrier system for intracellular drug delivery.  相似文献   

10.
Parent-of-origin differential DNA methylation has been associated with regulation of the preferential expression of paternal or maternal alleles of imprinted genes. Based on this association, recent studies have searched for parent-of-origin dependent differentially methylated regions in order to identify new imprinted genes in their vicinity. In a previous genome-wide analysis of mouse brain DNA methylation, we found a novel differentially methylated region in a CpG island located in the last intron of the alpha 1 Actinin (Actn1) gene. In this region, preferential methylation of the maternal allele was observed; however, there were no reports of imprinted expression of Actn1. Therefore, we have tested if differential methylation of this region is common to other tissues and species and affects the expression of Actn1. We have found that Actn1 differential methylation occurs in diverse mouse tissues. Moreover, it is also present in other murine rodents (rat), but not in the orthologous human region. In contrast, we have found no indication of an imprinted effect on gene expression of Actn1 in mice: expression is always biallelic regardless of sex, tissue type, developmental stage or isoform. Therefore, we have identified a novel parent-of-origin dependent differentially methylated region that has no apparent association with imprinted expression of the closest genes. Our findings sound a cautionary note to genome-wide searches on the use of differentially methylated regions for the identification of imprinted genes and suggest that parent-of-origin dependent differential methylation might be conserved for functions other that the control of imprinted expression.  相似文献   

11.
12.
The opportunistic intracellular fungal pathogen Cryptococcus neoformans depends on many antioxidant and denitrosylating proteins and pathways for virulence in the immunocompromised host. These include the glutathione and thioredoxin pathways, thiol peroxidase, cytochrome c peroxidase, and flavohemoglobin denitrosylase. All of these ultimately depend on NADPH for either catalytic activity or maintenance of a reduced, functional form. The need for NADPH during oxidative stress is well established in many systems, but a role in resistance to nitrosative stress has not been as well characterized. In this study we investigated the roles of two sources of NADPH, glucose-6-phosphate dehydrogenase (Zwf1) and NADP+-dependent isocitrate dehydrogenase (Idp1), in production of NADPH and resistance to oxidative and nitrosative stress. Deletion of ZWF1 in C. neoformans did not result in an oxidative stress sensitivity phenotype or changes in the amount of NADPH produced during oxidative stress compared to those for the wild type. Deletion of IDP1 resulted in greater sensitivity to nitrosative stress than to oxidative stress. The amount of NADPH increased 2-fold over that in the wild type during nitrosative stress, and yet the idp1Δ strain accumulated more mitochondrial damage than the wild type during nitrosative stress. This is the first report of the importance of Idp1 and NADPH for nitrosative stress resistance.The alveolar macrophage can produce microbicidal amounts of toxic reactive oxygen species (ROS) and reactive nitrogen species (RNS) following phagocytosis (27, 53). Despite this, the opportunistic fungal pathogen Cryptococcus neoformans is able to inhabit and replicate within phagocytes of the mammalian host and to exit these cells unharmed (1, 2, 40). The intracellular pathogenicity of C. neoformans is most likely facilitated by stress resistance mechanisms, including a number of antioxidant proteins and pathways involved in the detoxification of ROS and RNS. Specifically, these include the synthesis of mannitol, a free radical scavenger (9, 20); the small protein flavohemoglobin denitrosylase (Fhb1), which is essential for resistance of C. neoformans to nitrosative stress (10, 14, 32); and the glutathione and thioredoxin antioxidant systems, which are both important for stress resistance and virulence (42, 43, 45).Even with different mechanisms of catalysis and/or cellular localization, one thing that these stress resistance proteins and pathways have in common is the requirement for NADPH as a cofactor. NADPH is used as an electron donor either in recycling of oxidized, inactive enzymes to reduced, active forms or directly in catalytic activity. For example, Fhb1 binds NADPH during its catalytic activity and uses it directly as an electron donor for the reduction of NO· to NO3 (21). Catalases, which are highly conserved antioxidants that dismute H2O2 to molecular oxygen and water, consist of four units each with a molecule of NADPH bound in the core (18, 36, 59). The tripeptide glutathione (GSH) is oxidized to glutathione disulfide (GSSG), a homodimer held together by a disulfide bridge, during its oxidative state. GSSG can be reduced back to GSH by glutathione reductase, an enzyme that requires NADPH for electrons used in reduction. Similarly, glutathione peroxidase and thiol peroxidase ultimately depend on NADPH for recycling from an oxidized, inactive form back to a reduced, active form (57).NADPH is classically recognized as being produced by the highly conserved, cytosolic pentose phosphate pathway. This pathway has been shown to be important for reductive biochemistry during oxidative stress in many organisms. The pentose phosphate pathway is an essential factor in maintaining health of erythrocytes, cells that, due to their biological function, have considerable risk for oxidative damage. Humans deficient in the pathway have hemolytic anemia, as their erythrocytes are unable to maintain sufficient pools of reduced glutathione (68). Also, the pressure of oxidative stress can stimulate the pentose phosphate pathway. This has been shown in human lymphocytes (56); in the rat adrenal gland, liver, and pancreas (15, 16); and in bacteria (63).In fungi, the pentose phosphate pathway has been implicated in both oxidative stress resistance and adaptation to oxidative stress. In the model yeast Saccharomyces cerevisiae, NADPH-generating systems, including the pentose phosphate pathway, are critical for the ability of this organism to resist and adapt to high levels of oxidative stress (35, 47). It has also been shown that the cytosolic copper/zinc superoxide dismutase and the pentose phosphate pathway have overlapping roles in protecting S. cerevisiae from oxidative stress and that both systems are critical for maintaining the intracellular redox state (62). Furthermore, fungi may rely on the pentose phosphate pathway for more than reducing oxidative stress. Aspergillus nidulans requires a functional pentose phosphate pathway for nitrogen metabolism. Four A. nidulans mutants with independent defects in the pentose phosphate pathway were unable to grow on nitrite, nitrate, or various carbon sources, including 1% glucose, d-xylose, or d-glucoronate (28).The pathway has two phases, the oxidative phase and the nonoxidative phase. The oxidative phase consists of two successive oxidations and results in the production of NADPH. The first enzyme in the oxidative phase of the pentose phosphate pathway is glucose-6-phosphate dehydrogenase (Zwf). Zwf catalyzes the oxidation of glucose-6-phosphate to 6-phosphogluconate and is highly specific for NADP+ as a cofactor (49, 67). There is abundant evidence supporting the role of Zwf in oxidative stress resistance. In addition to Zwf deficiency causing hemolytic anemia, Zwf has been also been implicated in maintenance of DNA repair systems during oxidative stress, as some cancers and aging disorders have also been linked to Zwf deficiency (30). For instance, Chinese hamster ovarian cells that are Zwf null have enhanced radiation sensitivity and a reduced ability to repair double-strand breaks due to the inactivation of Ku, a heterodimer DNA repair protein. In this case, the inactivation of Ku is the result of overoxidation of key cysteine residues on the protein due to the lack of sufficient reduced GSH (3). In the model yeast Saccharomyces cerevisiae, deletion of ZWF1 results in sensitivity to oxidative stress. ZWF1 is also important for the adaptive response to oxidative stress in S. cerevisiae. ZWF1-null mutants and wild-type cells were pretreated with 0.2 mM H2O2 and then challenged with 2 mM H2O2. While a large increase in tolerance to the high level of H2O2 was observed in the wild-type cells pretreated with 0.2 mM H2O2, the zwf1Δ strain was unable to tolerate the higher concentration (33). In Candida albicans, another pathogenic fungus, ZWF1 is upregulated during oxidative stress (38).Another source of NADPH is NADP+-dependent isocitrate dehydrogenase (Idp) (55), a ubiquitous enzyme that in systems ranging from humans to yeasts to plants has been found in the cytosol, peroxisomes, or mitochondria (12, 19, 70). Although this enzyme can be targeted to mitochondria, it is distinct from the NAD+-dependent isocitrate dehydrogenase (Idh) that functions in the mitochondria as part of the Krebs cycle. However, similarly to Idh, Idp catalyzes the decarboxylation of isocitrate to α-ketoglutarate (29). This reaction can be performed in the mitochondria, in the cytosol, or in peroxisomes using isocitrate formed from citrate exported across the mitochondrial membrane. This allows for the production of NADPH in cellular compartments without reliance of active transport of NADPH across membranes (11). It is important to have reductive power produced directly within organelles for protection from exogenous as well as endogenous stressor. For example, NADPH is consumed in peroxisomes by enzymes such as catalase and uric acid oxidase, that counteract the ROS produced during breakdown of lipids (4, 5, 31). Mitochondria particularly require reductive capability, as these organelles are susceptible to endogenous ROS produced during cellular respiration and also to exogenous RNS (52). The proteins that make up the electron transport chain are prone to damage by nitric oxide, peroxynitrite, and S-nitrosothiols (6). Nitric oxide and peroxynitrite have been shown to cause irreversible damage to cytochrome c reductase, NADH dehydrogenase, and the succinate-ubiquinone complex; the common mechanism of damage is sequestration of iron/sulfur centers of the proteins (54, 69). Thus, without a means of detoxification, the mitochondrial membrane loses potential and the ability to continue respiration, leading to death of the stressed cell. In C. neoformans, some antioxidant enzymes that are located at the mitochondria and dependent on NADPH for function include catalases, superoxide dismutases, cytochrome c peroxidase, and flavohemoglobin denitrosylase (7, 24, 25, 26). These enzymes are important for stress resistance or virulence of C. neoformans due to their role in high-temperature growth (24, 25) or nitrosative stress resistance (10, 14, 26).In humans, there is one IDP gene that results in mitochondrial and peroxisomal products (22). In S. cerevisiae, there are three IDP genes, which encode mitochondrial (IDP1), cytosolic (IDP2), and peroxisomal (IDP3) forms of the protein. Deletion of both ZWF1 and any one of the IDP genes in S. cerevisiae results in sensitivity to oxidative stress, likely due to a substantial decrease in NADPH produced in these double deletion mutants (41). In C. neoformans there is one predicted IDP gene (IDP1). Microarray data have indicated that this gene is upregulated 2.5-fold during nitrosative stress and thus may have a role in resistance to this stressor (44).Since so many factors essential for stress resistance in C. neoformans utilize NADPH, we hypothesize that the sources of this cofactor are likewise critical for stress resistance. Although Zwf1 is important for adaptation to oxidative stress in the fungi S. cerevisiae and C. albicans, we had previously found that C. neoformans is unable to adapt to oxidative stress (S. M. Brown and J. K. Lodge, unpublished data), and thus we had reason to suspect that the role of Zwf1 in C. neoformans may be different than that in other organisms. The role of Idp1 in stress resistance, especially in resistance to nitrosative stress, is relatively unknown. In this study we used biochemical and genetic approaches to compare the roles of Zwf1 and Idp1 in resistance to oxidative and nitrosative stress in C. neoformans. We found that the Zwf1 is dispensable for viability, for resistance to oxidative and nitrosative stress, and for NADPH production. In contrast, we found that Idp1 is important for resistance to nitrosative stress, specifically for maintaining healthy mitochondria during exposure to nitrosative stress.  相似文献   

13.
14.
Salmonella vaccines used in poultry in the EU are based on attenuated strains of either Salmonella serovar Enteritidis or Typhimurium which results in a decrease in S. Enteritidis and S. Typhimurium but may allow other Salmonella serovars to fill an empty ecological niche. In this study we were therefore interested in the early interactions of chicken immune system with S. Infantis compared to S. Enteritidis and S. Typhimurium, and a role of O-antigen in these interactions. To reach this aim, we orally infected newly hatched chickens with 7 wild type strains of Salmonella serovars Enteritidis, Typhimurium and Infantis as well as with their rfaL mutants and characterized the early Salmonella-chicken interactions. Inflammation was characterized in the cecum 4 days post-infection by measuring expression of 43 different genes. All wild type strains stimulated a greater inflammatory response than any of the rfaL mutants. However, there were large differences in chicken responses to different wild type strains not reflecting their serovar classification. The initial interaction between newly-hatched chickens and Salmonella was found to be dependent on the presence of O-antigen but not on its structure, i.e. not on serovar classification. In addition, we observed that the expression of calbindin or aquaporin 8 in the cecum did not change if inflammatory gene expression remained within a 10 fold fluctuation, indicating the buffering capacity of the cecum, preserving normal gut functions even in the presence of minor inflammatory stimuli.  相似文献   

15.
In cells lacking telomerase, telomeres shorten progressively during each cell division due to incomplete end-replication. When the telomeres become very short, cells enter a state that blocks cell division, termed senescence. A subset of these cells can overcome senescence and maintain their telomeres using telomerase-independent mechanisms. In Saccharomyces cerevisiae, these cells are called ‘survivors’ and are dependent on Rad52-dependent homologous recombination and Pol32-dependent break-induced replication. There are two main types of survivors: type I and type II. The type I survivors require Rad51 and maintain telomeres by amplification of subtelomeric elements, while the type II survivors are Rad51-independent, but require the MRX complex and Sgs1 to amplify the C1–3A/TG1–3 telomeric sequences. Rad52, Pol32, Rad51, and Sgs1 are also important to prevent accelerated senescence, indicating that recombination processes are important at telomeres even before the formation of survivors. The Shu complex, which consists of Shu1, Shu2, Psy3, and Csm2, promotes Rad51-dependent homologous recombination and has been suggested to be important for break-induced replication. It also promotes the formation of recombination intermediates that are processed by the Sgs1-Top3-Rmi1 complex, as mutations in the SHU genes can suppress various sgs1, top3, and rmi1 mutant phenotypes. Given the importance of recombination processes during senescence and survivor formation, and the involvement of the Shu complex in many of the same processes during DNA repair, we hypothesized that the Shu complex may also have functions at telomeres. Surprisingly, we find that this is not the case: the Shu complex does not affect the rate of senescence, does not influence survivor formation, and deletion of SHU1 does not suppress the rapid senescence and type II survivor formation defect of a telomerase-negative sgs1 mutant. Altogether, our data suggest that the Shu complex is not important for recombination processes at telomeres.  相似文献   

16.

Background

The neglected parasitic infection Chagas disease is rapidly becoming a globalised public health issue due to migration. There are only two anti-parasitic drugs available to treat this disease, benznidazole and nifurtimox. Thus it is important to identify and validate new drug targets in Trypanosoma cruzi, the causative agent. T. cruzi expresses an ER-localised ascorbate-dependent peroxidase (TcAPx). This parasite-specific enzyme has attracted interest from the perspective of targeted chemotherapy.

Methodology/Principal Findings

To assess the importance of TcAPx in protecting T. cruzi from oxidative stress and to determine if it is essential for virulence, we generated null mutants by targeted gene disruption. Loss of activity was associated with increased sensitivity to exogenous hydrogen peroxide, but had no effect on susceptibility to the front-line Chagas disease drug benznidazole. This suggests that increased oxidative stress in the ER does not play a significant role in its mechanism of action. Homozygous knockouts could proceed through the entire life-cycle in vitro, although they exhibited a significant decrease in their ability to infect mammalian cells. To investigate virulence, we exploited a highly sensitive bioluminescence imaging system which allows parasites to be monitored in real-time in the chronic stage of murine infections. This showed that depletion of enzyme activity had no effect on T. cruzi replication, dissemination or tissue tropism in vivo.

Conclusions/Significance

TcAPx is not essential for parasite viability within the mammalian host, does not have a significant role in establishment or maintenance of chronic infections, and should therefore not be considered a priority for drug design.  相似文献   

17.
N-acetylglucosamine kinase (GlcNAc kinase or NAGK; EC 2.7.1.59) is highly expressed and plays a critical role in the development of dendrites in brain neurons. In this study, the authors conducted structure-function analysis to verify the previously proposed 3D model structure of GlcNAc/ATP-bound NAGK. Three point NAGK mutants with different substrate binding capacities and reaction velocities were produced. Wild-type (WT) NAGK showed strong substrate preference for GlcNAc. Conversion of Cys143, which does not make direct hydrogen bonds with GlcNAc, to Ser (i.e., C143S) had the least affect on the enzymatic activity of NAGK. Conversion of Asn36, which plays a role in domain closure by making a hydrogen bond with GlcNAc, to Ala (i.e., N36A) mildly reduced NAGK enzyme activity. Conversion of Asp107, which makes hydrogen bonds with GlcNAc and would act as a proton acceptor during nucleophilic attack on the γ-phosphate of ATP, to Ala (i.e., D107A), caused a total loss in enzyme activity. The over-expression of EGFP-tagged WT or any of the mutant NAGKs in rat hippocampal neurons (DIV 5-9) increased dendritic architectural complexity. Finally, the overexpression of the small, but not of the large, domain of NAGK resulted in dendrite degeneration. Our data show the effect of structure on the functional aspects of NAGK, and in particular, that the small domain of NAGK, and not its NAGK kinase activity, plays a critical role in the upregulation of dendritogenesis.  相似文献   

18.
Luu DT  Heizmann P  Dumas C 《Plant physiology》1997,115(3):1221-1230
The adhesion of pollen on the stigmas of flowering plants is a critical step for the success of reproduction in angiosperms, long considered to present some specificity in terms of self-incompatibility. We carried out quantitative measurements of the pollen-stigma adhesion (expressed in Newtons) in kale (Brassica oleracea), using the flotation force of Archimedes exerted by dense sucrose solutions (50%, w/v) to release pollen grains fixed on the surface of stigmas. We demonstrate that pollen adhesion varies with the genotypes of the plants used as partners, but increases with time in all cases for about 30 to 60 min after pollination. There is no correlation with the self- or cross-status of the pollinations, nor with the self-compatible or -incompatible genotypes of the parents. Only late events of pollination, after the germination or arrest of the pollen tube, depend on compatibility type. Biochemical and physiological dissection of pollen-stigma adhesion points to major components of this interaction: among male components, the pollen coating, eliminated by delipidation (or modified by mutation in the case of the cer mutants of the related species Arabidopsis thaliana), plays a major role in adhesion; the genetic background of the pollen parent is also of some importance. On the female side, the developmental stage of the stigma and the protein constituents of the stigmatic pellicle are critical for pollen capture. The SLG and SLR1 proteins are not involved in the initial stages of pollen adhesion on the stigma but one or both may be involved in the later stages.  相似文献   

19.
20.
In Saccharomyces cerevisiae, association between the Est1 telomerase subunit and the telomere-binding protein Cdc13 is essential for telomerase to be recruited to its site of action. A current model proposes that Tel1 binding to telomeres marks them for elongation, as the result of phosphorylation of a proposed S/TQ cluster in the telomerase recruitment domain of Cdc13. However, three observations presented here argue against one key aspect of this model. First, the pattern of Cdc13 phosphatase-sensitive isoforms is not altered by loss of Tel1 function or by mutations introduced into two conserved serines (S249 and S255) in the Cdc13 recruitment domain. Second, an interaction between Cdc13 and Est1, as monitored by a two-hybrid assay, is dependent on S255 but Tel1-independent. Finally, a derivative of Cdc13, cdc13–(S/TQ)11→(S/TA)11, in which every potential consensus phosphorylation site for Tel1 has been eliminated, confers nearly wild-type telomere length. These results are inconsistent with a model in which the Cdc13–Est1 interaction is regulated by Tel1-mediated phosphorylation of the Cdc13 telomerase recruitment domain. We propose an alternative model for the role of Tel1 in telomere homeostasis, which is based on the assumption that Tel1 performs the same molecular task at double-strand breaks (DSBs) and chromosome termini.TELOMERE length homeostasis is a highly regulated process that must balance telomere loss (as the result of incomplete replication and/or nucleolytic degradation) with telomeric repeat addition (through the action of telomerase and/or recombination). In the budding yeast Saccharomyces cerevisiae, a key regulatory event is recruitment of telomerase to chromosome ends by the telomere end-binding protein Cdc13 (Nugent et al. 1996; Evans and Lundblad 1999; Pennock et al. 2001; Bianchi et al. 2004; Chan et al. 2008). Recruitment relies on a direct interaction between Cdc13 and the Est1 subunit of telomerase (Pennock et al. 2001), which brings the catalytic core of the enzyme to its site of action. Disruption of this interaction, due to mutations in either CDC13 (cdc13-2) or EST1 (est1-60), results in an Est (ever-shorter-telomere) phenotype, as manifested by progressive telomere shortening and an eventual senescence phenotype. The recruitment activity of Cdc13, which resides in a 15-kDa N-terminal domain (Pennock et al. 2001), is sufficient to direct telomerase even to nontelomeric sites (Bianchi et al. 2004). As predicted by the recruitment model, association of telomerase with telomeres is greatly reduced in strains expressing the recruitment-defective cdc13-2 allele (Chan et al. 2008).Telomerase action at individual telomeres is highly regulated. Using an assay that monitors telomere addition at single nucleotide resolution (single telomere extension, STEX), Lingner and colleagues showed that only ∼7% of telomeres with wild-type (i.e., 300 bp) length are elongated by telomerase during a single cell cycle (Teixeira et al. 2004). However, as telomere length declines, the extension frequency increases: ∼20% of telomeres 200 bp in length and >40% of 100-bp-long telomeres are elongated (Teixeira et al. 2004; Arneric and Lingner 2007). The mechanism by which telomerase distinguishes short from long telomeres has been the subject of intense investigation. Work from a number of laboratories has led to the proposal that Tel1-dependent phosphorylation of Cdc13 at underelongated telomeres mediates the interaction between Cdc13 and the telomerase-associated Est1 protein, thus ensuring that telomerase is directed to the shortest telomeres in a population. In support of this model, the Est1 and Est2 telomerase subunits exhibit enhanced association with telomeres that have been artificially shortened, whereas Cdc13 displays length-independent association with telomeres (Bianchi and Shore 2007; Sabourin et al. 2007). This suggests that the preferential elongation of shorter telomeres is controlled at the level of recruitment of the telomerase holoenzyme by Cdc13. Furthermore, efficient association of Est1 and Est2 with chromosome ends requires Tel1 and Mre11 (which acts in the same pathway as Tel1 for telomere length regulation; Nugent et al. 1998; Ritchie and Petes 2000) but not Mec1 (Takata et al. 2005; Goudsouzian et al. 2006). Tel1 itself is also telomere bound (Takata et al. 2004), with enhanced binding to shorter telomeres (Bianchi and Shore 2007; Hector et al. 2007; Sabourin et al. 2007; Abdallah et al. 2009), although there is considerable controversy over the degree and timing of Tel1 association with chromosome termini during the cell cycle. As expected for a key regulator of the interaction between Cdc13 and a telomerase subunit, a tel1-Δ strain has short telomeres (Lustig and Petes 1986), although telomere length is not impaired enough to confer the Est phenotype displayed by cdc13-2 and est1-60 strains.Implicit in the above proposal is that Cdc13 must be a direct substrate of Tel1. In support of this, Teng and colleagues reported several years ago that the recruitment domain of Cdc13 has a cluster of potential Tel1 (and/or Mec1) phosphorylation sites (Tseng et al. 2006). Substrates of the DNA damage kinases often contain several closely spaced phosphorylation sites, termed S/TQ cluster domains (SCDs), which are considered a structural hallmark of many DNA damage-response proteins (Traven and Heierhorst 2005). On the basis of in vitro kinase assays with GST fusions to 75- to 90-amino-acid portions of the Cdc13 recruitment domain, Tseng et al. 2006 concluded that four SQ sites in the recruitment domain of Cdc13 are overlapping substrates for both Tel1 and Mec1, leading to the proposal that telomerase recruitment in S. cerevisiae is regulated by Tel1-dependent phosphorylation of Cdc13.The above model makes a key prediction: in a tel1-Δ strain, telomerase should no longer exhibit a length-dependent pattern of elongation. However, preferential elongation of short telomeres still occurs at native chromosome ends in the absence of Tel1 (Arneric and Lingner 2007). In addition, Petes and colleagues have argued, on the basis of epistasis data, that Tel1 performs an indirect role in the telomerase pathway, rather than directly targeting a telomerase regulator (Ritchie et al. 1999; Ritchie and Petes 2000). These observations are not easily explained, if preferential recognition of short telomeres by telomerase is mediated by Tel1-dependent phosphorylation of Cdc13. In this current study, we have re-examined the evidence for phosphorylation of Cdc13 as a regulatory mechanism for telomere length homeostasis. We report on a series of observations that indicate that Tel1 contributes to telomere length control through a mechanism other than phosphorylation of the Cdc13 S/TQ cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号