首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biased motion of motile cells in a concentration gradient of a chemoattractant is frequently studied on the population level. This approach has been particularly employed in human sperm chemotactic assays, where the fraction of responsive cells is low and detection of biased motion depends on subtle differences. In these assays, statistical measures such as population odds ratios of swimming directions can be employed to infer chemotactic performance. Here, we report on an improved method to assess statistical significance of experimentally determined odds ratios and discuss the strong impact of data correlations that arise from the directional persistence of sperm swimming.  相似文献   

2.
Dendritic cells (DCs) migrate from sites of inflammation to secondary lymphoid organs where they initiate the adaptive immune response. Although motility is essential to DC function, the mechanisms by which they migrate are not fully understood. We incorporated micropost array detectors into a microfluidic gradient generator to develop what we consider to be a novel method for probing low magnitude traction forces during directional migration. We found migration of primary murine DCs is driven by short-lived traction stresses at the leading edge or filopodia. The traction forces generated by DCs are smaller in magnitude than found in neutrophils, and of similar magnitude during chemotaxis and chemokinesis, at 18 ± 1.4 and 16 ± 1.3 nN/cell, respectively. The characteristic duration of local DC traction forces was 3 min. The maximum principal stress in the cell occurred in the plane perpendicular to the axis of motion, forward of the centroid. We illustrate that the spatiotemporal pattern of traction stresses can be used to predict the direction of future DC motion. Overall, DCs show a mode of migration distinct from both mesenchymal cells and neutrophils, characterized by rapid turnover of traction forces in leading filopodia.  相似文献   

3.
Chemotaxis, the directed motion of a cell toward a chemical source, plays a key role in many essential biological processes. Here, we derive a statistical model that quantitatively describes the chemotactic motion of eukaryotic cells in a chemical gradient. Our model is based on observations of the chemotactic motion of the social ameba Dictyostelium discoideum, a model organism for eukaryotic chemotaxis. A large number of cell trajectories in stationary, linear chemoattractant gradients is measured, using microfluidic tools in combination with automated cell tracking. We describe the directional motion as the interplay between deterministic and stochastic contributions based on a Langevin equation. The functional form of this equation is directly extracted from experimental data by angle-resolved conditional averages. It contains quadratic deterministic damping and multiplicative noise. In the presence of an external gradient, the deterministic part shows a clear angular dependence that takes the form of a force pointing in gradient direction. With increasing gradient steepness, this force passes through a maximum that coincides with maxima in both speed and directionality of the cells. The stochastic part, on the other hand, does not depend on the orientation of the directional cue and remains independent of the gradient magnitude. Numerical simulations of our probabilistic model yield quantitative agreement with the experimental distribution functions. Thus our model captures well the dynamics of chemotactic cells and can serve to quantify differences and similarities of different chemotactic eukaryotes. Finally, on the basis of our model, we can characterize the heterogeneity within a population of chemotactic cells.  相似文献   

4.
Although a wealth of knowledge about chemotaxis has accumulated in the past 40 years, these studies have been hampered by the inability of researchers to generate simple linear gradients instantaneously and to maintain them at steady state. Here we describe a device microfabricated by soft lithography and consisting of a network of microfluidic channels that can generate spatially and temporally controlled gradients of chemotactic factors. When human neutrophils are positioned within a microchannel, their migration in simple and complex interleukin-8 (IL-8) gradients can be tested. The cells exhibit strong directional migration toward increasing concentrations of IL-8 in linear gradients. Neutrophil migration halts abruptly when cells encounter a sudden drop in the chemoattractant concentration to zero ("cliff" gradient). When neutrophils are challenged with a gradual increase and decrease in chemoattractant ("hill" gradient), however, the cells traverse the crest of maximum concentration and migrate further before reversing direction. The technique described in this paper provides a robust method to investigate migratory cells under a variety of conditions not accessible to study by earlier techniques.  相似文献   

5.
We show that the chemotactic movements of colonies of the starving amoeba Dictyostelium discoideum are driven by a force that depends on both the direction of propagation (directional sensing) of reaction-diffusion chemotactic waves and on the gradient of the concentration of the chemoattractant, solving the chemotactic wave paradox. It is shown that the directional sensing of amoebae is due to the sensitivity of the cells to the time variation of the concentration of the chemoattractant combined with its spatial gradient. It is also shown that chemotaxis exclusively driven by local concentration gradient leads to unstable local motion, preventing cells from aggregation. These findings show that the formation of mounds, which initiate multicellularity in Dictyostelium discoideum, is caused by the sensitivity of the amoebae due to three factors, namely, to the direction of propagation of the chemoattractant, to its spatial gradient, and to the emergence of cAMP “emitting centres”, responsible for the local accumulation of the amoebae.  相似文献   

6.
Leukotriene B4 (LTB4) is secreted by chemotactic neutrophils, forming a secondary gradient that amplifies the reach of primary chemoattractants. This strategy increases the recruitment range for neutrophils and is important during inflammation. Here, we show that LTB4 and its synthesizing enzymes localize to intracellular multivesicular bodies, which, upon stimulation, release their content as exosomes. Purified exosomes can activate resting neutrophils and elicit chemotactic activity in an LTB4 receptor-dependent manner. Inhibition of exosome release leads to loss of directional motility with concomitant loss of LTB4 release. Our findings establish that the exosomal pool of LTB4 acts in an autocrine fashion to sensitize neutrophils towards the primary chemoattractant, and in a paracrine fashion to mediate the recruitment of neighboring neutrophils in trans. We envision that this mechanism is used by other signals to foster communication between cells in harsh extracellular environments.  相似文献   

7.
Leukotriene B4 (LTB4) is secreted by chemotactic neutrophils, forming a secondary gradient that amplifies the reach of primary chemoattractants. This strategy increases the recruitment range for neutrophils and is important during inflammation. Here, we show that LTB4 and its synthesizing enzymes localize to intracellular multivesicular bodies that, upon stimulation, release their content as exosomes. Purified exosomes can activate resting neutrophils and elicit chemotactic activity in a LTB4 receptor-dependent manner. Inhibition of exosome release leads to loss of directional motility with concomitant loss of LTB4 release. Our findings establish that the exosomal pool of LTB4 acts in an autocrine fashion to sensitize neutrophils towards the primary chemoattractant, and in a paracrine fashion to mediate the recruitment of neighboring neutrophils in trans. We envision that this mechanism is used by other signals to foster communication between cells in harsh extracellular environments.  相似文献   

8.
Persistent directional movement of neutrophils in shallow chemotactic gradients raises the possibility that cells can increase their sensitivity to the chemotactic signal at the front, relative to the back. Redistribution of chemoattractant receptors to the anterior pole of a polarized neutrophil could impose asymmetric sensitivity by increasing the relative strength of detected signals at the cell's leading edge. Previous experiments have produced contradictory observations with respect to receptor location in moving neutrophils. To visualize a chemoattractant receptor directly during chemotaxis, we expressed a green fluorescent protein (GFP)-tagged receptor for a complement component, C5a, in a leukemia cell line, PLB-985. Differentiated PLB-985 cells, like neutrophils, adhere, spread, and polarize in response to a uniform concentration of chemoattractant, and orient and crawl toward a micropipette containing chemoattractant. Recorded in living cells, fluorescence of the tagged receptor, C5aR-GFP, shows no apparent increase anywhere on the plasma membrane of polarized and moving cells, even at the leading edge. During chemotaxis, however, some cells do exhibit increased amounts of highly folded plasma membrane at the leading edge, as detected by a fluorescent probe for membrane lipids; this is accompanied by an apparent increase of C5aR-GFP fluorescence, which is directly proportional to the accumulation of plasma membrane. Thus neutrophils do not actively concentrate chemoattractant receptors at the leading edge during chemotaxis, although asymmetrical distribution of membrane may enrich receptor number, relative to adjacent cytoplasmic volume, at the anterior pole of some polarized cells. This enrichment could help to maintain persistent migration in a shallow gradient of chemoattractant.  相似文献   

9.
M Lüscher-Mattli 《Biopolymers》1987,26(9):1509-1526
The nonspecific interaction of the mitogenic lectin Concanavalin A (Con A) with glycosyl-free liposomes of various composition has been investigated by microcalorimetric titration measurements. The results obtained show the following features of main interest: (1) the affinity constants (Ka) of the interaction of Con A with liposomal bilayers are in the order of magnitude 105–106M?1. The reaction enthalpies (ΔH) are positive, and small (approximately 0.1 KJ mol?1 lipid), compared to the free energy terms (?ΔG = 30–40 KJ mol?1 lipid). All lectin–lipid interactions are strongly entropy-controlled (ΔH/TΔS < 1.0). These thermodynamic features are characteristic for hydrophobic interaction processes. (2) The liposomal head-group charge does not significantly affect the lipid-affinity of Con A. Electrostatic forces thus appear to play a minor role in lectin–lipid interactions. (3) The lipid affinity of Con A is sensitive to the fluidity of the liposomal bilayers, increasing with increasing fluidity. Below the gel to liquid-crystal phase transition temperature, the lectin binding to liposomal bilayers is inhibited. (4) The binding isotherms, corresponding to the interaction of Con A with liposomes, composed of tightly packed, saturated phospholipids, exhibit pronounced positive cooperativity. This phenomenon is absent in the binding curves, corresponding to the interaction of Con A with more fluid liposomal bilayers. (5) The Con A specific inhibitor α-D -methylmannopyranoside (50 mM) drastically increases the molar reaction enthalpy. The Ka term is significantly reduced in presence of the inhibitor sugar. Urea induces analogous changes in the thermodynamic parameters of the lectin–lipid interaction. The effects of α-D -methylmannopyranoside are thus not Con A specific, but are attributable to solvent effects. (6) It was shown that the binding of one Con A molecule affects a large number (approximately 1000) of phospholipid molecules in the liposomal bilayer. (7) The affinity constants (Ka) of the interaction of Con A with glycosyl-free lipids are smaller by a factor of approximately 10, compared to the Ka terms, reported for Con A binding to biological membranes. The presence of glycosidic receptor groups thus controls the specificity of lectin–membrane interactions, whereas the nonspecific lectin–lipid interactions appear to represent the main driving force for the strong attachment of the lectin to membrane surfaces.  相似文献   

10.
Neutrophils isolated from medication-free rheumatoid arthritis (RA) patients were assayed for responsiveness to the bacterial chemoattractant tripeptide formyl-methionyl-leucyl-phenylalanine (f-Met-Leu-Phe). Rheumatoid arthritis neutrophil preparations contained significantly lower percentages of rapidly migrating cells. This relative hyporesponsiveness of RA neutrophils was related to impaired sensing of chemotactic gradients. Rheumatoid neutrophil abnormalities in sensing of and responding to chemotactic gradients were not associated with resting or f-Met-Leu-Phe-induced changes in arachidonic acid metabolism.  相似文献   

11.
Spatial control of actin polymerization during neutrophil chemotaxis   总被引:2,自引:0,他引:2  
Neutrophils respond to chemotactic stimuli by increasing the nucleation and polymerization of actin filaments, but the location and regulation of these processes are not well understood. Here, using a permeabilized-cell assay, we show that chemotactic stimuli cause neutrophils to organize many discrete sites of actin polymerization, the distribution of which is biased by external chemotactic gradients. Furthermore, the Arp2/3 complex, which can nucleate actin polymerization, dynamically redistributes to the region of living neutrophils that receives maximal chemotactic stimulation, and the least-extractable pool of the Arp2/3 complex co-localizes with sites of actin polymerization. Our observations indicate that chemoattractant-stimulated neutrophils may establish discrete foci of actin polymerization that are similar to those generated at the posterior surface of the intracellular bacterium Listeria monocytogenes. We propose that asymmetrical establishment and/or maintenance of sites of actin polymerization produces directional migration of neutrophils in response to chemotactic gradients.  相似文献   

12.
Numerous molecular components have been identified that regulate the directed migration of eukaryotic cells toward sources of chemoattractant. However, how the components of this system are wired together to coordinate multiple aspects of the response, such as directionality, speed, and sensitivity to stimulus, remains poorly understood. Here we developed a method to shape chemoattractant gradients optically and analyze cellular chemotaxis responses of hundreds of living cells per well in 96‐well format by measuring speed changes and directional accuracy. We then systematically characterized migration and chemotaxis phenotypes for 285 siRNA perturbations. A key finding was that the G‐protein Giα subunit selectively controls the direction of migration while the receptor and Gβ subunit proportionally control both speed and direction. Furthermore, we demonstrate that neutrophils chemotax persistently in response to gradients of fMLF but only transiently in response to gradients of ATP. The method we introduce is applicable for diverse chemical cues and systematic perturbations, can be used to measure multiple cell migration and signaling parameters, and is compatible with low‐ and high‐resolution fluorescence microscopy.  相似文献   

13.
The precision with which the dissociation constant, KD, can be obtained from isothermal titration calorimetry depends on, among other factors, the concentrations of the interacting species. The so-called c value—the ratio of analyte concentration to KD—should fall in the range of 1 to 1000 for reliable KD determination. On the basis of simulated, noise-free data, Biswas and Tsodikov [5] recently suggested an optimal c value of 5 to 20. By contrast, we find an optimum at c > 40 on determining the KD confidence intervals through simulations containing noise levels typical of state-of-the-art microcalorimeters.  相似文献   

14.
Neutrophil chemotaxis requires excitatory signals at the front and inhibitory signals at the back of cells, which regulate cell migration in a chemotactic gradient field. We have previously shown that ATP release via pannexin 1 (PANX1) channels and autocrine stimulation of P2Y2 receptors contribute to the excitatory signals at the front. Here we show that PANX1 also contributes to the inhibitory signals at the back, namely by providing the ligand for A2A adenosine receptors. In resting neutrophils, we found that A2A receptors are uniformly distributed across the cell surface. In polarized cells, A2A receptors redistributed to the back where their stimulation triggered intracellular cAMP accumulation and protein kinase A (PKA) activation, which blocked chemoattractant receptor signaling. Inhibition of PANX1 blocked A2A receptor stimulation and cAMP accumulation in response to formyl peptide receptor stimulation. Treatments that blocked endogenous A2A receptor signaling impaired the polarization and migration of neutrophils in a chemotactic gradient field and resulted in enhanced ERK and p38 MAPK signaling in response to formyl peptide receptor stimulation. These findings suggest that chemoattractant receptors require PANX1 to trigger excitatory and inhibitory signals that synergize to fine-tune chemotactic responses at the front and back of neutrophils. PANX1 channels thus link local excitatory signals to the global inhibitory signals that orchestrate chemotaxis of neutrophils in gradient fields.  相似文献   

15.
Neutrophils constitute the largest class of white blood cells and are the first responders in the innate immune response. They are able to sense and migrate up concentration gradients of chemoattractants in search of primary sites of infection and inflammation through a process known as chemotaxis. These chemoattractants include formylated peptides and various chemokines. While much is known about chemotaxis to individual chemoattractants, far less is known about chemotaxis towards many. Previous studies have shown that in opposing gradients of intermediate chemoattractants (interleukin-8 and leukotriene B4), neutrophils preferentially migrate toward the more distant source. In this work, we investigated neutrophil chemotaxis in opposing gradients of chemoattractants using a microfluidic platform. We found that primary neutrophils exhibit oscillatory motion in opposing gradients of intermediate chemoattractants. To understand this behavior, we constructed a mathematical model of neutrophil chemotaxis. Our results suggest that sensory adaptation alone cannot explain the observed oscillatory motion. Rather, our model suggests that neutrophils employ a winner-take-all mechanism that enables them to transiently lock onto sensed targets and continuously switch between the intermediate attractant sources as they are encountered. These findings uncover a previously unseen behavior of neutrophils in opposing gradients of chemoattractants that will further aid in our understanding of neutrophil chemotaxis and the innate immune response. In addition, we propose a winner-take-all mechanism allows the cells to avoid stagnation near local chemical maxima when migrating through a network of chemoattractant sources.  相似文献   

16.
The influenza A virus infects target cells through multivalent interactions of its major spike proteins, hemagglutinin (HA) and neuraminidase (NA), with the cellular receptor sialic acid (SA). HA is known to mediate the attachment of the virion to the cell, whereas NA enables the release of newly formed virions by cleaving SA from the cell. Because both proteins target the same receptor but have antagonistic functions, virus infection depends on a properly tuned balance of the kinetics of HA and NA activities for viral entry to and release from the host cell. Here, dynamic single-molecule force spectroscopy, based on scanning force microscopy, was employed to determine these bond-specific kinetics, characterized by the off rate koff, rupture length xβ and on rate kon, as well as the related free-energy barrier ΔG and the dissociation constant KD. Measurements were conducted using surface-immobilized HA and NA of the influenza A virus strain A/California/04/2009 and a novel, to our knowledge, synthetic SA-displaying receptor for functionalization of the force probe. Single-molecule force spectroscopy at force loading rates between 100 and 50,000 pN/s revealed most probable rupture forces of the protein-SA bond in the range of 10–100 pN. Using an extension of the widely applied Bell-Evans formalism by Friddle, De Yoreo, and co-workers, it is shown that HA features a smaller xβ, a larger koff and a smaller ΔG than NA. Measurements of the binding probability at increasing contact time between the scanning force microscopy force probe and the surface allow an estimation of KD, which is found to be three times as large for HA than for NA. This suggests a stronger interaction for NA-SA than for HA-SA. The biological implications in regard to virus binding to the host cell and the release of new virions from the host cell are discussed.  相似文献   

17.
Chemotactic cells can exhibit extreme sensitivity to chemical gradients. Theoretical estimations of the signal inputs required for chemotaxis suggest that the response can be achieved under the strong influence of stochastic input noise generated by the receptors during the transmembrane signaling. This arises a fundamental question regarding the mechanisms for directional sensing: how do cells obtain reliable information regarding gradient direction by using stochastically operating receptors and the downstream molecules? To address this question, we have developed single molecule imaging techniques to visualize signaling molecules responsible for chemotaxis in living Dictyostelium cells, allowing us to monitor the stochastic signaling processes directly. Single molecule imaging of a chemoattractant bound to a receptor demonstrates that signal inputs fluctuate with time and space. Downstream signaling molecules, such as PTEN and a PH domain-containing protein that are constituent parts of chemotactic signaling system, can also be followed at single molecule level in living cells, illuminating the stochastic nature of chemotactic signaling processes. In this report, we start with a brief introduction of chemotactic response of the eukaryotic cells, followed by an explanation for single molecule imaging techniques, and finally discuss these applications to chemotactic signaling system of Dictyostelium cells.  相似文献   

18.
Chemotactic migration of fibroblasts toward growth factors relies on their capacity to sense minute extracellular gradients and respond to spatially confined receptor-mediated signals. Currently, mechanisms underlying the gradient sensing of fibroblasts remain poorly understood. Using single-particle tracking methodology, we determined that a lysophosphatidic acid (LPA) gradient induces a spatiotemporally restricted decrease in the mobility of LPA receptor 2 (LPA2) on chemotactic fibroblasts. The onset of decreased LPA2 mobility correlates to the spatial recruitment and coupling to LPA2-interacting proteins that anchor the complex to the cytoskeleton. These localized PDZ motif-mediated macromolecular complexes of LPA2 trigger a Ca2+ puff gradient that governs gradient sensing and directional migration in response to LPA. Disruption of the PDZ motif-mediated assembly of the macromolecular complex of LPA2 disorganizes the gradient of Ca2+ puffs, disrupts gradient sensing, and reduces the directional migration of fibroblasts toward LPA. Our findings illustrate that the asymmetric macromolecular complex formation of chemoattractant receptors mediates gradient sensing and provides a new mechanistic basis for models to describe gradient sensing of fibroblasts.  相似文献   

19.
We have found that arachidonic acid rapidly and selectively induces the release of lysosomal enzymes from cytochalasin B treated rabbit peritoneal neutrophils. 5, 8, 11, 14-eicosatetraynoic acid inhibits the arachidonate induced release with an apparent KD of 1.5 × 10?6M. 5,8,11,14-eicosatetraynoic acid (2.5 × 10?5M also inhibits the chemotactic factors and the A23187 induced release in the presence of cytochalasin B but does not affect the degranulation induced by A23187 alone. These observations strongly suggest a role for arachidonate metabolites in rabbit neutrophil physiology.  相似文献   

20.
Chemotaxis, directed cell migration in a gradient of chemoattractant, is an important biological phenomenon that plays pivotal roles in cancer metastasis. Newly developed microfluidic chemotaxis chambers (MCC) were used to study chemotaxis of metastatic breast cancer cells, MDA-MB-231, in EGF gradients of well-defined profiles. Migration behaviors of MDA-MB-231 cells in uniform concentrations of EGF (0, 25, 50, and 100 ng/ml) and EGF (0-25, 0-50, and 0-100 ng/ml) with linear and nonlinear polynomial profiles were investigated. MDA-MB-231 cells exhibited increased speed and directionality upon stimulation with uniform concentrations of EGF. The cells were viable and motile for over 24 h, confirming the compatibility of MCC with cancer cells. Linear concentration gradients of different ranges were not effective in inducing chemotactic movement as compared to nonlinear gradients. MDA-MB-231 cells migrating in EGF gradient of 0-50 ng/ml nonlinear polynomial profile exhibited marked directional movement toward higher EGF concentration. This result suggests that MDA-MB-231 cancer cell chemotaxis depends on the shape of gradient profile as well as on the range of EGF concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号