首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Some natural acetogenins are the most potent inhibitors of mitochondrial complex I. These compounds are characterized by two functional units [i.e. hydroxylated tetrahydrofuran (THF) and alpha, beta-unsaturated gamma-lactone ring moieties] separated by a long alkyl spacer. To elucidate which structural factors of acetogenins, including their active conformation, are crucial for the potent inhibitory activity we synthesized a novel bis-acetogenin and its analogues possessing two gamma-lactone rings connected to bis-THF rings by flexible alkyl spacers. The inhibitory potency of the bis-acetogenin with bovine heart mitochondrial complex I was identical to that of bullatacin, one of the most potent natural acetogenins. This result indicated that one molecule of the bis-acetogenin does not work as two reactive inhibitors, suggesting that a gamma-lactone and the THF ring moieties act in a cooperative manner on the enzyme. In support of this, either of the two ring moieties synthesized individually showed no or very weak inhibitory effects. Moreover, combined use of the two ring moieties at various molar ratios exhibited no synergistic enhancement of the inhibitory potency. These observations indicate that both functional units work efficiently only when they are directly linked by a flexible alkyl spacer. Therefore, some specific conformation of the spacer must be important for optimal positioning of the two units in the enzyme. Furthermore, the alpha,beta-unsaturated gamma-lactone, the 4-OH group in the spacer region, the long alkyl tail attached to the THF unit and the stereochemistry surrounding the hydroxylated bis-THF rings were not crucial for the activity, although these are the most common structural features of natural acetogenins. The present study provided useful guiding principles not only for simplification of complicated acetogenin structure, but also for further wide structural modifications of these molecules.  相似文献   

2.
Studies of the action mechanism of acetogenins, the most potent and structurally unique inhibitors of bovine heart mitochondrial complex I (NADH-ubiquinone oxidoreductase), are valuable in characterizing the inhibitor binding site in this enzyme. Our previous study deepened our understanding of the dynamic function of the spacer region of bis-THF acetogenins [Abe, M., et al. (2005) Biochemistry 44, 14898-14906] but, at the same time, posed new important questions. First, while the two toxophores (i.e., the hydroxylated THF and the gamma-lactone rings) span a distance shorter than that of the extended 13 carbon atoms [-(CH 2) 13-], what is the apparent optimal length of the spacer for the inhibition of 13 carbon atoms? In other words, what is the functional role of the additional methylene groups? Second, why was the inhibitory potency of the mono-THF derivative, but not the bis-THF derivative, drastically reduced by hardening the spacer covering 10 carbon atoms into a rodlike shape [-CH 2-(C identical withC) 4-CH 2-]? This study was designed not only to answer these questions but also to further disclose the dynamic functions of the spacer. We here synthesized systematically designed acetogenins, including mono- and bis-THF derivatives, and evaluated their inhibitory effects on bovine complex I. With regard to the first question, we demonstrated that the additional methylenes enhance the hydrophobicity of the spacer region, which may be thermodynamically advantageous for bringing the polar gamma-lactone ring into the membrane-embedded segment of complex I. With regard to the second question, we observed that a decrease in the flexibility of the spacer region is more adverse to the action of the mono-THF series than that of the bis-THF series. As a cause of this difference, we suggest that for bis-THF derivatives, one of the two THF rings, being adjacent to the spacer, is capable of working as a pseudospacer to overcome the remarkable decrease in the conformational freedom and/or the length of the spacer. Moreover, using photoresponsive acetogenins that undergo drastic and reversible conformational changes with alternating UV-vis irradiation, we provided further evidence that the spacer region is free from steric congestion arising from the putative binding site probably because there is no receptor wall for the spacer region.  相似文献   

3.
We have synthesized Deltalac-acetogenins that are new acetogenin mimics possessing two n-alkyl tails without an alpha,beta-unsaturated gamma-lactone ring and suggested that their inhibition mechanism may be different from that of common acetogenins [Hamada et al. (2004) Biochemistry 43, 3651-3658]. To elucidate the inhibition mechanism of Deltalac-acetogenins in more detail, we carried out wide structural modifications of original Deltalac-acetogenins and characterized the inhibitory action with bovine heart mitochondrial complex I. In contrast to common acetogenins, both the presence of adjacent bis-THF rings and the stereochemistry around the hydroxylated bis-THF rings are important structural factors required for potent inhibition. The inhibitory potency of a derivative possessing an n-butylphenyl ether structure (compound 7) appeared to be superior to that of the original Deltalac-acetogenins and equivalent to that of bullatacin, one of the most potent natural acetogenins. Double-inhibitor titration of steady-state complex I activity showed that the extent of inhibition of compound 7 and bullatacin is not additive, suggesting that the binding sites of the two inhibitors are not identical. Competition tests using a fluorescent ligand indicated that the binding site of compound 7 does not overlap with that of other complex I inhibitors. The effects of compound 7 on superoxide production from complex I are also different from those of other complex I inhibitors. Our results clearly demonstrate that Deltalac-acetogenins are a novel type of inhibitor acting at the terminal electron-transfer step of bovine complex I.  相似文献   

4.
Studies on the inhibitory mechanism of acetogenins, the most potent inhibitors of mitochondrial complex I (NADH-ubiquinone oxidoreductase), are useful for elucidating the structural and functional features of the terminal electron transfer step of this enzyme. Previous studies of the structure-activity relationship revealed that except for the alkyl spacer linking the two toxophores (i.e., the hydroxylated THF and the gamma-lactone rings), none of the multiple functional groups of these inhibitors is essential for potent inhibition. To elucidate the function of the alkyl spacer, two sets of systematically selected analogues were synthesized. First, the length of the spacer was varied widely. Second, the local flexibility of the spacer was specifically reduced by introducing multiple bond(s) into different regions of the spacer. The optimal length of the spacer for inhibition was approximately 13 carbon atoms. The decrease in the strength of the inhibitory effect caused by elongating the spacer from 13 carbons was much more drastic than that caused by shortening. Local flexibility in a specific region of the spacer was not important for the inhibition. These observations indicate that the active conformation of the spacer is not an extended form, and is not necessarily restricted to a certain rigid shape. Moreover, an analogue in which a spacer covering 10 carbon atoms was hardened into a rodlike shape still maintained a potent inhibitory effect. Our results strongly suggest that the spacer portion is free from steric congestion arising from the putative binding site probably because there is no cavity-like binding site for the spacer portion. The manner of acetogenin binding to the enzyme may not be explained by a simple "key and keyhole" analogy.  相似文献   

5.
Studies on the inhibition mechanism of acetogenins, the most potent inhibitors of complex I, are useful to elucidate the structural and functional features of the terminal electron-transfer step of this enzyme. We synthesized acetogenin mimics that possess two alkyl tails without a gamma-lactone ring, named Deltalac-acetogenin, and examined their inhibitory action on bovine heart mitochondrial complex I. Unexpectedly, the Deltalac-acetogenin carrying two n-undecanyl groups (compound 3) elicited very potent inhibition comparable to that of bullatacin. The inhibitory potency of compound 3 markedly decreased with shortening the length of either or both alkyl tails, indicating that symmetric as well as hydrophobic properties of the inhibitor are important for the inhibition. Both acetylation and deoxygenation of either or both of two OH groups adjacent to the tetrahydrofuran (THF) rings resulted in a significant decrease in inhibitory potency. These structural dependencies of the inhibitory action of Deltalac-acetogenins are in marked contrast to those of ordinary acetogenins. Double-inhibitor titration of steady-state complex I activity showed that inhibition of compound 3 and bullatacin are not additive, though the inhibition site of both inhibitors is downstream of iron-sulfur cluster N2. Our results indicate that the mode of inhibitory action of Deltalac-acetogenins differs from that of ordinary acetogenins. Therefore, Deltalac-acetogenins can be regarded as a novel type of inhibitor acting on the terminal electron-transfer step of complex I.  相似文献   

6.
To elucidate the inhibitory action of acetogenins, the most potent inhibitors of mitochondrial complex I, we synthesized an acetogenin analogue which possesses a ubiquinone ring (i.e., the physiological substrate of complex I) in place of the alpha,beta-unsaturated gamma-lactone ring of natural acetogenins, and named it Q-acetogenin. Our results indicate that the gamma-lactone ring of acetogenins is completely substitutable with the ubiquinone ring. This fact is discussed in light of the inhibitory action of acetogenins.  相似文献   

7.
Natural acetogenins are among the most potent inhibitors of bovine heart mitochondrial NADH-ubiquinone oxidoreductase (complex I). Our photoaffinity labeling study suggested that the hydroxylated bis-THF ring moiety of acetogenins binds at "site A" in the third matrix-side loop connecting the fifth and sixth transmembrane helices in the ND1 subunit [Kakutani et al. (2010) Biochemistry 49, 4794-4803]. Nevertheless, since this proposition was led using a photoreactive Δlac-acetogenin derivative, it needs to be directly verified using a natural acetogenin-type probe. We therefore conducted photoaffinity labeling using a photoreactive natural acetogenin mimic ([(125)I]diazinylated natural acetogenin, [(125)I]DANA), which has a small photolabile diazirine group, in place of a hydroxy group, attached to the bis-THF ring moiety. Analysis of the photocross-linked protein in bovine heart submitochondrial particles unambiguously revealed that [(125)I]DANA binds to the membrane subunit ND1 with high specificity. The photocross-linking was completely blocked in the presence of just a 5-fold excess of bullatacin, indicating that [(125)I]DANA is an excellent mimic of natural acetogenins and hence binds to the site that accommodates natural products. Careful examination of the fragmentation patterns of the cross-linked ND1 generated by different proteases and their combinations indicated that the cross-linked residue is predominantly located at the supposed site A in the third matrix-side loop.  相似文献   

8.
A convergent stereoselective synthesis of (4R,15R,16R,21S)- and (4R,15S,16S,21S)-rollicosin and squamostolide was accomplished via a Pd-catalyzed cross-coupling reaction. The inhibitory activity of these compounds was examined with bovine heart mitochondrial NADH-ubiquinone oxidoreductase. These compounds showed a remarkably weak inhibitory activity compared to ordinary acetogenins such as bullatacin. Our results indicate that to maintain potent inhibitory effect, the hydroxylated lactone cannot substitute for the hydroxylated mono- or bis-THF rings with a long alkyl chain that can be seen in ordinary acetogenins.  相似文献   

9.
Annonaceous acetogenins (ACG) are a wide group of cytotoxic compounds isolated from plants of the Annonaceae family. Some of them are promising candidates to be a future new generation of antitumor drugs due to the ability to inhibit the NADH:ubiquinone oxidoreductase of the respiratory chain (mitochondrial complex I), main gate of the energy production in the cell. ACG are currently being tested on standard antitumor trials although little is known about the structure activity relationship at the molecular level. On recent studies, the relevance of several parts of the molecule for the inhibitory potency has been evaluated. Due to the great diversity of skeletons included in this family of natural products, previous studies on the presence and distribution of oxygenated groups along the alkyl chain only covered the compounds with different bis-tetrahydrofuranic (bis-THF) relative configurations. Therefore, we have investigated the inhibitory action of all the mono-tetrahydrofuranic (mono-THF) acetogenins available, which differ in the oxygenated arrangements along the molecule. Our results show that the hydroxyl and carbonyl groups, placed in the aliphatic chain that links the initial gamma-lactone moiety with the dihydroxylated tetrahydrofuranic ring system, significantly contribute for modulating the inhibitory potency of the ACG through specific effects.  相似文献   

10.
Modifications in the terminal alpha,beta-unsaturated gamma-methyl-gamma-lactone moiety or in the alkyl chain that links this terminal gamma-lactone with the alpha,alpha'-dihydroxylated THF system of the natural mono-tetrahydrofuranic acetogenins, annonacin and annonacinone, led to the preparation of eight semisynthetic derivatives. Their inhibitory effects on mitochondrial complex I is discussed and compared with that of the classical complex I inhibitor, rotenone.  相似文献   

11.
The presence of two hydroxy groups adjacent to the THF ring(s) is a common structural feature of natural acetogenins. To elucidate the role of each hydroxy group in the inhibitory action of acetogenins, we synthesized three acetogenin analogues which lack either or both of the hydroxy groups, and investigated their inhibitory activities with bovine heart mitochondrial complex I. Our results indicate that the presence of either of the two hydroxy groups sufficiently sustains a potent inhibitory effect.  相似文献   

12.
To study the relevance of the terminal alpha,beta-unsaturated gamma-methyl-gamma-lactone moiety of the antitumoral acetogenins of Annonaceae for potent mitochondrial complex I inhibition, we have prepared a series of semisynthetic acetogenins with modifications only in this part of the molecule, from the natural rolliniastatin-1 (1) and cherimolin-1 (2). Some of the hydroxylated derivatives (1b, 1d and 1e) in addition to two infrequent natural beta-hydroxy gamma-methyl gamma-lactone acetogenins, laherradurin (3) and itrabin (4), are more potent complex I inhibitors than any other known compounds.  相似文献   

13.
To elucidate the role of the hydrophobic alkyl tail of acetogenins in the inhibitory action, we synthesized an acetogenin derivative possessing the shortest tail (i.e., methyl group) and examined its inhibitory activity against bovine heart mitochondrial complex I. Our results indicated that the alkyl tail, which is one of the common structural features of natural acetogenins, is not an essential structural factor required for the potent inhibition.  相似文献   

14.
Two new bioactive mono-tetrahydrofuran (THF) gamma-lactone acetogenins, asitrilobins C (1) and D (2), were isolated from the seeds of Asimina triloba (Annonaceae) by directing the fractionation with brine shrimp lethality. Compounds 1 and 2 have a relative stereochemical relationship of threo/trans/threo across the mono-THF ring with its two flanking hydroxyls. Their structures were established on the basis of chemical and spectral evidence. Compounds 1 and 2 showed selective cytotoxicity comparable with adriamycin for the breast carcinoma (MCF-7) and the colon adenocarcinoma (HT-29) cell lines.  相似文献   

15.
To elucidate the inhibitory action of acetogenins, we synthesized an acetogenin derivative which possesses tetraol in place of the tetrahydrofuran ring and examined its inhibitory activity against bovine heart mitochondrial complex I. Our results indicate that these hydroxy groups are an essential structural factor though it is not effective as bis-THF hydroxy groups combination.  相似文献   

16.
We synthesized a series of Deltalac-acetogenins in which the two alkyl side chains were systematically modified, and examined their inhibitory effect on bovine heart mitochondrial complex I (NADH-ubiquinone oxidoreductase). The results revealed that the physicochemical properties of the side chains, such as the balance of hydrophobicity and the width (or bulkiness) of the chains, are important structural factors for a potent inhibitory effect of amphiphilic Deltalac-acetogenins. This is probably because such properties decide the precise location of the hydrophilic bis-THF ring moiety in the enzyme embedded in the inner mitochondrial membrane.  相似文献   

17.
Annonaceous acetogenins (ACGs), as one of the most powerful groups of mitochondrial complex I inhibitors, exhibit potent cytotoxic activity against a variety of human tumor cell lines. In this study, the antitumor activities of three main types of ACGs were investigated using S180 and HepS xenografts bearing mice simultaneously. The results revealed that select ACGs suppressed tumor growth in a dose-dependent fashion. Tested ACGs showed more selective antitumor activity against HepS. Furthermore, adjacent bis-THF ACGs were more active than mono-THF and nonadjacent bis-THF ACGs against HepS and S180; nonadjacent bis-THF ACGs were more active than mono-THF ACGs against S180, but mono-THF ACGs were more potent than nonadjacent bis-THF ACGs against HepS.  相似文献   

18.
The mode of action of Deltalac-acetogenins, strong inhibitors of bovine heart mitochondrial complex I, is different from that of traditional inhibitors such as rotenone and piericidin A [Murai, M., et al. (2007) Biochemistry 46 , 6409-6416]. As further exploration of these unique inhibitors might provide new insights into the terminal electron transfer step of complex I, we drastically modified the structure of Deltalac-acetogenins and characterized their inhibitory action. In particular, on the basis of structural similarity between the bis-THF and the piperazine rings, we here synthesized a series of piperazine derivatives. Some of the derivatives exhibited very potent inhibition at nanomolar levels. The hydrophobicity of the side chains and their balance were important structural factors for the inhibition, as is the case for the original Deltalac-acetogenins. However, unlike in the case of the original Deltalac-acetogenins, (i) the presence of two hydroxy groups is not crucial for the activity, (ii) the level of superoxide production induced by the piperazines is relatively high, (iii) the inhibitory potency for the reverse electron transfer is remarkably weaker than that for the forward event, and (iv) the piperazines efficiently suppressed the specific binding of a photoaffinity probe of natural-type acetogenins ([ (125)I]TDA) to the ND1 subunit. We therefore conclude that the action mechanism of the piperazine series differs from that of the original Deltalac-acetogenins. The photoaffinity labeling study using a newly synthesized photoreactive piperazine ([ (125)I]AFP) revealed that this compound binds to the 49 kDa subunit and an unidentified subunit, not ND1, with a frequency of approximately 1:3. A variety of traditional complex I inhibitors as well as Deltalac-acetogenins suppressed the specific binding of [ (125)I]AFP to the subunits. The apparent competitive behavior of inhibitors that seem to bind to different sites may be due to structural changes at the binding site, rather than occupying the same site. The meaning of the occurrence of diverse inhibitors exhibiting different mechanisms of action is discussed in light of the functionality of the membrane arm of complex I.  相似文献   

19.
Manoalide, a natural product from sponge, displays anti-inflammatory activity in vivo. Previous work has shown that manoalide is also a potent covalent inhibitor of the extracellular phospholipase A2 from cobra venom and that the inhibition correlated with a pH-dependent change in manoalide (Lombardo and Dennis (1985) J. Biol. Chem. 260, 7234-7240). Manoalide contains two rings and the opening of either would produce an alpha,beta-unsaturated aldehyde. The cobra venom phospholipase A2 may be able to catalyze the opening or isomerization of one of these rings, raising the possibility that manoalide is acting as a suicide substrate. To ascertain the role of the gamma-lactone ring in the inhibition, we have now investigated a synthetic manoalide analogue, 3(cis,cis-7,10)-hexadecadienyl-4-hydroxy-2-butenolide (HDHB) which contains only the alpha,beta-unsaturated gamma-lactone ring. We have found that the closed and open forms are in rapid equilibrium between pH 4 and 9 with the cyclic form being preferred at acidic pH values and the open cis form preferred at pH 9.5. When the pH is raised above 12, the alpha,beta double bond isomerizes to form trans-HDHB. Once the trans compound is formed, it is stable at all pH values and does not recyclize to the gamma-lactone ring. The observed pKa of 7.7 found for the inhibition of manoalide agrees well with the transition of the closed to the cis form of the gamma-lactone ring. Kinetic experiments with the HDHB compound show that under conditions in which the cis and closed form of the inhibitor are present in equal molar ratios, HDHB is not an irreversible inhibitor, but reversibly competes with substrate. However, the kinetics of this inhibition are complex and do not follow either pure competitive or non-competitive inhibition. The trans-HDHB exhibits similar complex kinetic but is several times more potent. The distinct differences between the behavior of manoalide and HDHB clearly indicate that while the gamma-lactone ring may play an important role in manoalide inhibition, it alone does not produce irreversible inhibition.  相似文献   

20.
Beta-lactam antibiotics, including penicillins and cephalosporins, inhibit penicillin-binding proteins (PBPs), which are essential for bacterial cell wall biogenesis. Pathogenic bacteria have evolved efficient antibiotic resistance mechanisms that, in Gram-positive bacteria, include mutations to PBPs that enable them to avoid beta-lactam inhibition. Lactivicin (LTV; 1) contains separate cycloserine and gamma-lactone rings and is the only known natural PBP inhibitor that does not contain a beta-lactam. Here we show that LTV and a more potent analog, phenoxyacetyl-LTV (PLTV; 2), are active against clinically isolated, penicillin-resistant Streptococcus pneumoniae strains. Crystallographic analyses of S. pneumoniae PBP1b reveal that LTV and PLTV inhibition involves opening of both monocyclic cycloserine and gamma-lactone rings. In PBP1b complexes, the ring-derived atoms from LTV and PLTV show a notable structural convergence with those derived from a complexed cephalosporin (cefotaxime; 3). The structures imply that derivatives of LTV will be useful in the search for new antibiotics with activity against beta-lactam-resistant bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号