首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The pulmonary responses and changes in plasma acid-base status occurring across the inactive forearm muscle were examined after 30 s of intense exercise in six male subjects exercising on an isokinetic cycle ergometer. Arterial and deep forearm venous blood were sampled at rest and during 10 min after exercise; ventilation and pulmonary gas exchange variables were measured breath by breath during exercise and recovery. Immediately after exercise, ventilation and CO2 output increased to 124 +/- 17 1/min and 3.24 +/- 0.195 l/min, respectively. The subsequent decrease in CO2 output was slower than the decrease in O2 intake (half time of 105 +/- 15 and 47 +/- 4 s, respectively); the respiratory exchange ratio was greater than 1.0 throughout the 10 min of recovery. Arterial plasma concentrations of Na+, K+, and Ca2+ increased transiently after exercise. Arterial lactate ion concentration ([La-]) increased to 14-15 meq/l within 1.5 min and remained at this level for the rest of the study. Throughout recovery there was a positive arteriovenous [La-] difference of 4-5 meq/l, associated with an increase in the arteriovenous strong ion difference ([SID]) and by a large increase in the venous Pco2 and [HCO3-]. These findings were interpreted as indicating uptake of La- by the inactive muscle, leading to a fall in the muscle [SID] and increase in plasma [SID], associated with an increase in muscle PCO2. The venoarterial CO2 content difference was 38% greater than could be accounted for by metabolism of La- alone, suggesting liberation of CO2 stored in muscle, possibly as carbamate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The effect of an exercise-induced reduction in blood O2-carrying capacity on ventilatory gas exchange and acid-base balance during supramaximal exercise was studied in six males [peak O2 consumption (VO2peak), 3.98 +/- 0.49 l/min]. Three consecutive days of supramaximal exercise resulted in a preexercise reduction of hemoglobin concentration from 15.8 to 14.0 g/dl (P less than 0.05). During exercise (120% VO2peak) performed intermittently (1 min work to 4 min rest); a small but significant (P less than 0.05) increase was found for both O2 consumption (VO2) (l X min) and heart rate (beats/min) on day 2 of the training. On day 3, VO2 (l/min) was reduced 3.2% (P less than 0.05) over day 1 values. No changes were found in CO2 output and minute ventilation during exercise between training days. Similarly, short-term training failed to significantly alter the changes in arterialized blood PCO2, pH, and [HCO-3] observed during exercise. It is concluded that hypervolemia-induced reductions in O2-carrying capacity in the order of 10-11% cause minimal impairment to gas exchange and acid-base balance during supramaximal non-steady-state exercise.  相似文献   

4.
5.
To investigate the role of the carotid bodies in exercise hyperpnea and acid-base control, normal and carotid body-resected subjects (CBR) were studied during constant-load and incremental exercise. There was no significant difference in the first-breath ventilatory responses to exercise between the groups; some subjects in each reproducibly exhibited abrupt responses. The subsequent change in Ve toward steady state was slower in the CBR group. The steady-state ventilatory responses were the same in both groups at work rates below the anaerobic threshold (AT). However, above the AT, the hyperpnea was less marked in the CBR group. Ve and acid-base measurements revealed that the CBR group failed to hyperventilate in response to the metabolic acidosis of either constant-load or incremental exercise. We conclude that the carotid bodies 1) are not responsible for the initial exercise hyperpnea, 2) do affect the time course of Ve to its steady state, and 3) are responsible for the respiratory compensation for the metabolic acidosis of exercise.  相似文献   

6.
The ventilatory effects of beta-adrenergic blockade during steady-state exercise were studied in eight normal subjects using intravenous propranolol hydrochloride (0.2 mg/kg). Heart rate decreased in all subjects by an average of 17%. Coincident with the phase of decreasing heart rate was a significant decrease in both minute ventilation (VE) and CO2 output (VCO2), averaging 9.6 and 9.2%, respectively. Both functions returned to prepropranolol levels after heart rate had reached its reduced steady-state value. The change in VE was significantly correlated with the change in VCO2 (r = 0.85, P less than 0.005), and was associated with negligible changes in endtidal CO2 tensions and ventilatory equivalents for CO2. We interpret these studies as showing that the transient isocapnic hypopnea concomitant with an acute reduction in cardiac output was secondary to a transient decrease in CO2 flux (cardiac output x mixed venous CO2 content). This decrease in VE appears to be induced by the acute decrease in cardiac output ("cardiodynamic hypopnea"), in fashion similar to the previously described cardiodynamic hyperpnea.  相似文献   

7.
8.
9.
Breathing has inherent irregularities that produce breath-to-breath fluctuations ("noise") in pulmonary gas exchange. These impair the precision of characterizing nonsteady-state gas exchange kinetics during exercise. We quantified the effects of this noise on the confidence of estimating kinetic parameters of the underlying physiological responses and hence of model discrimination. Five subjects each performed eight transitions from 0 to 100 W on a cycle ergometer. Ventilation, CO2 output, and O2 uptake were computed breath by breath. The eight responses were interpolated uniformly, time aligned, and averaged for each subject; and the kinetic parameters of a first-order model (i.e., the time constant and time delay) were then estimated using three methods: linear least squares, nonlinear least squares, and maximum likelihood. The breath-by-breath noise approximated an uncorrelated Gaussian stochastic process, with a standard deviation that was largely independent of metabolic rate. An expression has therefore been derived for the number of square-wave repetitions required for a specified parameter confidence using methods b and c; method a being less appropriate for parameter estimation of noisy gas exchange kinetics.  相似文献   

10.
To investigate the relationship between hypoxic pulmonary vasoconstriction and respiratory and metabolic acidosis and respiratory alkalosis, the pulmonary gas exchange and pulmonary hemodynamic responses were measured in anesthetized, paralyzed, and mechanically ventilated dogs in two sets of experiments (series A, n = 6; series B, n = 10). The animals were treated with acute hypoxia, CO2 inhalation, hyperventilation, and dinitrophenol in various combinations. Multiple regression analysis indicated that mean pulmonary arterial pressure (Ppa) was significantly correlated with end-tidal PO2, mixed venous PO2, and the mean pulmonary capillary pH (average of arterial and mixed venous pH) as independent variables [series A: r = +0.999, standard error of estimate (SEE) = 0.4 mmHg; series B: r = +0.98, SEE = 1.4 mmHg]. Similar analyses of mean values published by other authors from an acute study on humans with exercise at sea level and simulated altitudes of 10,000 and 15,000 ft also indicated a good relationship (n = 14, r = +0.98, SEE = 2.1 mmHg). The mean data (n = 19) obtained in Operation Everest II at various exercise loads and simulated altitudes gave a correlation of r = +0.87, SEE = 6.1 mmHg. These empirical analyses suggest that variations in the rise of Ppa with hypoxia can be accounted for in vivo by the superimposed acid-base status. Furthermore, ventilation-perfusion inhomogeneity, as estimated in the dogs from end-tidal and arterial O2 and CO2 differences and assuming no true shunt or diffusion impairment, was highly correlated with Ppa and mean pulmonary capillary pH (r = +0.999 in series A, r = +0.77 in series B). The human data from the above studies also showed significant correlations between Ppa and directly measured ventilation-perfusion (standard deviation of perfusion obtained from inert gas measurements). These observations indicate that the beneficial effects of hyperventilation during hypoxia may be related to the marked alkalosis that serves to reduce Ppa and improve pulmonary gas exchange efficiency.  相似文献   

11.
Effects of acetazolamide on cerebral acid-base balance   总被引:3,自引:0,他引:3  
Acetazolamide (AZ) inhibition of brain and blood carbonic anhydrase increases cerebral blood flow by acidifying cerebral extracellular fluid (ECF). This ECF acidosis was studied to determine whether it results from high PCO2, carbonic acidosis (accumulation of H2CO3), or lactic acidosis. Twenty rabbits were anesthetized with pentobarbital sodium, paralyzed, and mechanically ventilated with 100% O2. The cerebral cortex was exposed and fitted with thermostatted flat-surfaced pH and PCO2 electrodes. Control values (n = 14) for cortex ECF were pH 7.10 +/- 0.11 (SD), PCO2 42.2 +/- 4.1 Torr, PO2 107 +/- 17 Torr, HCO3- 13.8 +/- 3.0 mM. Control values (n = 14) for arterial blood were arterial pH (pHa) 7.46 +/- 0.03 (SD), arterial PCO2 (PaCO2) 32.0 +/- 4.1 Torr, arterial PO2 (PaO2) 425 +/- 6 Torr, HCO3- 21.0 +/- 2.0 mM. After intravenous infusion of AZ (25 mg/kg), end-tidal PCO2 and brain ECF pH immediately fell and cortex PCO2 rose. Ventilation was increased in nine rabbits to bring ECF PCO2 back to control. The changes in ECF PCO2 then were as follows: pHa + 0.04 +/- 0.09, PaCO2 -8.0 +/- 5.9 Torr, HCO3(-)-2.7 +/- 2.3 mM, PaO2 +49 +/- 62 Torr, and changes in cortex ECF were as follows: pH -0.08 +/- 0.04, PCO2 -0.2 +/- 1.6 Torr, HCO3(-)-1.7 +/- 1.3 mM, PO2 +9 +/- 4 Torr. Thus excess acidity remained in ECF after ECF PCO2 was returned to control values. The response of intracellular pH, high-energy phosphate compounds, and lactic acid to AZ administration was followed in vivo in five other rabbits with 31P and 1H nuclear magnetic resonance spectroscopy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Changes in blood gases, ions, lactate, pH, hemoglobin, blood temperature, total body metabolism, and muscle metabolites were measured before and during exercise (except muscle), at fatigue, and during recovery in normal and acetazolamide-treated horses to test the hypothesis that an acetazolamide-induced acidosis would compromise the metabolism of the horse exercising at maximal O2 uptake. Acetazolamide-treated horses had a 13-mmol/l base deficit at rest, higher arterial Po2 at rest and during exercise, higher arterial and mixed venous Pco2 during exercise, and a 48-s reduction in run time. Arterial pH was lower during exercise but not in recovery after acetazolamide. Blood temperature responses were unaffected by acetazolamide administration. O2 uptake was similar during exercise and recovery after acetazolamide treatment, whereas CO2 production was lower during exercise. Muscle [glycogen] and pH were lower at rest, whereas heart rate, muscle pH and [lactate], and plasma [lactate] and [K+] were lower and plasma [Cl-] higher following exercise after acetazolamide treatment. These data demonstrate that acetazolamide treatment aggravates the CO2 retention and acidosis occurring in the horse during heavy exercise. This could negatively affect muscle metabolism and exercise capacity.  相似文献   

13.
14.
Carbonic anhydrase (CA) inhibition is associated with a lower plasma lactate concentration ([La(-)](pl)), but the mechanism for this association is not known. The effect of CA inhibition on muscle high-energy phosphates [ATP and phosphocreatine (PCr)], lactate ([La(-)](m)), and glycogen was examined in seven men [28 +/- 3 (SE) yr] during cycling exercise under control (Con) and acute CA inhibition with acetazolamide (Acz; 10 mg/kg body wt iv). Subjects performed 6-min step transitions in work rate from 0 W to a work rate corresponding to approximately 50% of the difference between the O(2) uptake at the ventilatory threshold and peak O(2) uptake. Muscle biopsies were taken from the vastus lateralis at rest, at 30 min postinfusion, at end exercise (EE), and at 5 and 30 min postexercise. Arterialized venous blood was sampled from a dorsal hand vein and analyzed for [La(-)](pl). ATP was unchanged from rest values; no difference between Con and Acz was observed. The fall in PCr from rest [72 +/- 3 and 73 +/- 3.6 (SE) mmol/kg dry wt for Con and Acz, respectively] to EE (51 +/- 4 and 46 +/- 5 mmol/kg dry wt for Con and Acz, respectively) was similar in Con and Acz. At EE, glycogen (mmol glucosyl units/kg dry wt) decreased to similar values in Con and Acz (307 +/- 16 and 300 +/- 19, respectively). At EE, no difference was observed in [La(-)](m) between conditions (46 +/- 6 and 43 +/- 5 mmol/kg dry wt for Con and Acz, respectively). EE [La(-)](pl) was higher during Con than during Acz (11.4 +/- 1.0 vs. 8.2 +/- 0.6 mmol/l). The similar [La(-)](m) but lower [La(-)](pl) suggests that the uptake of La(-) by other tissues is enhanced after CA inhibition.  相似文献   

15.
The purpose of this study was to determine the effect of acute increases in pulmonary vascular pressures, caused by the application of lower-body positive pressure (LBPP), on exercise alveolar-to-arterial PO2 difference (A-aDO2), anatomical intrapulmonary (IP) shunt recruitment, and ventilation. Eight healthy men performed graded upright cycling to 90% maximal oxygen uptake under normal conditions and with 52 Torr (1 psi) of LBPP. Pulmonary arterial (PAP) and pulmonary artery wedge pressures (PAWP) were measured with a Swan-Ganz catheter. Arterial blood samples were obtained from a radial artery catheter, cardiac output was calculated by the direct Fick method, and anatomical IP shunt was determined by administering agitated saline during continuous two-dimensional echocardiography. LBPP increased both PAP and PAWP while upright at rest, and at all points during exercise (mean increase in PAP and PAWP 3.7 and 4.0 mmHg, respectively, P<0.05). There were no differences in exercise oxygen uptake or cardiac output between control and LBPP. Despite the increased PAP and PAWP with LBPP, A-aDO2 was not affected. In the upright resting position, there was no evidence of shunt in the control condition, whereas LBPP caused shunt in one subject. At the lowest exercise workload (75 W), shunt occurred in three subjects during control and in four subjects with LBPP. LBPP did not affect IP shunt recruitment during subsequent higher workloads. Minute ventilation and arterial PcO2 were not consistently affected by LBPP. Therefore, small acute increases in pulmonary vascular pressures do not widen exercise A-aDO2 or consistently affect IP shunt recruitment or ventilation.  相似文献   

16.
During short-term maximal exercise,horses have impaired pulmonary gas exchange, manifested by diffusionlimitation and arterial hypoxemia, without marked ventilation-perfusion(A/)inequality. Whether gas exchange deteriorates progressively duringprolonged submaximal exercise has not been investigated. Sixthoroughbred horses performed treadmill exercise at ~60% of maximaloxygen uptake until exhaustion (28-39 min). Multipleinert gas, blood-gas, hemodynamic, metabolic rate, and ventilatory datawere obtained at rest and 5-min intervals during exercise. Oxygenuptake, cardiac output, and alveolar-arterialPO2 gradient were unchanged after thefirst 5 min of exercise. Alveolar ventilation increased progressivelyduring exercise, from increased tidal volume and respiratory frequency,resulting in an increase in arterialPO2 and decrease in arterialPCO2. At rest there was minimal A/inequality, log SD of the perfusion distribution (logSD) = 0.20. This doubled by 5 min of exercise (logSD = 0.40) butdid not increase further. There was no evidence of alveolar-end-capillary diffusion limitation during exercise. However, there was evidence for gas-phase diffusion limitation at all time points, and enflurane was preferentially overretained. Horses maintainexcellent pulmonary gas exchange during exhaustive, submaximal exercise. AlthoughA/inequality is greater than at rest, it is less than observed in mostmammals and the effect on gas exchange is minimal.

  相似文献   

17.
Despite enormous rates of minute ventilation (Ve) in the galloping Thoroughbred (TB) horse, the energetic demands of exercise conspire to raise arterial Pco(2) (i.e., induce hypercapnia). If locomotory-respiratory coupling (LRC) is an obligatory facilitator of high Ve in the horse such as those found during galloping (Bramble and Carrier. Science 219: 251-256, 1983), Ve should drop precipitously when LRC ceases at the galloptrot transition, thus exacerbating the hypercapnia. TB horses (n = 5) were run to volitional fatigue on a motor-driven treadmill (1 m/s increments; 14-15 m/s) to study the dynamic control of breath-by-breath Ve, O(2) uptake, and CO(2) output at the transition from maximal exercise to active recovery (i.e., trotting at 3 m/s for 800 m). At the transition from the gallop to the trot, Ve did not drop instantaneously. Rather, Ve remained at the peak exercising levels (1,391 +/- 88 l/min) for approximately 13 s via the combination of an increased tidal volume (12.6 +/- 1.2 liters at gallop; 13.9 +/- 1.6 liters over 13 s of trotting recovery; P < 0.05) and a reduced breathing frequency [113.8 +/- 5.2 breaths/min (at gallop); 97.7 +/- 5.9 breaths/min over 13 s of trotting recovery (P < 0.05)]. Subsequently, Ve declined in a biphasic fashion with a slower mean response time (85.4 +/- 9.0 s) than that of the monoexponential decline of CO(2) output (39.9 +/- 4.7 s; P < 0.05), which rapidly reversed the postexercise arterial hypercapnia (arterial Pco(2) at gallop: 52.8 +/- 3.2 Torr; at 2 min of recovery: 25.0 +/- 1.4 Torr; P < 0.05). We conclude that LRC is not a prerequisite for achievement of Ve commensurate with maximal exercise or the pronounced hyperventilation during recovery.  相似文献   

18.
Effect of prolonged, heavy exercise on pulmonary gas exchange in athletes   总被引:1,自引:0,他引:1  
During maximalexercise, ventilation-perfusion inequality increases, especially inathletes. The mechanism remains speculative. Wehypothesized that, if interstitial pulmonary edema is involved, prolonged exercise would result in increasing ventilation-perfusion inequality over time by exposing the pulmonary vascular bed to highpressures for a long duration. The response to short-term exercise wasfirst characterized in six male athletes [maximal O2 uptake(O2 max) = 63 ml · kg1 · min1] by using 5 minof cycling exercise at 30, 65, and 90%O2 max. Multiple inert-gas, blood-gas, hemodynamic, metabolic rate, and ventilatory data were obtained. Resting log SD of the perfusion distribution (logSD) was normal [0.50 ± 0.03 (SE)] and increased with exercise (logSD = 0.65 ± 0.04, P < 0.005), alveolar-arterialO2 difference increased (to 24 ± 3 Torr), and end-capillary pulmonary diffusion limitation occurred at 90%O2 max. The subjectsrecovered for 30 min, then, after resting measurements were taken,exercised for 60 min at ~65%O2 max.O2 uptake, ventilation, cardiacoutput, and alveolar-arterial O2difference were unchanged after the first 5 min of this test, but logSD increased from0.59 ± 0.03 at 5 min to 0.66 ± 0.05 at 60 min(P < 0.05), without pulmonary diffusion limitation. LogSD was negativelyrelated to total lung capacity normalized for body surface area(r = 0.97,P < 0.005 at 60 min). These data are compatible with interstitial edema as a mechanism and suggest that lungsize is an important determinant of the efficiency of gas exchangeduring exercise.

  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号