首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular adhesive events affect cell proliferation and differentiation decisions. How cell surface events mediating adhesion transduce signals to the nucleus is not well understood. After cell-cell or cell-substratum contact, cytosolic proteins are recruited to clustered adhesion receptor complexes. One such family of cytosolic proteins found at sites of cell adhesion is the Zyxin family of LIM proteins. Here we demonstrate that the family member Ajuba was recruited to the cell surface of embryonal cells, upon aggregate formation, at sites of cell-cell contact. Ajuba contained a functional nuclear export signal and shuttled into the nucleus. Importantly, accumulation of the LIM domains of Ajuba in the nucleus of P19 embryonal cells resulted in growth inhibition and spontaneous endodermal differentiation. The differentiating effect of Ajuba mapped to the third LIM domain, whereas regulation of proliferation mapped to the first and second LIM domains. Ajuba-induced endodermal differentiation of these cells correlated with the capacity to activate c-Jun kinase and required c-Jun kinase activation. These results suggest that the cytosolic LIM protein Ajuba may provide a new mechanism to transduce signals from sites of cell adhesion to the nucleus, regulating cell growth and differentiation decisions during early development.  相似文献   

2.
3.
4.
5.
It has been suggested that localization of signal-transduction proteins close to the cell membrane causes an increase in their rate of encounter after activation. We maintain that such an increase in the first-encounter rate is too small to be responsible for truly enhanced signal transduction. Instead, the function of membrane localization is to increase the number (or average lifetime) of complexes between cognate signal transduction proteins and hence increase the extent of activation of downstream processes. This is achieved by concentrating the proteins in the small volume of the area just below the plasma membrane. The signal-transduction chain is viewed simply as operating at low default intensity because one of its components is present at a low concentration. The steady signalling level of the chain is enhanced 1000-fold by increasing the concentration of that component. This occurs upon 'piggyback' binding to a membrane protein, such as the activated receptor, initiating the signal-transduction chain. For the effect to occur, the protein translocated to the membrane cannot be free but has to remain organized by being piggyback bound to a receptor, membrane lipid(s) or scaffold. We discuss an important structural constraint imposed by this mechanism on signal transduction proteins that might also account for the presence of adaptor proteins.  相似文献   

6.
A fundamental property of many plasma-membrane proteins is their association with the underlying cytoskeleton to determine cell shape, and to participate in adhesion, motility and other plasma-membrane processes, including endocytosis and exocytosis. The ezrin-radixin-moesin (ERM) proteins are crucial components that provide a regulated linkage between membrane proteins and the cortical cytoskeleton, and also participate in signal-transduction pathways. The closely related tumour suppressor merlin shares many properties with ERM proteins, yet also provides a distinct and essential function.  相似文献   

7.
TGF-beta elicits context-dependent and cell-specific effects that often appear conflicting, such as stimulation or inhibition of growth, apoptosis or differentiation. It is puzzling how such a diverse array of responses can result from binding of TGF-beta to a single receptor complex that activates a seemingly straightforward signal-transduction scheme dependent on shuttling of Smad transducer proteins from the receptor to the nucleus. Here, we discuss a novel paradigm for TGF-beta signaling in endothelial cells in which the same ligand can induce opposing effects mediated by activation of two different classes of Smads through a chimeric receptor complex.  相似文献   

8.
9.
10.
11.
CD44: from adhesion molecules to signalling regulators   总被引:2,自引:0,他引:2  
Cell-adhesion molecules, once believed to function primarily in tethering cells to extracellular ligands, are now recognized as having broader functions in cellular signalling cascades. The CD44 transmembrane glycoprotein family adds new aspects to these roles by participating in signal-transduction processes--not only by establishing specific transmembrane complexes, but also by organizing signalling cascades through association with the actin cytoskeleton. CD44 and its associated partner proteins monitor changes in the extracellular matrix that influence cell growth, survival and differentiation.  相似文献   

12.
13.
水分胁迫的基因表达和信号转导(综述)   总被引:5,自引:0,他引:5  
植物在水分胁迫条件下的依赖ABA和不依赖ABA的基因表达途径来调节对逆境的适应。植物通过渗透感受器感知胁迫信号,以MAPK和CDPK等途径传递信号,最终引起基因表达。  相似文献   

14.
Adhesion complexes typically assemble from clustered receptors that link to the cytoskeleton via cytoplasmic adapter proteins. However, it is unclear how phospholipid-anchored adhesion molecules, such as the Dictyostelium receptor gp80, interact with the cytoskeleton. gp80 has been found to form adhesion complexes from raftlike membrane domains, which can be isolated as a Triton X-100-insoluble floating fraction (TIFF). We report here that the actin-binding protein ponticulin mediates TIFF-cytoskeleton interactions. Analysis of gp80-null cells revealed that these interactions were minimal in the absence of gp80. During development, gp80 was required to enhance these interactions as its adhesion complexes assembled. Whereas ponticulin and gp80 could partition independently into TIFF, gp80 was shown to recruit ponticulin to cell-cell contacts and to increase its partitioning into TIFF. However, these proteins did not co-immunoprecipitate. Furthermore, sterol sequestration abrogated the association of ponticulin with TIFF without affecting gp80, suggesting that sterols may mediate the interactions between ponticulin and gp80. In ponticulin-null cells, large gp80 adhesion complexes assembled in the absence of ponticulin despite the lack of cytoskeleton association. We propose that such nascent gp80 adhesion complexes produce expanded raftlike domains that recruit ponticulin and thereby establish stable cytoskeleton interactions to complete the assembly process.  相似文献   

15.
Cell-cell adhesive events affect cell growth and fate decisions and provide spatial clues for cell polarity within tissues. The complete molecular determinants required for adhesive junction formation and their function are not completely understood. LIM domain-containing proteins have been shown to be present at cell-cell contact sites and are known to shuttle into the nucleus where they can affect cell fate and growth; however, their precise localization at cell-cell contacts, how they localize to these sites, and what their functions are at these sites is unknown. Here we show that, in primary keratinocytes, the LIM domain protein Ajuba is recruited to cadherin-dependent cell-cell adhesive complexes in a regulated manner. At cadherin adhesive complexes Ajuba interacts with alpha-catenin, and alpha-catenin is required for efficient recruitment of Ajuba to cell junctions. Ajuba also interacts directly with F-actin. Keratinocytes from Ajuba null mice exhibit abnormal cell-cell junction formation and/or stability and function. These data reveal Ajuba as a new component at cadherin-mediated cell-cell junctions and suggest that Ajuba may contribute to the bridging of the cadherin adhesive complexes to the actin cytoskeleton and as such contribute to the formation or strengthening of cadherin-mediated cell-cell adhesion.  相似文献   

16.
The linkage of the different types of cytoskeletal proteins to cell adhesion structures at the cytoplasmic membrane and the connection of these contact sites to corresponding sites of adjacent cells is a prerequisite for integrity and stability of cells and tissues. The structurally most prominent types of such cell-cell adhesion complexes are the desmosomes (maculae adhaerentes), which are found in all epithelia and certain non-epithelial tissues. As an element of the cytoskeleton, intermediate filaments are connected to the adhesive desmosomal transmembrane proteins by the cytoplasmic desmosomal plaque proteins. At least three different types of proteins are found in the desmosomal plaque, one of which is represented by the plakophilins, a recently described sub-family of sequence-related armadillo-repeat proteins. Consisting of three isoforms, plakophilins (plakophilin 1 to 3, PKP 1 to 3) are located in all desmosomes in a differentiation-dependent manner. While PKP 2 and PKP 3 are part of almost all desmosome-bearing cell types (PKP 2 except for differentiated cells of stratified epithelia and PKP 3 for hepatocytes and cardiomyocytes), PKP 1 is restricted to desmosomes of cells of stratified and complex epithelia. Besides the architectural function that plakophilins seem to fulfill in the desmosomes, at least PKP 1 and 2 are also localized in the nucleus independently of any differentiation-related processes and with an up to now enigmatic function in this compartment. In the following article we want to summarize the current knowledge concerning structure, function and regulation of the plakophilins that has been achieved during the last decade.  相似文献   

17.
Integrin adhesion receptors mediate cell-cell and cell-extracellular matrix interactions, which control cell morphology and migration, differentiation, and tissue integrity. Integrins recruit multimolecular adhesion complexes to their cytoplasmic domains, which provide structural and mechanosensitive signaling connections between the extracellular and intracellular milieux. The different functions of specific integrin heterodimers, such as α4β1 and α5β1, have been attributed to distinct signal transduction mechanisms that are initiated by selective recruitment of adhesion complex components to integrin cytoplasmic tails. Here, we report the isolation of ligand-induced adhesion complexes associated with wild-type α4β1 integrin, an activated α4β1 variant in the absence of the α cytoplasmic domain (X4C0), and a chimeric α4β1 variant with α5 leg and cytoplasmic domains (α4Pα5L), and the cataloguing of their proteomes by MS. Using hierarchical clustering and interaction network analyses, we detail the differential recruitment of proteins and highlight enrichment patterns of proteins to distinct adhesion complexes. We identify previously unreported components of integrin adhesion complexes and observe receptor-specific enrichment of molecules with previously reported links to cell migration and cell signaling processes. Furthermore, we demonstrate colocalization of MYO18A with active integrin in migrating cells. These datasets provide a resource for future studies of integrin receptor-specific signaling events.  相似文献   

18.
19.
Cell substratum adhesion influences a variety of processes including motility, proliferation and survival. In recent years, it has become clear that there are proteins that are capable of shuttling between cell adhesion zones and the nucleus, providing a mechanism for transcellular coordination and communication. Recent findings have given insight into the physiological signals that trigger trafficking of focal adhesion constituents to the nucleus, where they make diverse contributions to the control of gene expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号