首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Enzymological paradigms have shifted recently to acknowledge the biological importance of catalytic promiscuity. However, catalytic promiscuity is a poorly understood property, and no thermodynamic treatment has described the conformational landscape of promiscuous versus substrate-specific enzymes. Here, two structurally similar glutathione transferase (GST, glutathione S-transferase) isoforms with high specificity or high promiscuity are compared. Differential scanning calorimetry (DSC) indicates a reversible low temperature transition for the promiscuous GSTA1-1 that is not observed with substrate-specific GSTA4-4. This transition is assigned to rearrangement of the C terminus at the active site of GSTA1-1 based on the effects of ligands and mutations. Near-UV and far-UV circular dichroism indicate that this transition is due to repacking of tertiary contacts with the remainder of the subunit, rather than "unfolding" of the C terminus per se. Analysis of the DSC data using a modified Landau theory indicates that the local conformational landscape of the active site of GSTA1-1 is smooth, with barrierless transitions between states. The partition function of the C-terminal states is a broad unimodal distribution at all temperatures within this DSC transition. In contrast, the remainder of the GSTA1-1 subunit and the GSTA4-4 protein exhibit folded and unfolded macrostates with a significant energy barrier separating them. Their partition function includes a sharp unimodal distribution of states only at temperatures that yield either folded or unfolded macrostates. At intermediate temperatures the partition function includes a bimodal distribution. The barrierless rearrangement of the GSTA1-1 active site within a local smooth energy landscape suggests a thermodynamic basis for catalytic promiscuity.  相似文献   

2.
The role of conformational ensembles in enzymatic reactions remains unclear. Discussion concerning “induced fit” versus “conformational selection” has, however, ignored detoxication enzymes, which exhibit catalytic promiscuity. These enzymes dominate drug metabolism and determine drug-drug interactions. The detoxication enzyme glutathione transferase A1–1 (GSTA1–1), exploits a molten globule-like active site to achieve remarkable catalytic promiscuity wherein the substrate-free conformational ensemble is broad with barrierless transitions between states. A quantitative index of catalytic promiscuity is used to compare engineered variants of GSTA1–1 and the catalytic promiscuity correlates strongly with characteristics of the thermodynamic partition function, for the substrate-free enzymes. Access to chemically disparate transition states is encoded by the substrate-free conformational ensemble. Pre-steady state catalytic data confirm an extension of the conformational selection model, wherein different substrates select different starting conformations. The kinetic liability of the conformational breadth is minimized by a smooth landscape. We propose that “local” molten globule behavior optimizes detoxication enzymes.  相似文献   

3.
The internal dynamics of human superoxide dismutase has been studied using time-resolved fluorescence. The fluorescence decay has been analyzed using continuous distribution of lifetime values. The effect of temperature and conformational state on the lifetime distribution has been investigated. The emission of the single tryptophan residue depends on the nature and dynamics of the protein matrix. Conformational changes have been induced by increased concentration of guanidinium hydrochloride. We found that both temperature and conformation strongly effect the width of the lifetime distribution.  相似文献   

4.
The structural dynamics of bovine erythrocyte Cu, Zn superoxide dismutase (BSOD) was studied by time-resolved fluorescence spectroscopy. BSOD is a homodimer containing a single tyrosine residue (and no tryptophan) per subunit. Frequency-domain fluorometry revealed a heterogeneous fluorescence decay that could be described with a Lorentzian distribution of lifetimes. The lifetime distribution parameters (center and width) were markedly dependent on temperature. The distribution center (average lifetime) displayed Arrhenius behavior with an Ea of 4.2 kcal/mol, in contrast with an Ea of 7.4 kcal/mol for the single-exponential decay of L-tyrosine. This indicated that thermal quenching of tyrosine emission was not solely responsible for the effect of temperature on the lifetimes of BSOD. The distribution width was broad (1 ns at 8 degrees C) and decreased significantly at higher temperatures. Furthermore, the width of the lifetime distribution increased in parallel to increasing viscosity of the medium. The combined effects of temperature and viscosity on the fluorescence decay suggest the existence of multiple conformational substrates in BSOD that interconvert during the excited-state lifetime. Denaturation of BSOD by guanidine hydrochloride produced an increase in the lifetime distribution width, indicating a larger number of conformations probed by the tyrosine residue in the denatured state. The rotational mobility of the tyrosine in BSOD was also investigated. Analysis of fluorescence anisotropy decay data enabled resolution of two rotational correlation times. One correlation time corresponded to a fast (picosecond) rotation that contributed 62% of the anisotropy decay and likely reported local mobility of the tyrosine ring. The longer correlation time was 50% of the expected value for rotation of the whole (dimeric) BSOD molecule and appeared to reflect segmental motions in the protein in addition to overall tumbling. Comparison between rotational correlation times and fluorescence lifetimes of BSOD indicates that the heterogeneity in lifetimes does not arise from mobility of the tyrosine per se, but rather from dynamics of the protein matrix surrounding this residue which affect its fluorescence decay.  相似文献   

5.
In the accompanying paper [Storch et al. (1999) Biochemistry 38, 5054-5064] equilibrium denaturation studies and molecular dynamics (MD) simulations were used to investigate localized dynamics on the surface of cytochrome b5 (cyt b5) that result in the formation of a cleft. In those studies, an S18C:R47C disulfide mutant was engineered to inhibit cleft mobility. Temperature- and urea-induced denaturation studies revealed significant differences in Trp 22 fluorescence between the wild-type and mutant proteins. On the basis of the results, it was proposed that wild type populates a conformational ensemble that is unavailable to the disulfide mutant and is mediated by cleft mobility. As a result, the solvent accessibility of Trp 22 is decreased in S18C:R47C, suggesting that the local environment of this residue is less mobile due to the constraining effects of the disulfide on cleft dynamics. To further probe the structural effects on the local environment of Trp 22 caused by inhibition of cleft formation, we report here the results of steady-state and time-resolved fluorescence quenching, differential phase/modulation fluorescence anisotropy, and 1H NMR studies. In Trp fluorescence experiments, the Stern-Volmer quenching constant increases in wild type versus the oxidized disulfide mutant with increasing temperature. At 50 degrees C, KSV is nearly 1.5-fold greater in wild type compared to the oxidized disulfide mutant. In the reduced disulfide mutant, KSV was the same as wild type. The bimolecular collisional quenching constant, kq, for acrylamide quenching of Trp 22 increases 2.7-fold for wild type and only 1.8-fold for S18C:R47C, upon increasing the temperature from 25 to 50 degrees C. The time-resolved anisotropy decay at 25 degrees C was fit to a double-exponential decay for both the wild type and S18C:R47C. Both proteins exhibited a minor contribution from a low-amplitude fast decay, consistent with local motion of Trp 22. This component was more prevalent in the wild type, and the fractional contribution increased significantly upon raising the temperature. The fast rotational component of the S18C:R47C mutant was less sensitive to increasing temperature. A comparison of the 1H NMR monitored temperature titration of the delta-methyl protons of Ile 76 for wild type and oxidized disulfide mutant, S18C:R47C, showed a significantly smaller downfield shift for the mutant protein, suggesting that Trp 22 in the mutant protein experiences comparatively decreased cleft dynamics in core 2 at higher temperatures. Furthermore, comparison of the delta'-methyl protons of Leu 25 in the two proteins revealed a difference in the ratio of the equilibrium heme conformers of 1.2:1 for S18C:R47C versus 1.5:1 for wild type at 40 degrees C. The difference in equilibrium heme orientations between wild type and S18C:R47C suggests that the disulfide bond affects heme binding within core 1, possibly through damped cleft fluctuations. Taken together, the NMR and fluorescence studies support the proposal that an engineered disulfide bond inhibits the formation of a dynamic cleft on the surface of cyt b5.  相似文献   

6.
R S Zukin  M F Klos    R E Hirsch 《Biophysical journal》1986,49(6):1229-1235
The Salmonella typhimurium periplasmic histidine-binding J-protein is one of four proteins encoded by the histidine transport operon. Mutant J-protein hisJ5625 binds L-histidine, but does not transport it. The tertiary structure and conformational dynamics of native and mutant J-protein have been compared using steady state fluorescence, fluorescence polarization, and fluorescence energy transfer measurements. The two proteins have different three-dimensional structures and exhibit different responses to histidine binding. Ligand-induced conformational changes were demonstrated in both J-proteins using fluorescence energy transfer (distant reporter method) between the single tryptophan residue per mole of protein and a fluorescein-labeled methionine residue. However, the conformational change of the mutant protein is qualitatively and quantitatively different from that of the wild-type protein. Moreover, the microenvironment of the tryptophan and its distance from the labeled methionine (44A for the wild type, 60A for the mutant J-protein) are different in the two proteins. In conclusion, these results indicate that the specific conformational change induced in the wild type J-protein is a necessary requirement for the transport of L-histidine.  相似文献   

7.
The dissociation of D-ribulose-1,5-bisphosphate carboxylase/oxygenase from spinach, which consists of eight large subunits (L, 53 kDa) and eight small subunits (S, 14 kDa) and thus has a quarternary structure L8S8, has been investigated using a variety of physical techniques. Gel chromatography using Sephadex G-100 indicates the quantitative dissociation of the small subunit S from the complex at 3-4 M urea (50 mM Tris/Cl pH 8.0, 0.5 mM EDTA, 1 mM dithiothreitol and 5 mM 2-mercaptoethanol). The dissociated S is monomeric. Analytical ultracentrifuge studies show that the core of large subunits, L, remaining at 3-4 M urea sediments with S20, w = 15.0 S, whereas the intact enzyme (L8S8) sediments with S20, w = 17.7S. The observed value is consistent with a quarternary structure L8. The dissociation reaction in 3-4 M urea can thus be represented by L8S8----L8 + 8S. At urea concentrations c greater than 5 M the L8 core dissociates into monomeric, unfolded large subunits. A large decrease in fluorescence emission intensity accompanies the dissociation of the small subunit S. This change is completed at 4 M urea. No changes are observed upon dissociating the L8 core. The kinetics of dissociation of the small subunit, as monitored by fluorescence spectroscopy, closely follow the kinetics of loss of carboxylase activity of the enzyme. Studies of the circular dichroism of D-ribulose-1,5-bisphosphate carboxylase in the wavelength region 200-260 nm indicate two conformational transitions. The first one ([0]220 from -8000 to -3500 deg cm2 dmol-1) is completed at 4 M urea and corresponds to the dissociation of the small subunit and coupled conformational changes. The second one ([0]220 from -3500 to -1200 deg cm2 dmol-1) is completed at 6 M urea and reflects the dissociation and unfolding of large subunits from the core. The effect of activation of the enzyme by addition of MgCl2 (10 mM) and NaHCO3 (10 mM) on these conformational transitions was investigated. The first conformational transition is then shifted to higher urea concentrations: a single transition ([0]220 from -8000 to -1200 deg cm2 dmol-1) is observed for the activated enzyme. From the urea dissociation experiments we conclude that both large (L) and small (S) subunits are important for carboxylase activity of spinach D-ribulose-1,5-bisphosphate carboxylase: the L-S subunit interactions tighten upon activation and dissociation of S leads to a coupled, proportional loss of enzyme activity.  相似文献   

8.
The spectra of absorption, fluorescence, and excitation of fluorescence of preparations of alpha-1-microglobulin isolated from human urea by two methods, gel chromatography and immunoaffinity chromatography with additional purification by activated charcoal, have been investigated in ultraviolet and visible regions. A possible nature of low-molecular compounds coloring alpha-1-microglobulin yellow-brown and their role in stabilizing the structure of protein globule are discussed. The action of urea (1.0-10 M) and guanidine hydrochloride (0.25-6 M) on the conformational state and the fast (nanosecond) internal dynamics of alpha-1-microglobulin has been investigated by the method of tryptophan fluorescence. It has been shown that the unfolding of alpha-1-microglobulin under the action of these denaturants is associated with a significant increase in the nanosecond internal dynamics of protein. The ability of alpha-1-microglobulin to restore the initial conformation characteristic for the native protein and the internal dynamics after the unfolding of the globule by 10 M urea and 6 M guanidine hydrochloride has been ascertained. It has been found that alpha-1-microglobulin isolated by the method of gel chromatography can exist in solution of 4-6 M urea in a thermodynamically stabile partialy folded state.  相似文献   

9.
The fluorescence decay of tryptophan is a sensitive indicator of its local environment within a peptide or protein. In this study we carried out fluorescence measurements of the tryptophan residue of cyclic enkephalin analogues of a general formula X-c[D-Dab(2)-Gly(3)-Trp(4)-Y(5)] where X = Cbz or H and Y = D- or L-Leu, in four solvents [water, methanol, acetonitrile, and dimethyl sulfoxide (DMSO)]. An analysis of the tryptophan fluorescence decays using a discrete-exponential model indicates that tryptophan fluorescence decay can be described by a double exponential function in all solvents studied. Lifetime distribution analysis yields a bimodal distribution in protic solvents (water and methanol), whereas an asymmetric, unimodal distribution in an aprotic solvent (DMSO) and uni- or bimodal distributions in acetonitrile solution, depending on leucine configuration. The data are interpreted in terms of the rotamer model, in which the modality and the relative proportions of the lifetime components are related to the population distribution of tryptophan chi(1) rotamers about the C(alpha)--C(beta) bond. The chirality of the Leu(5) residue and solvent properties affect the local environment of the tryptophan residue and therefore influence the distribution of side-chain rotamers. These results are consistent with the results of theoretical conformational calculations.  相似文献   

10.
The structural heterogeneity and thermal denaturation of a dansyl-labeled four-helix bundle homodimeric peptide was studied with steady-state and time-resolved fluorescence spectroscopy and with circular dichroism (CD). At room temperature the fluorescence decay of the polarity-sensitive dansyl, located in the hydrophobic core region, can be described by a broad distribution of fluorescence lifetimes, reflecting the heterogeneous microenvironment. However, the lifetime distribution is nearly bimodal, which we ascribe to the presence of two major conformational subgroups. Since the fluorescence lifetime reflects the water content of the four-helix bundle conformations, we can use the lifetime analysis to monitor the change in hydration state of the hydrophobic core of the four-helix bundle. Increasing the temperature from 9°C to 23°C leads to an increased population of molten-globule-like conformations with a less ordered helical backbone structure. The fluorescence emission maximum remains constant in this temperature interval, and the hydrophobic core is not strongly affected. Above 30°C the structural dynamics involve transient openings of the four-helix bundle structure, as evidenced by the emergence of a water-quenched component and less negative CD. Above 60°C the homodimer starts to dissociate, as shown by the increasing loss of CD and narrow, short-lived fluorescence lifetime distributions.  相似文献   

11.
We have used a model system composed of tandem repeats of Lytechinus variegatus 5 S rDNA (Simpson, R. T., Thoma, F., and Brubaker, J. M. (1985) Cell 42, 799-808) reconstituted into chromatin with chicken erythrocyte core histones to investigate the mechanism of chromatin assembly. Nucleosomes are assembled onto the DNA template by mixing histone octamers and DNA in 2 M NaCl followed by stepwise dialysis into very low ionic strength buffer over a 24-h period. By 1.0 M NaCl, a defined intermediate composed of arrays of H3.H4 tetramers has formed, as shown by analytical and preparative ultracentrifugation. Digestion with methidium propyl EDTA.Fe(II) indicates that these tetramers are spaced at 207 base pair intervals, i.e. one/repeat length of the DNA positioning sequence. In 0.8 M NaCl, some H2A.H2B has become associated with the H3.H4 tetramers and DNA. Surprisingly, under these conditions DNA is protected from methidium propyl EDTA.Fe(II) digestion almost as well as in the complete nucleosome, even though these structures are quite deficient in H2A.H2B. By 0.6 M NaCl, nucleosome assembly is complete, and the MPE digestion pattern is indistinguishable from that observed for oligonucleosomes at very low ionic strength. Below 0.6 M NaCl, the oligonucleosomes are involved in various salt-dependent conformational equilibria: at approximately 0.6 M, a 15% reduction in S20,w that mimics a conformational change observed previously with nucleosome core particles; at and above 0.1 M, folding into a more compact structure(s); at and above 0.1 M NaCl, a reaction involving varying amounts of dissociation of histone octamers from a small fraction of the DNA templates. In low ionic strength buffer (less than 1 mM NaCl), oligonucleosomes are present as fully loaded templates in the extended beads-on-a-string structure.  相似文献   

12.
The urea-induced unfolding of 'N' isomer (occurring at pH 7.0) and 'B' isomer (occurring at pH 9.0) of human serum albumin was studied by fluorescence and circular dichroism spectroscopic measurements. Urea-induced destabilization in different domains of both the isomers was monitored by using domain specific ligands, hemin (domain-I), chloroform, bilirubin (domain-II), and diazepam (domain-III). Urea-induced denaturation of N and B isomers of HSA showed a two-step, three-state transition with accumulation of intermediates around 4.8-5.2M and 3.0-3.4M urea concentrations, respectively. During first transition (0-4.8M urea for N isomer and 0-3.0M urea for B isomer) a continuous decrease in diazepam binding suggested major conformational changes in domain-III prior to intermediate formation. On the other hand, binding of hemin, a ligand for domain-IB and chloroform, whose binding site is located in domain-IIA remains unchanged up to 5.0M urea for N isomer and 3.0M urea for B isomer. Similarly, fluorescence intensity of Trp-214 that resides in domain-IIA remained unchanged up to the above-said urea concentrations and decreased thereafter. Absence of any decrease in hemin binding, chloroform binding, and Trp-214 fluorescence suggested the non-involvement of domain-IB and domain-IIA in intermediate formation. A significant increase in bilirubin binding prior to intermediate formation showed favorable conformational rearrangement in bilirubin binding cavity formed by loop 4 of domain-IB and loop 3 of domain-IIA. Further, a nearly complete abolishment of bilirubin binding to both isomers around 7.0M and 6.0M urea concentrations, respectively, indicated complete separation of domain-I from domain-II from each other. From these observations it can be concluded that N to B transition of human serum albumin shifted the intermediate formation towards lower urea concentration (3.0-3.4M urea for B isomer as against 4.8-5.2M urea for N isomer). Further both the intermediates were found to possess similar alpha-helical (approximately 39%) content and ligand binding properties.  相似文献   

13.
Muzammil S  Kumar Y  Tayyab S 《Proteins》2000,40(1):29-38
The unfolding of human serum albumin (HSA), a multidomain protein, by urea was followed by far-UV circular dichroism (CD), intrinsic fluorescence, and ANS fluorescence measurements. The urea-induced transition, which otherwise was a two-step process with a stable intermediate at around 4.8 M urea concentration as monitored by far-UV CD and intrinsic fluorescence, underwent a single-step cooperative transition in the presence of 1.0 M KCl. The free energy of stabilization (DeltaDelta G(H2O)D) in the presence of 1 M KCl was found to be 1,090 and 1,200 cal/mol as determined by CD and fluorescence, respectively.The salt stabilization occurred in the first transition (0-5.0 M urea), which corresponded to the formation of intermediate (I) state from the native (N) state, whereas the second transition, corresponding to the unfolding of I state to denatured (D) state, remained unaffected. Urea denaturation of HSA as monitored by tryptophan fluorescence of the lone tryptophan residue (Trp(214)) residing in domain II of the protein, followed a single-step transition suggesting that domain(s) I and/or III is (are) involved in the intermediate formation. This was also confirmed by the acrylamide quenching of tryptophan fluorescence at 5 M urea, which exhibited little change in the value of Stern-Volmer constant. ANS fluorescence data also showed single-step transition reflecting the absence of accumulation of hydrophobic patches. The stabilizing potential of various salts studied by far-UV CD and intrinsic fluorescence was found to follow the order: NaClO(4) > NaSCN >Na(2)SO(4) >KBr >KCl >KF. A comparison of the effects of various potassium salts revealed that anions were chiefly responsible in stabilizing HSA. The above series was found similar to the electroselectivity series of anions towards the anion-exchange resins and reverse of the Hofmeister series, suggesting that preferential binding of anions to HSA rather than hydration, was primarily responsible for stabilization. Further, single-step transition observed with GdnHCl can be ascribed to its ionic character as the free energy change associated with urea denaturation in the presence of 1.0 M KCl (5,980 cal/mol) was similar to that obtained with GdnHCl (5,870 cal/mol).  相似文献   

14.
15.
Fluorescence lifetime distributions in proteins.   总被引:10,自引:7,他引:3       下载免费PDF全文
The fluorescence lifetime value of tryptophan residues varies by more than a factor of 100 in different proteins and is determined by several factors, which include solvent exposure and interactions with other elements of the protein matrix. Because of the variety of different elements that can alter the lifetime value and the sensitivity to the particular environment of the tryptophan residue, it is likely that non-unique lifetime values result in protein systems. The emission decay of most proteins can be satisfactorily described only using several exponential components. Here it is proposed that continuous lifetime distributions can better represent the observed decay. An approach based on protein dynamics is presented, which provides fluorescence lifetime distribution functions for single tryptophan residue proteins. First, lifetime distributions for proteins interconverting between two conformations, each characterized by a different lifetime value, are derived. The evolution of the lifetime values as a function of the interconversion rate is studied. In this case lifetime distributions can be obtained from a distribution of rates of interconversion between the two conformations. Second, the existence of a continuum of energy substates within a given conformation was considered. The occupation of a particular energy substate at a given temperature is proportional to the Boltzmann factor. The density of energy states of the potential well depends upon the width of the well, which determines the degree of freedom the residue can move in the conformational space. Lifetime distributions can be obtained by association of each energy substate with a different lifetime value and assuming that the average conformation can change as the energy of the substate is increased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Family 18 chitinases catalyze the hydrolysis of β-1,4-glycosidic bonds in chitin. The mechanism has been proposed to involve the formation of an oxazolinium ion intermediate via an unusual substrate-assisted mechanism, in which the substrate itself acts as an intramolecular nucleophile (instead of an enzyme residue). Here, we have modeled the first step of the chitin hydrolysis catalyzed by Serratia marcescens chitinase B for the first time using a combined quantum mechanics/molecular mechanics approach. The calculated reaction barriers based on multiple snapshots are 15.8-19.8 kcal mol(-1) [B3LYP/6-31+G(d)//AM1-CHARMM22], in good agreement with the activation free energy of 16.1 kcal mol(-1) derived from experiment. The enzyme significantly stabilizes the oxazolinium intermediate. Two stable conformations ((4)C(1)-chair and B(3,O)-boat) of the oxazolinium ion intermediate in subsite -1 were unexpectedly observed. The transition state structure has significant oxacarbenium ion-like character. The glycosyl residue in subsite -1 was found to follow a complex conformational pathway during the reaction ((1,4)B → [(4)H(5)/(4)E](++) → (4)C(1) ? B(3,O)), indicating complex conformational behavior in glycoside hydrolases that utilize a substrate-assisted catalytic mechanism. The D142N mutant is found to follow the same wild-type-like mechanism: the calculated barriers for reaction in this mutant (16.0-21.1 kcal mol(-1)) are higher than in the wild type, in agreement with the experiment. Asp142 is found to be important in transition state and intermediate stabilization.  相似文献   

17.
Time-resolved fluorescence anisotropy measurements of tryptophan residues were carried out for 44 proteins. Internal rotational motion with a sub-nanosecond correlation time (0.9 +/- 0.6 ns at 10 degrees C) was seen in a large number of proteins, though its amplitude varied from protein to protein. It was found that tryptophan residues which were almost fixed within a protein had either a long (greater than 4 ns) or short (less than 2 ns) fluorescence lifetime, whereas a residue undergoing a large internal motion had an intermediate lifetime (1.5-3 ns). It is suggested that the emission kinetics of a tryptophan residue is coupled with its internal motion. In particular, an immobile tryptophan residue emitting at long wavelength was characterized by a long lifetime (greater than 4 ns). It appears that a tryptophan residue fixed in a polar region has little chance of being quenched by neighboring groups.  相似文献   

18.
Tryptophan 214, the only tryptophan residue in human serum albumin, is located in the physiologically important subdomain 2A ligand binding site. In the present study the fluorescence lifetime of tryptophan 214 in the following human serum albumin (HSA) mutants with substitutions in subdomain 2A were determined: K195M, K199M, F211V, R218M, R218H, R218A, R222M, H242V, and R257M. An HSA mutant in which tryptophan was moved from subdomain 2A to subdomain 3A (W214L/Y411W) was also examined. Additionally, the fluorescence lifetime of tryptophan 214 in an HSA fragment consisting of subdomains 1A, 1B, and 2A (1A-1B-2A HSA) was determined. For those species expected to have the most dramatic changes in tryptophan microenvironment, W214L/Y411W and 1A-1B-2A HSA, clear changes in tryptophan lifetimes were observed. Significant changes were also seen for those species with mutations at position 218, which is next to tryptophan in the X-ray structure of HSA. However, significant changes were also observed for H242V and R257M, which contain substitutions at positions not immediately adjacent to tryptophan 214, highlighting the conformational flexibility of subdomain 2A.  相似文献   

19.
The effect of GSTA1-1 (glutathione S-transferase Alpha 1-1) on JNK (c-Jun N-terminal kinase) activation was investigated in Caco-2 cells in which GSTA1 expression increases with degree of confluency, and in MEF3T3 cells with Tet-Off-inducible GSTA1 expression. Comparison of GSTA1 expression in pre-confluent, confluent and 8-day post-confluent Caco-2 cells revealed progressively increasing mRNA and protein levels at later stages of confluency. Exposure of pre-confluent cells to stress conditions including IL-1beta (interleukin-1beta), H2O2 or UV irradiation resulted in marked increases in JNK activity as indicated by c-Jun phosphorylation. However, JNK activation was significantly reduced in post-confluent cells exposed to the same stresses. Western-blot analysis of GSTA1-1 protein bound to JNK protein pulled down from cellular extracts showed approx. 4-fold higher GSTA1-1-JNK complex formation in post-confluent cells compared with pre-confluent cells. However, stress conditions did not alter the amount of GSTA1-1 bound to JNK. The role of GSTA1-1 in JNK suppression was more specifically revealed in Tet-Off-inducible MEF3T3-GSTA1-1 cells in which GSTA1 overexpression significantly reduced phosphorylation of c-Jun following exposure to IL-1beta, H2O2 and UV irradiation. Finally, the incidence of tumour necrosis factor alpha/butyrate-induced apoptosis was significantly higher in pre-confluent Caco-2 cells expressing low levels of GSTA1 compared with post-confluent cells. These results indicate that GSTA1 suppresses activation of JNK signalling by a pro-inflammatory cytokine and oxidative stress and suggests a protective role for GSTA1-1 in JNK-associated apoptosis.  相似文献   

20.
Mass spectrometry-based hydrogen/deuterium exchange (H/DX) has been used to define the polypeptide backbone dynamics of full-length methyl CpG binding protein 2 (MeCP2) when free in solution and when bound to unmethylated and methylated DNA. Essentially the entire MeCP2 polypeptide chain underwent H/DX at rates faster than could be measured (i.e. complete exchange in ≤10 s), with the exception of the methyl DNA binding domain (MBD). Even the H/DX of the MBD was rapid compared with that of a typical globular protein. Thus, there is no single tertiary structure of MeCP2. Rather, the full-length protein rapidly samples many different conformations when free in solution. When MeCP2 binds to unmethylated DNA, H/DX is slowed several orders of magnitude throughout the MBD. Binding of MeCP2 to methylated DNA led to additional minor H/DX protection, and only locally within the N-terminal portion of the MBD. H/DX also was used to examine the structural dynamics of the isolated MBD carrying three frequent mutations associated with Rett syndrome. The effects of the mutations ranged from very little (R106W) to a substantial increase in conformational sampling (F155S). Our H/DX results have yielded fine resolution mapping of the structure of full-length MeCP2 in the absence and presence of DNA, provided a biochemical basis for understanding MeCP2 function in normal cells, and predicted potential approaches for the treatment of a subset of RTT cases caused by point mutations that destabilize the MBD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号