首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Sodium borohydride reduced diaziquone (AZQ) can cause cross-links between DNA molecules, between DNA and proteins and cause single- and double-strand DNA breaks. In order to understand these effects better, we investigated the reduction of diaziquone by borohydride, and looked at reaction products. We found that a major product was formed during the oxidation of the colorless 2-electron reduced AZQ, and that this product was a monoaziridinyl quinone. We interpret this result to mean that both the leaving aziridine as well as the remaining one can alkylate. This mode of alkylation does not explain cross-links which may occur by a different mechanism requiring simultaneous opening of the aziridine rings. Most of the antitumor activity of borohydride reduced AZQ is probably exerted during the oxidation of the 2-electron reduced AZQ (AZQH2).  相似文献   

2.
The enzymatically generated free radical of the antitumor agent diaziquone is analyzed with the help of two analogs where either the aziridine rings (RQ14) or the carboethoxyamino groups (RQ2) were substituted by chlorine atoms. The hyperfine couplings observed in the diaziquone free radical are due to the nitrogens in the aziridine group. Unresolved coupling and hindered rotation contribute to line broadening. We find that diaziquone free radicals are more stable than RQ14 but less stable than RQ2 free radicals. The reason for this is that the carboethoxyamino groups make the aromatic ring unstable, while the aziridines contribute to its stability. The free radical observed in diaziquone is in all probability that of the parent compound and not that of an intermediate metabolite.  相似文献   

3.
The enzymatically generated free radical of the antitumor agent diaziquone is analyzed with the help of two analogs where either the aziridine rings (RQ14) or the carboethoxyamino groups (RQ2) were substituted by chlorine atoms. The hyperfine couplings observed in the diaziquone free radical are due to the nitrogens in the aziridine group. Unresolved coupling and hindered rotation contribute to line broadening. We find that diaziquone free radicals are more stable than RQ14 but less stable than RQ2 free radicals. The reason for this is that the carboethoxyamino groups make the aromatic ring unstable, while the aziridines contribute to its stability. The free radical observed in diaziquone is in all probability that of the parent compound and not that of an intermediate metabolite.  相似文献   

4.
2,5-Bis(1-aziridinyl)-1,4-benzoquinone (BABQ) is a compound from which several antitumour drugs are derived, such as Trenimone, Carboquone and Diaziquone (AZQ). The mechanism of DNA binding of BABQ was studied using 14C-labeled BABQ and is in agreement with reduction of the quinone moiety and protonation of the aziridine ring, followed by ring opening and alkylation. The one-electron reduced (semiquinone) form of BABQ alkylates DNA more efficiently than two-electron reduced or non reduced BABQ. Covalent binding to polynucleotides did not unambiguously reveal preference for binding to specific DNA bases. Attempts to elucidate further the molecular structure of DNA adducts by isolation of modified nucleosides from enzymatic digests of reacted DNA failed because of instability of the DNA adducts. The mechanism of covalent binding to protein (bovine serum albumin, BSA) appeared to be completely different from that of covalent binding to DNA. Binding of BABQ to BSA was not enhanced by reduction of the compound and was pH dependent in a way that is opposite to that of DNA alkylation. Glutathione inhibits binding of BABQ to BSA and forms adducts with BABQ in a similar pH dependence as the protein binding. The aziridine group therefore does not seem to be involved in the alkylation of BSA. Incubation of intact E. coli cells, which endogenously reduce BABQ, resulted in binding to both DNA and RNA, but also appreciable protein binding was observed.  相似文献   

5.
Mitoxantrone has been reported to lack certain properties that characterize quinone containing antitumor agents that undergo enzymatic reduction. These properties are the stimulation of NADPH oxidation, the stimulation of oxygen consumption by microsomes and reductases and, the absence of oxygen free radicals during these reactions. Having these properties implies the presence of a futile redox cycle that requires the generation and the oxidation of a semiquinone free radical. It would follow that if mitoxantrone does not redox cycle in the presence of reductases, then the semiquinone free radical is not produced or, if it is formed, it reacts quickly to form diamagnetic products. However, using liver microsomes, there are reports of the formation of the mitoxantrone free radial anion. In this paper we investigated the mitoxantrone free radical anion generated electrochemically and found that in the presence of oxygen it behaved like other semiquinones. That is, it is oxidized to the parent compound (presumably generating oxygen free radicals), indicating the ability to redox cycle. The reduction potential to generate such free radical in aqueous medium is very high (-0.79 V) when compared to diaziquone (-0.36 V) and Adriamycin (-0.6 V). This suggests that mitoxantrone may not be a substrate for reductases. Under reductive conditions with purified NADPH cytochrome P-450 reductase which very easily reduces diaziquone and Adriamycin, mitoxantrone was not reduced. However, under the same conditions, mitoxantrone was oxidized by the prototype oxidase horseradish peroxidase with the production of a mitoxantrone free radical. This oxidation was accompanied by a drastic change in color and the formation of a dark precipitate. Because microsomes contain a variety of enzymes, we suggest that the previously observed free radical in microsomes is probably due to the oxidation of mitoxantrone. In this theory, this product is probably a polymer which would not require oxygen to be formed. Thus, under oxidative conditions, the mitoxantrone free radical cation will also display impaired redox activity.  相似文献   

6.
7.
We have assigned the disulfide structure of Md-65 agouti-related protein (Md65-AGRP) using differential reduction and alkylation followed by direct sequencing analysis. The mature human AGRP is a single polypeptide chain of 112 amino acid residues, consisting of an N-terminal acidic region and a unique C-terminal cysteine-rich domain. The C-terminal domain, a 48 amino acid peptide named Md65-AGRP, was expressed in Escherichia coil cells and refolded under different conditions from the mature recombinant protein. The disulfide bonds in the cystine knot structure of Md65-AGRP were partially reduced using tris(2-carboxyethyl) phosphine (TCEP) under acidic conditions, followed by alkylation with N-ethylmaleimide (NEM). The procedure generated several isoforms with varying degrees of NEM alkylation. The multiple forms of Md65-AGRP generated by partial reduction and NEM modification were then completely reduced and carboxymethylated to identify unreactive disulfide bonds. Differentially labeled Md65-AGRP were directly sequenced and analyzed by MALDI mass spectrometry. The results confirmed that Md65-AGRP contained the same disulfide structure as that of Md5-AGRP reported previously [Bures, E. J., Hui, J. O., Young, Y. et al. (1998) Biochemistry 37, 12172-12177].  相似文献   

8.
Reduction of the cobalt ion of cobalamin from the Co(III) to the Co(I) oxidation state is essential for the synthesis of adenosylcobalamin, the coenzymic form of this cofactor. A cob(II)alamin reductase activity in Salmonella enterica serovar Typhimurium LT2 was isolated to homogeneity. N-terminal analysis of the homogeneous protein identified NAD(P)H:flavin oxidoreductase (Fre) (EC 1.6.8.1) as the enzyme responsible for this activity. The fre gene was cloned, and the overexpressed protein, with a histidine tag at its N terminus, was purified to homogeneity by nickel affinity chromatography. His-tagged Fre reduced flavins (flavin mononucleotide [FMN] and flavin adenine dinucleotide [FAD]) and cob(III)alamin to cob(II)alamin very efficiently. Photochemically reduced FMN substituted for Fre in the reduction of cob(III)alamin to cob(II)alamin, indicating that the observed cobalamin reduction activity was not Fre dependent but FMNH(2) dependent. Enzyme-independent reduction of cob(III)alamin to cob(II)alamin by FMNH(2) occurred at a rate too fast to be measured. The thermodynamically unfavorable reduction of cob(II)alamin to cob(I)alamin was detectable by alkylation of the cob(I)alamin nucleophile with iodoacetate. Detection of the product, caboxymethylcob(III)alamin, depended on the presence of FMNH(2) in the reaction mixture. FMNH(2) failed to substitute for potassium borohydride in in vitro assays for corrinoid adenosylation catalyzed by the ATP:co(I)rrinoid adenosyltransferase (CobA) enzyme, even under conditions where Fre and NADH were present in the reaction mixture to ensure that FMN was always reduced. These results were interpreted to mean that Fre was not responsible for the generation of cob(I)alamin in vivo. Consistent with this idea, a fre mutant displayed wild-type cobalamin biosynthetic phenotypes. It is proposed that S. enterica serovar Typhimurium LT2 may not have a cob(III)alamin reductase enzyme and that, in vivo, nonadenosylated cobalamin and other corrinoids are maintained as co(II)rrinoids by reduced flavin nucleotides generated by Fre and other flavin oxidoreductases.  相似文献   

9.
A series of 3,6-substituted 2,5-bis(1-aziridinyl)-1,4-benzoquinone derivatives was shown to alkylate calf thymus DNA and to form DNA interstrand cross-links. Alkylation and cross-link formation were enhanced after electrochemical reduction of the compounds and increased with lower pH in the pH range from 4.5 to 8.0. Reduction especially shifts the pH at which cross-linking and alkylation occurs to higher values, which are more physiologically relevant. This shift is probably caused by the increase in pKa value of the aziridine ring after reduction of the quinone moiety. The inactivation of single-stranded bacteriophage M13mp19 DNA to form phages in an E. coli host, by the 3,6-unsubstituted parent compound 2,5-bis(1-aziridinyl)-1,4-benzoquinone (TW13) was dependent upon reduction and pH in a similar way as was alkylation. The compound in our series with the least bulky, 3,6-substitutents, TW13, caused a high amount of cross-link formation. Compounds with methyl-substituted aziridine rings showed low cross-linking ability. Our results support the concept that the protonated reduced compound is the reactive species that alkylates DNA, and that steric factors play an important role in the reactivity towards DNA. A correlation is observed between the ability to induce DNA interstrand cross-links and inactivation of M13mp19 bacteriophage DNA. Cross-link formation was also demonstrated in E. coli K12 cells, where the compounds are reduced endogenously by bacterial reductases.  相似文献   

10.
One-electron reduction of diaziquone (AZQ) by purified rat liver NADPH cytochrome c reductase was associated with formation of AZQ semiquinone, superoxide anions, hydrogen peroxide, and hydroxyl radicals as indicated by ESR spin-trapping studies. Reactive oxygen formation correlated with AZQ-dependent production of single and double PM2 plasmid DNA strand breaks mediated by this system as detected by gel electrophoresis. Direct two-electron reduction of AZQ by purified rat liver NAD(P)H (quinone acceptor) oxidoreductase (QAO) was also associated with formation of AZQ semiquinone, superoxide anions, hydrogen peroxide, and hydroxyl radicals as detected by ESR spin trapping. Furthermore, PM2 plasmid DNA strand breaks were detected in the presence of this system. Plasmid DNA strand breakage was inhibited by dicumarol (49 +/- 5%), catalase (57 +/- 2.3%), SOD (42.2 +/- 3.6%) and ethanol (41.1 +/- 3.9%) showing QAO and reactive oxygen formation was involved in the PM2 plasmid DNA strand breaks observed. These results show that both one- and two-electron enzymatic reduction of AZQ give rise to formation of reactive oxygen species and DNA strand breaks. Autoxidation of the AZQ semiquinone and hydroquinone in the presence of molecular oxygen appears to be responsible for these processes. QAO appears to be involved in the metabolic activation of AZQ to free radical species. The cellular levels and distribution of this enzyme may play an important role in the response of tumor and normal cells to this antitumor agent.  相似文献   

11.
The one-electron electrochemical reduction of diaziquone (AZQ) and 12 analogs is analyzed using ESR spectroscopy and cyclic voltammetry. The hyperfine coupling constants arising from the interaction of the unpaired electron with the aziridine nitrogen nuclei fall within 1.20 and 2.26 G. Smaller couplings are observed arising from the protons and nitrogens in the carboethoxyamino groups. The in vitro activity of AZQ and its analogs is examined. Methyl groups in the aziridine rings increase the activity of some analogs. In the absence of aziridines, a chloroquinone compound with only carboethoxyamino groups was surprisingly active. This compound has a more positive cathodic peak than diaziquone.  相似文献   

12.
Copper(I) is an essential metal for all life forms. Though Cu(II) is the most abundant and stable state, its reduction to Cu(I) via an unclear mechanism is prerequisite for its bioutilization. In eukaryotes, the copper transporter-1 (CTR1) is the primary high-affinity copper importer, although its mechanism and role in Cu(II) reduction remain uncharacterized. Here we show that extracellular amino-terminus of human CTR1 contains two methionine-histidine clusters and neighboring aspartates that distinctly bind Cu(I) and Cu(II) preceding its import. We determined that hCTR1 localizes at the basolateral membrane of polarized MDCK-II cells and that its endocytosis to Common-Recycling-Endosomes is regulated by reduction of Cu(II) to Cu(I) and subsequent Cu(I) coordination by the methionine cluster. We demonstrate the transient binding of both Cu(II) and Cu(I) during the reduction process is facilitated by aspartates that also act as another crucial determinant of hCTR1 endocytosis. Mutating the first Methionine cluster (7Met-Gly-Met9) and Asp13 abrogated copper uptake and endocytosis upon copper treatment. This phenotype could be reverted by treating the cells with reduced and nonreoxidizable Cu(I). We show that histidine clusters, on other hand, bind Cu(II) and are crucial for hCTR1 functioning at limiting copper. Finally, we show that two N-terminal His-Met-Asp clusters exhibit functional complementarity, as the second cluster is sufficient to preserve copper-induced CTR1 endocytosis upon complete deletion of the first cluster. We propose a novel and detailed mechanism by which the two His-Met-Asp residues of hCTR1 amino-terminus not only bind copper, but also maintain its reduced state, crucial for intracellular uptake.  相似文献   

13.
Anti benzo[a]pyrene diol epoxide (BPDE) alkylates guanines of DNA at N7 in the major groove and at the exocyclic amino group in the minor groove. In this report we investigated the rates of BPDE hydrolysis, DNA alkylation and subsequent depurination of BPDE-adducted pBR322 DNA fragment using polyacrylamide gel electrophoresis. Preincubation studies showed that it hydrolyzed completely in triethanolamine buffer in <2 min. The depurination kinetics showed that a fraction of the N7 alkylated guanine depurinated rapidly; however a significant amount of N7 guanine alkylation remained stable to spontaneous depurination over a 4-h period. Similar results were obtained for the hydrolysis and alkylation rates of syn isomer but it required nearly 500 times more concentration to induce similar levels of N7 guanine alkylation. Cadmium ion strongly inhibited the N7 guanine alkylation of both isomers. But the minor groove alkylation was not affected as demonstrated by postlabeling assay which confirmed the presence of heat-and cadmium-stable minor groove adducts in BPDE-treated calf thymus DNA. Based on these and our earlier findings, we propose a mechanism for the synergistic effect of cadmium in chemically induced carcinogenesis.  相似文献   

14.
The mutagenicity of 1,2-dibromoethane is highly dependent upon its conjugation to glutathione by the enzyme glutathione S-transferase. The conjugates thus formed can react with DNA and yield almost exclusively N7-guanyl adducts. We have synthesized the S-haloethyl conjugates of cysteine and glutathione, as well as selected methyl ester and N-acetyl derivatives, and compared them for ability to produce N7-guanyl adducts with calf thymus DNA. The cysteine compounds were found to be more reactive toward calf thymus DNA and yielded higher adduct levels than did the glutathione compounds. Adduct levels tended to be suppressed when there was a net charge on the compound and were not affected by substitution of bromine for chlorine, as expected for a mechanism known to involve an intermediate episulfonium ion. Sequence-selective alkylation of fragments of pBR322 DNA was investigated. The compounds produced qualitatively similar patterns of alkylation, with higher levels of alkylation at runs of guanines. The compounds were also tested for their ability to act as direct mutagens in Salmonella typhimurium TA98 and TA100. None of the compounds caused mutations in the TA98 frameshift mutagenesis assay. In the strain TA100, where mutation of a specific guanine by base-pair substitution produces reversion, all compounds were found to produce mutations, but the levels of mutagenicity did not correlate at all with the levels of DNA alkylation. The ratio of mutations to adducts varied at least 14-fold among the various N7-guanyl adducts examined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Conversion of the cellular prion protein (PrP(C)) into its pathological isoform (PrP(Sc)), the key molecular event in the pathogenesis of prion diseases, is accompanied by a conformational transition of alpha-helix into beta-sheet structures involving alpha-helix 1 (alpha1) domain from residues 144 to 154 of the protein. Reduction and alkylation of PrP(C) have been found to inhibit the conversion of PrP(C) into PrP(Sc) in vitro. Here we report that while antibody affinity of epitopes in the N- and C-terminal domains remained unchanged, reduction and alkylation of the PrP molecule induced complete concealment of an epitope in alpha1 for anti-PrP antibody 6H4 that is able to cure prion infection in the cell model. Mass spectrometric analysis of recombinant PrP showed that the alkylation reaction takes place at reduced cysteines but no modification was observed in this cryptic epitope. Our study suggests that reduction and alkylation result in local or global rearrangement of PrP tertiary structure that is maintained in both liquid and solid phases. The implications in the conversion of PrP(C) into PrP(Sc) and the therapeutics of prion diseases are discussed.  相似文献   

16.
When diaziquone was irradiated with 500 nm visible light, hydroxyl free radicals as well as the diaziquone semiquinone were produced. The diaziquone semiquinone is a stable free radical that exhibits a characteristic 5-line electron spin resonance (ESR) spectrum. Since hydroxyl free radicals are short lived, and not observable by conventional ESR, the nitrone spin trap 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) was used to convert hydroxyl radicals into longer lived ESR detectable spin adducts. The formation of hydroxyl radicals was further confirmed by investigating reactions in which hydroxyl radical scavangers, sodium formate and dimethylsulfoxide, compete with the spin traps DMPO or POBN (alpha-(4-Pyridyl-1-oxide)-N- tert-butylnitrone) for hydroxyl free radicals. The products of these scavenging reactions were also trapped with DMPO or POBN. If drug free radicals and hydroxyl free radicals are important in the activity of quinone-containing antitumor agents, AZQ may have a potential in photoirradiation therapy or photodynamic therapy.  相似文献   

17.
The dissimilatory Fe(III)-reducing bacterium Geobacter sulfurreducens reduced and precipitated Tc(VII) by two mechanisms. Washed cell suspensions coupled the oxidation of hydrogen to enzymatic reduction of Tc(VII) to Tc(IV), leading to the precipitation of TcO(2) at the periphery of the cell. An indirect, Fe(II)-mediated mechanism was also identified. Acetate, although not utilized efficiently as an electron donor for direct cell-mediated reduction of technetium, supported the reduction of Fe(III), and the Fe(II) formed was able to transfer electrons abiotically to Tc(VII). Tc(VII) reduction was comparatively inefficient via this indirect mechanism when soluble Fe(III) citrate was supplied to the cultures but was enhanced in the presence of solid Fe(III) oxide. The rate of Tc(VII) reduction was optimal, however, when Fe(III) oxide reduction was stimulated by the addition of the humic analog and electron shuttle anthaquinone-2,6-disulfonate, leading to the rapid formation of the Fe(II)-bearing mineral magnetite. Under these conditions, Tc(VII) was reduced and precipitated abiotically on the nanocrystals of biogenic magnetite as TcO(2) and was removed from solution to concentrations below the limit of detection by scintillation counting. Cultures of Fe(III)-reducing bacteria enriched from radionuclide-contaminated sediment using Fe(III) oxide as an electron acceptor in the presence of 25 microM Tc(VII) contained a single Geobacter sp. detected by 16S ribosomal DNA analysis and were also able to reduce and precipitate the radionuclide via biogenic magnetite. Fe(III) reduction was stimulated in aquifer material, resulting in the formation of Fe(II)-containing minerals that were able to reduce and precipitate Tc(VII). These results suggest that Fe(III)-reducing bacteria may play an important role in immobilizing technetium in sediments via direct and indirect mechanisms.  相似文献   

18.
2-(4-Methyl-1-piperazinylmethyl) acrylophenone dihydrochloride (MPMAP) is a novel inhibitor of microtubule assembly in vitro and in vivo whose molecular mechanism of action has not been investigated (M. L. Mallevais, A. Delacourte, I. Lesieur, D. Lesieur, M. Cazin, C. Brunet, and M. Luyckx (1984) Biochimie 66, 477-482). We have examined the effect of MPMAP on the alkylation of tubulin by iodo[14C]acetamide and N,N'-ethylenebis(iodoacetamide) (EBI). MPMAP is a very potent inhibitor of tubulin alkylation by iodo[14C]acetamide. MPMAP gives half-maximal inhibition at a concentration of 15 microM. MPMAP also inhibits the alkylation of denatured tubulin and of aldolase, implying that it reacts strongly with sulfhydryl groups. MPMAP does not, however, interfere with formation by EBI of a crosslink between cysteines 239 and 354 in the beta subunit of tubulin, suggesting that these sulfhydryls are located in a cleft in the tubulin molecule.  相似文献   

19.
The electron-transferring flavoprotein (ETF) from Methylophilus methylotrophus (sp. W(3)A(1)) exhibits unusual oxidation-reduction properties and can only be reduced to the level of the semiquinone under most circumstances (including turnover with its physiological reductant, trimethylamine dehydrogenase (TMADH), or reaction with strong reducing reagents such as sodium dithionite). In the present study, we demonstrate that ETF can be reduced fully to its hydroquinone form both enzymatically and chemically when it is in complex with TMADH. Quantitative titration of the TMADH x ETF protein complex with sodium dithionite shows that a total of five electrons are taken up by the system, indicating that full reduction of ETF occurs within the complex. The results indicate that the oxidation-reduction properties of ETF are perturbed upon binding to TMADH, a conclusion further supported by the observation of a spectral change upon formation of the TMADH x ETF complex that is due to a change in the environment of the FAD of ETF. The results are discussed in the context of ETF undergoing a conformational change during formation of the TMADH x ETF electron transfer complex, which modulates the spectral and oxidation-reduction properties of ETF such that full reduction of the protein can take place.  相似文献   

20.
The mechanism by which 2-bromo-4'-nitroacetophenone (BrNAP) inactivates cytochrome P-450c, which involves alkylation primarily at Cys-292, is shown in the present study to involve an uncoupling of NADPH utilization and oxygen consumption from product formation. Alkylation of cytochrome P-450c with BrNAP markedly stimulated (approximately 30-fold) its rate of anaerobic reduction by NADPH-cytochrome P-450 reductase, as determined by stopped flow spectroscopy. This marked stimulation in reduction rate is highly unusual in that Cys-292 is apparently not part of the heme- or substrate-binding site, and its alkylation by BrNAP does not cause a low spin to high spin state transition in cytochrome P-450c. Under aerobic conditions the rapid oxidation of NADPH catalyzed by alkylated cytochrome P-450c was associated with rapid reduction of molecular oxygen to hydrogen peroxide via superoxide anion. The intermediacy of superoxide anion, formed by the one-electron reduction of molecular oxygen, established that alkylation of cytochrome P-450c with BrNAP uncouples the catalytic cycle prior to introduction of the second electron. The generation of superoxide anion by decomposition of the Fe2+ X O2 complex was consistent with the observations that, in contrast to native cytochrome P-450c, alkylated cytochrome P-450c failed to form a 430 nm absorbing chromophore during the metabolism of 7-ethoxycoumarin. Alkylation of cytochrome P-450c with BrNAP did not completely uncouple the catalytic cycle such that 5-20% of the catalytic activity remained for the alkylated cytochrome compared to the native protein depending on the substrate assayed. The uncoupling effect was, however, highly specific for cytochrome P-450c. Alkylation of nine other rat liver microsomal cytochrome P-450 isozymes with BrNAP caused little or no increase in hydrogen peroxide formation in the presence of NADPH-cytochrome P-450 reductase and NADPH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号