首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The obese (fa/fa) Zucker rat shows an impaired sympathetic tone which is accompanied by an altered thermogenesis and changes in both lipid and carbohydrate metabolism. In this work, we have investigated the regulatory effects of epinephrine on the rate of gluconeogenesis from a mixture of [(14)C]lactate/pyruvate, in hepatocytes isolated from obese (fa/fa) rats and their lean (Fa/-) littermates. Epinephrine caused a dose-dependent stimulation of the rate of [(14)C]glucose formation in both obese and lean rat hepatocytes, the maximal rates being five- and twofold higher than the corresponding basal values (0.50 +/- 0.06 and 1.96 +/- 0.15 micromol of lactate converted to glucose/g of cell x 20 min, respectively). No significant differences were found between the calculated half-maximal effective concentrations (EC(50)) for epinephrine in obese and lean rat liver cells. The stimulation of gluconeogenesis by epinephrine was accompanied by a decrease in the cellular concentration of fructose 2,6-bisphosphate, and an inactivation of both pyruvate kinase and 6-phosphofructo 2-kinase, to similar extents in both types of hepatocytes. Epinephrine also significantly raised the hepatocyte content of cyclic AMP, with about a twofold increase at a saturating concentration of the catecholamine (1 microM), in both lean and obese rat liver cells. However, at suboptimal concentrations of epinephrine, the rise in cyclic AMP levels was significantly less marked in obese than in lean rat hepatocytes. Nevertheless, no significant differences were found in either the affinity or the number of beta-adrenergic receptors, in radioligand binding studies carried out in liver plasma membranes obtained from obese and lean Zucker rats. In conclusion, compared to the corresponding basal values, the response of gluconeogenesis from lactate to the stimulatory effect of epinephrine is higher in obese (fa/fa) than in lean (Fa/-) Zucker rat hepatocytes, with no significant differences in the calculated EC(50) values for this hormone. This occurs in spite of an apparent decreased sensitivity of the adenylate cyclase system to the stimulatory effect of epinephrine in obese rat liver cells.  相似文献   

2.
The influence of the hypoglycemic agent glipizide (0-100 microM) on the rate of gluconeogenesis from lactate, as well as on the levels of fructose 2,6-bisphosphate, has been investigated in hepatocytes isolated from genetically obese (fa/fa) Zucker rats and from their corresponding lean (Fa/-) littermates. As compared to lean rat hepatocytes, liver cells isolated from obese animals showed a lower rate of basal gluconeogenesis (0.9 +/- 0.2 vs 5.4 +/- 0.5 micromol of lactate converted to glucose/g cell x 30 min, n=4) and higher levels of fructose 2,6-bisphosphate (11.5 +/- 1.0 vs 5.9 +/- 0.4 nmol/g cell, n=8-9). In lean rat hepatocytes, the presence of glipizide in the incubation medium caused a dose-dependent inhibition of the rate of lactate conversion to glucose (maximal inhibition=46%; EC50 value=26 microM), and simultaneously raised the cellular content of fructose-2,6-bisphosphate (maximal increment=40%; EC50 value=10 microM). In contrast, in hepatocytes isolated from obese rats, the inhibition of gluconeogenesis and the increment in fructose-2,6-bisphosphate levels elicited by glipizide were significantly reduced (maximal effects of 22 and 13%, respectively). Similarly, the activation of glycogen phosphorylase and the increase in hexose 6-phosphate levels in response to glipizide were less marked in obese rat hepatocytes than in liver cells isolated from lean animals. These results demonstrate that the efficacy of sulfonylureas as inhibitors of hepatic gluconeogenesis is reduced in the genetically obese (fa/fa) Zucker rat.  相似文献   

3.
Obese (fa/fa) rats (30 days old) exhibited a 50% increase in the weight of interscapular brown adipose tissue compared with their lean (Fa/fa) littermates. The tissue weight increase was accounted for by an increased fat content. Lipogenesis in vivo, as assessed by the incorporation of 3H from 3H2O into lipid, was increased 5-fold in brown adipose tissue of obese as compared with lean rats. Accordingly, acetyl-CoA carboxylase, fatty acid synthetase, citrate-cleavage enzyme and malic enzyme in this tissue were 4-8 times more active in obese than in lean rats.  相似文献   

4.
The development of the lipogenic capacity in brown adipose tissue was studied in suckling lean (Fa/fa) and obese (fa/fa) Zucker pups aged from 7 to 22 days. In both lean and obese pups, activities of the two key lipogenic enzymes, fatty acid synthetase and acetyl-CoA carboxylase, and of citrate cleavage enzyme rose from the early to the late suckling period. Compared with lean pups, 7-day-old fa/fa pups showed a 35% increase in fat accumulation in interscapular brown adipose tissue and a 25% increase in fatty acid synthetase activity. By 10 days of age, fat deposition, lipogenesis in vivo (assessed by the incorporation of 3H from 3H2O into fatty acids) and fatty acid synthetase activity were 1.5-2-fold higher in pre-obese than in lean pups. Compared with lean pups, the increased lipogenesis in vivo observed in brown adipose tissue of 10-day-old pre-obese pups could not entirely account for the difference in fat deposition observed in this tissue, suggesting that additional mechanisms are at play to explain the increased fat content of this tissue.  相似文献   

5.
The relative importance of fatty acid synthesis in triglyceride secretion by perfused livers from lean (normal control) and obese Zucker rats was investigated. Livers from fed animals were perfused in a recirculating system with tritiated water and a constant infusion of oleic acid. Triglyceride secretion was 5 times greater and cholesterol secretion was 35% greater in the obese rat livers. The very-low-density lipoprotein hypersecreted by perfused livers from obese rats contained more apolipoprotein B and exhibited an increased B-48/B-100 ratio. Apo-B was also elevated in the hypertriglyceridemic plasma of obese rats in both fed and fasting states. The very-low-density lipoprotein isolated therefrom was likewise characterized by an increased B-48/B-100 ratio. Ketogenesis was depressed 40% in the obese rat livers and increased hepatic malonyl-CoA was implicated in this alteration. The de novo synthesis and secretion of newly synthesized cholesterol was moderately increased in the perfused livers from obese rats. Tritium incorporation into fatty acids was 15 times greater in the obese genotype. Most of the synthesized fatty acids remained in the liver and were recovered after perfusion in triglyceride and phospholipids. Newly synthesized fatty acids accounted for only 3 and 15% of the triglyceride secreted by the lean and obese rat livers, respectively. A large portion of the secreted triglyceride fatty acids was derived from endogenous liver lipids. When the turnover of newly synthesized fatty acids in these pools was considered, the contribution of de novo fatty acid synthesis to triglyceride secretion was estimated to be 9% in the lean and 44% in the obese rat livers. Therefore, the altered partition of free fatty acids (Fukuda, N., Azain, M. J., and Ontko, J. A. (1982) J. Biol. Chem. 257, 14066-14072) and increased fatty acid synthesis are both major determinants of the hypersecretion of triglyceride-rich lipoproteins by the liver in the genetically obese Zucker rat.  相似文献   

6.
Leptin is an adipocyte-secreted hormone that binds hypothalamic receptors and potently decreases food intake. Leptin receptor defects in homozygous mutant Zucker fatty ( fa/fa) rats lead to massive obesity, hyperphagia, decreased energy expenditure, and insulin resistance, while the phenotype of heterozygous ( Fa/fa) lean rats lies between lean ( Fa/Fa) and obese ( fa/fa) rats. Whether heterezygotes exhibit specific changes in lipid metabolism in a diet-responsive manner is not clear. Thus, the specific aim of this study was to test whether the presence of one fa allele modulates lipid metabolism and leptin, and whether these effects are exacerbated by high-fat diet. We demonstrate that the presence of one fa allele significantly increases lipogenesis in adipose tissue assessed by glycerol-3-phosphate dehydrogenase (GPDH) and fatty acid synthase (FAS) activities. FAS is more responsive to high-fat diets than GPDH in Fa/fa rats. Adipose tissue leptin levels are significantly higher in fat pads of Fa/fa compared to Fa/Fa rats. Moreover, Fa/fa rats fed high-fat diet show an additional two-fold increase in leptin levels compared to wild type rats on the same diet. Collectively, these results indicate that the presence of one fa allele increase adipocyte lipogenic enzyme activities, which results in hyperleptinemia concurrent with increased adiposity.  相似文献   

7.
In myocytes and adipocytes, insulin increases fatty acid translocase (FAT)/CD36 translocation to the plasma membrane (PM), enhancing fatty acid (FA) uptake. Evidence links increased hepatic FAT/CD36 protein amount and gene expression with hyperinsulinemia in animal models and patients with fatty liver, but whether insulin regulates FAT/CD36 expression, amount, distribution, and function in hepatocytes is currently unknown. To investigate this, FAT/CD36 protein content in isolated hepatocytes, subfractions of organelles, and density-gradient isolated membrane subfractions was analyzed in obese and lean Zucker rats by Western blotting in liver sections by immunohistochemistry and in hepatocytes by immunocytochemistry. The uptake of oleate and oleate incorporation into lipids were assessed in hepatocytes at short time points (30-600 s). We found that FAT/CD36 protein amount at the PM was higher in hepatocytes from obese rats than from lean controls. In obese rat hepatocytes, decreased cytoplasmatic content of FAT/CD36 and redistribution from low- to middle- to middle- to high-density subfractions of microsomes were found. Hallmarks of obese Zucker rat hepatocytes were increased amount of FAT/CD36 protein at the PM and enhanced FA uptake and incorporation into triglycerides, which were maintained only when exposed to hyperinsulinemic conditions (80 mU/l). In conclusion, high insulin levels are required for FAT/CD36 translocation to the PM in obese rat hepatocytes to enhance FA uptake and triglyceride synthesis. These results suggest that the hyperinsulinemia found in animal models and patients with insulin resistance and fatty liver might contribute to liver fat accumulation by inducing FAT/CD36 functional presence at the PM of hepatocytes.  相似文献   

8.
Lipogenesis from U(14C) lactate was studied in hepatocytes isolated from obese Zucker rats (fa/fa) their lean littermates (Fa/?) and Sprague Dawley rats. The distribution of radioactive carbon between the glycerol and the fatty acid moieties of the acylglycerols were studied. Radioactive lactate was better utilized for glycerol formation than it was for fatty acid formation in the obese rats. However, when oleate was added to the hepatocytic incubation medium, radioactive lactate was preferentially incorporated into the fatty acid moiety of the acylglycerols.  相似文献   

9.
TSE, ELIZABETH O, FRANCINE M GREGOIRE, BRIGITTE REUSENS, CLAUDE REMACLE, JOSEPH J HOET, PATRICIA R JOHNSON, JUDITH S STERN. Changes of islet size and islet size distribution resulting from protein malnutrition in lean (Fa/Fa) and obese (fa/fa) Zucker rats. Potential alterations in islet size and islet size distribution resulting from protein malnutrition were studied in lean (Fa/Fa) and obese (fa/fa) Zucker rats. The purpose was to investigate whether the distribution of enlarged islets in obese rats was altered by low-protein feeding. Four-week-old, male, lean and obese Zucker rats were fed either a diet containing 20% (w/w) protein (control diet) or a diet containing 5% (w/w) protein (low-protein diet) for 3 weeks. Pancreata were dissected at autopsy and immunostained for insulin. Islet size and distribution were determined by morphometric analysis. Body-weight gain, food intake, and serum insulin and glucose were also measured. After 3 weeks on the diets, serum insulin was significantly lower in both lean (-75%) and obese (-54%) rats fed low protein compared with that in controls. However, obese rats were still hyperinsulinemic compared with lean rats. Protein malnutrition resulted in a shift in distribution of islets to smaller size both in lean and in obese rats, with an increase in the population of small islets (100 μm2) and a decrease in the population of large islets (>20,000 μ;m2). In lean and obese rats fed low protein, β-cell weight was significantly lower, B cell volume fraction tended to decrease, and islet number per section area was significantly elevated when compared with controls. Taken together, these results show that protein deficiency alters the endocrine pancreas in both lean and obese Zucker rats. Although the decrease in islet size and the shift in distribution to smaller islets most likely contribute to the decrease in serum insulin concentration, these changes appear insufficient to normalize hyperinsulinemia in the obese Zucker rat.  相似文献   

10.
Hepatic insulin resistance in the leptin-receptor defective Zucker fa/fa rat is associated with impaired glycogen synthesis and increased activity of phosphorylase-a. We investigated the coupling between phosphorylase-a and glycogen synthesis in hepatocytes from fa/fa rats by modulating the concentration of phosphorylase-a. Treatment of hepatocytes from fa/fa rats and Fa/? controls with a selective phosphorylase inhibitor caused depletion of phosphorylase-a, activation of glycogen synthase and stimulation of glycogen synthesis. The flux-control coefficient of phosphorylase on glycogen synthesis was glucose dependent and at 10 mm glucose was higher in fa/fa than Fa/? hepatocytes. There was an inverse correlation between the activities of glycogen synthase and phosphorylase-a in both fa/fa and Fa/? hepatocytes. However, fa/fa hepatocytes had a higher activity of phosphorylase-a, for a corresponding activity of glycogen synthase. This defect was, in part, normalized by expression of the glycogen-targeting protein, PTG. Hepatocytes from fa/fa rats had normal expression of the glycogen-targeting proteins G(L) and PTG but markedly reduced expression of R6. Expression of R6 protein was increased in hepatocytes from Wistar rats after incubation with leptin and insulin. Diminished hepatic R6 expression in the leptin-receptor defective fa/fa rat may be a contributing factor to the elevated phosphorylase activity and/or its high control strength on glycogen synthesis.  相似文献   

11.
The male obese Wistar Diabetic Fatty (WDF) rat is a genetic model of obesity and non-insulin dependent diabetes (NIDDM). The obese Zucker rat shares the same gene for obesity on a different genetic background but is not diabetic. This study evaluated the degree of insulin resistance in both obese strains by examining the binding and post binding effects of muscle insulin receptors in obese, rats exhibiting hyperinsulinemia and/or hyperglycemia. Insulin receptor binding and affinity and tyrosine kinase activity were measured in skeletal muscle from male WDF fa/fa (obese) and Fa/? (lean) and Zucker fa/fa (obese) and Fa/Fa (homozygous lean) rats. Rats were fed a high sucrose (68% of total Kcal) or Purina stock diet for 14 weeks. At 27 weeks of age, adipose depots were removed for adipose cellularity analysis and the biceps femoris muscle was removed for measurement of insulin binding and insulin-stimulated receptor kinase activity. Plasma glucose (13.9 vs. 8.4 mM) and insulin levels (14,754 vs. 7440 pmoI/L) were significantly higher in WDF obese than in Zucker obese rats. Insulin receptor number and affinity and TK activity were unaffected by diet. Insulin receptor number was significantly reduced in obese WDF rats (2.778 ± 0.617 pmol/mg protein), compared to obese Zucker rats (4.441 ± 0.913 pmol/mg potein). Both obese strains exhibited down regulation of the insulin receptor compared to their lean controls. Maximal tyrosine kinase (TK) activity was significantly reduced in obese WDF rats (505 ± 82 fmol/min/mg protein) compared to obese Zucker rats (1907 ± 610 fmol/min/mg protein). Only obese WDF rats displayed a decrease in TK activity per receptor. These observations establish the obese WDF rat as an excellent model for exploring mechanisms of extreme insulin resistance, particularly post-receptor tyrosine kinase-associated defects, in non-insulin dependent diabetes.  相似文献   

12.
The effect of adrenaline on triacylglycerol synthesis and secretion was examined in isolated rat hepatocytes. Cells were incubated with 0.5 mM-[1-14C]oleate, and the accumulation of triacylglycerol and [14C]triacylglycerol was measured in the incubation medium. Triacylglycerol appearing in the medium was present in a form with properties similar to very-low-density lipoproteins. Triacylglycerol, [14C]triacylglycerol and [14C]phospholipid contents of hepatocytes were also determined. Addition of 10 microM-(-)adrenaline decreased accumulation of glycerolipid in the incubation medium and also decreased cellular [14C]phospholipid content. Prazosin abolished these effects, whereas propranolol did not. The hormone did not affect cellular triacylglycerol content or rates of incorporation of [1-14C]oleate into cell triacylglycerol. The effect of adrenaline on the removal of newly secreted triacylglycerol and the secretion of synthesized glycerolipid was also examined. The catecholamine did not affect rates of removal of newly secreted triacylglycerol. Adrenaline did inhibit the secretion of pre-synthesized lipid by the cells, as assessed by the appearance of radiolabelled triacylglycerol from hepatocytes that had been preincubated with [1,2,3-3H]-glycerol. Adrenaline did not affect rates of fatty acid uptake by hepatocytes, but did stimulate oxidation of [1-14C]oleate, principally to 14CO2.  相似文献   

13.
Recent reports have suggested that the obesity and hyperphagia of the genetically obese Zucker rat may be related to defective insulin action or binding in the hypothalamus. We used quantitative autoradiography to determine if insulin binding is altered in specific hypothalamic nuclei associated with food intake. Insulin binding was measured in the arcuate (ARC), dorsomedial (DMN), and ventromedial (VMN) hypothalamic nuclei of 3–4-month-old lean (Fa/Fa) and genetically obese (fa/fa) Zucker rats. A consistently reproducible 15% increase in the total specific binding of 0.1 nM [125I]-insulin was found in the ARC of the obese genotype. A slight increase in insulin binding in the DMN was also found. No difference in specific insulin binding was found between genotypes in the VMN. Nonlinear least squares analysis of competitive binding studies showed that the Kd of the ARC insulin binding site was 33% higher in the lean rats than in the obese rats, indicating an increased affinity for insulin. No difference in site number (Bmax) was found in the ARC, DMN or VMN, and no evidence was found for reduced insulin binding in the hypothalamus of the obese (fa/fa) genotype. The results suggest that hyperphagia and obesity of the obese (fa/fa) Zucker rat genotype may be associated with increased insulin binding in the arcuate nucleus.  相似文献   

14.
The purpose of these studies was to determine if the utilization of ketone bodies as a carbon source for lipogenesis could account for the decreased ketone body production by livers of obese Zucker rats, as well as contribute to the enhanced rates of fatty acid synthesis observed in these animals. Ketone body production was decreased from 822 mumol/liver in the lean to 538 mumol/liver in the obese genotype (P less than 0.05). The incorporation of ketone bodies into fatty acids was significantly greater in the obese rat liver (lean, 1.95 mumol of ketone bodies/liver, versus obese, 35.22 mumol/liver; P less than 0.025). The relative contribution of this pathway to the overall rate of fatty acid synthesis was not affected by genotype and accounted for only 3 to 4% of the fatty acids synthesized. The incorporation of ketone bodies into digitonin precipitable sterols was similar in the two genotypes (lean, 4.5 mmol/liver, versus obese 4.7 mumol/liver; NS). This accounted for 9.2 and 6.3% of the total sterol synthesis in lean and obese rat livers, respectively. The total incorporation of ketone bodies into lipid was 7.5 mumols in the lean rat livers and 42.0 mumoles in the obese (P less than 0.025). The net increase was 35 mumoles incorporated, whereas the net decrease in ketogenesis was 284 mumoles. Thus, although ketone body carbon utilization for lipid synthesis was increased in the liver of the obese rats, this pathway could only account for a fraction of the genotypic difference in ketone body production and was of relatively minor importance as a source of carbon for hepatic fatty acid synthesis in both lean and obese rats.  相似文献   

15.
This study was designed to monitor the developmental changes in insulinemia and lipogenic enzyme activities in both inguinal adipose tissue and liver during suckling (7, 9, 14, and 17 days of age) and weaning (22 and 30 days of age) on to either a low-fat or a high-fat diet in lean (Fa/fa) and obese (fa/fa) rats. Tissues were removed through surgery and genotypes were retrospectively determined. During suckling, there was no difference in liver enzyme activities between the two groups. In contrast, adipose tissue fatty acid synthetase was increased by 50% and citrate cleavage enzyme and malic enzyme by 30% by 9 days of age. By 17 days of age, there was a threefold elevation in these enzyme activities and 6-phosphogluconic dehydrogenase and a twofold increase in glucose-6-phosphate dehydrogenase per inguinal fat pad in fa/fa versus Fa/fa. Consistent with these results, fat pad weight was increased by 20%, 50%, and 100% at 9, 14, and 17 days of age, respectively, in obese as compared to lean pups. However only by 17 days of age could a slight but significant increase in insulin level be detected in obese pups. Enlargement of inguinal fat pad accelerated after weaning on to a low-fat diet and still more after weaning on to a high-fat diet. Weaning on to a low-fat diet elicited an induction of hepatic lipogenic enzymes two or three times greater in fa/fa than in lean pups, while weaning on to a high-fat diet blunted the differences between genotypes. The lipogenic enzyme activities displayed per total inguinal fat were three to ten times greater in obese than in lean pups, regardless of the diet. However, adipose tissue lipogenic enzyme activities were much lower after weaning on to a high-fat than on to a low-fat diet in obese pups. The high-fat diet was as effective as the low-fat diet in triggering hyperinsulinemia in obese pups. The increased adipose tissue capacity for lipogenesis, starting during the suckling period, could play an important etiologic role in the development and maintenance of obesity in the Zucker rat.-Bazin, R., and M. Lavau. Development of hepatic and adipose tissue lipogenic enzymes and insulinemia during suckling and weaning on to a high-fat diet in Zucker rats.  相似文献   

16.
Young lean (Fa/?) and obese (fa/fa) rats were treated with the thermogenic beta-adrenoceptor agonist, BRL 26830, for 3 weeks. In lean rats this treatment had no effect on body weight but there was a marked increase in the insulin sensitivity of soleus muscle strips with respect to glycolytic rate. Treatment of obese rats with BRL 26830 produced a small but not significant decrease in body weight but the sensitivity of both glycolysis and glycogen synthesis to insulin was increased so that muscles of treated obese rats showed similar insulin sensitivity to untreated lean rats. It is suggested that such changes are unlikely to be merely a secondary consequence of an anti-obesity action.  相似文献   

17.
We have previously reported that insulin binding is decreased in the olfactory bulb of both heterozygous (Fa/fa) and obese (fa/fa) Zucker rats. In the present study, we measured insulin binding in membranes prepared from the olfactory bulb, cerebral cortex, and hypothalamus of control (Fa/Fa) Wistar Kyoto rats; "fatty" (fa/fa) Wistar Kyoto rats; and phenotypically lean (Fa/?) Wistar Kyoto rats. Insulin binding was decreased in all brain regions, as well as the liver of the obese Wistar Kyoto fa/fa rats. Additionally, insulin binding was decreased in the liver and brain membranes from the Fa/? Wistar Kyoto rats. As most of the Fa/? rats were probably carriers of one 'fa' gene, but the population was only slightly hyperinsulinemic, we conclude that--as in the Zucker rat--it is the presence and expression of the 'fa' gene rather than downregulation which results in the decreased insulin binding. Thus, regulation of the brain insulin receptor appears to be independent of plasma or cerebrospinal fluid insulin levels.  相似文献   

18.
The activity of hepatic microsomal cholesterol 7 alpha-hydroxylase was studied in genetically obese and lean Zucker rats. The liver microsomal cholesterol 7 alpha-hydroxylase activity in fatty Zucker rats (fa/fa) is about 50% to 70% lower than that of the lean (Fa/-) rats of the same sex, when animals were sacrificed at the middle of the dark cycle. When rats were sacrificed at the middle of the light cycle, cholesterol 7 alpha-hydroxylase activity was the same as in the dark cycle in obese rats of both sexes, but was 65% lower in lean rats. However, cholesterol 7 alpha-hydroxylase activity was stimulated by the treatment with cholestyramine in both obese and lean rats. Our results suggested that the diurnal regulation of cholesterol 7 alpha-hydroxylase activity is lost in obese rats but was present under cholestyramine treatment in the genetically obese strain of rats.  相似文献   

19.
Pathophysiological and pharmacological concentrations of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the cerebrospinal fluid (CSF) induce anorexia in normal rats. Obesity in humans and rodents is associated with increased TNF-α messenger RNA and protein levels in various cell types. This suggests that obese individuals may have differential regulation of cytokine production and dissimilar responsiveness to cytokines. In the present study, we investigated the effects of the intracerebroventricular (ICV) microinfusion of TNF-α (50, 100, and 500 ng/rat), IL-1β (1.0, 4.0, and 8.0 ng), and TNF-α (100 ng) plus IL-1β (1.0 ng) on obese (fa/fa) and lean (Fa/Fa) Zucker rats. The results show that: TNF-α and IL-1β, and the concomitant administration of TNF-a and IL-ip decreased the short-term (4 hours), nighttime (12 hours), and total daily food intakes in obese and lean rats; IL-1β was more potent relative to TNF-α; obese rats showed greater responsiveness to IL-1β: 8.0 ng IL-1β, for example, decreased the 12-hour food intake by 52% in obese and 22% in lean rats. On the other hand, obese and lean rats did not exhibit a significantly different responsiveness to the anorexia induced by 50,100, or 500 ng TNF-α at the 4-hour period; and the concomitant ICV administration of TNF-α and IL-1β induced anorexia with additive (4-hour period) or synergistic (12-hour and 24-hour periods) effects in obese rats. The effect of TNF-α plus IL-1β in lean rats was greater than additive for the 12-hour and 24-hour periods. The difference in suppression of total daily food intake by TNF-α plus IL-1β in obese (-43%) versus lean (-23%) rats was significantly different (p<0.01). The results show that obese (fa/fa) and lean (Fa/Fa) Zucker rats have differential responsiveness to the ICV microinfusion of two different classes of cytokines.  相似文献   

20.
Obese Zucker rats (fa/fa) have low levels of arachidonic acid (AA) in liver phospholipids (PL). We have previously shown that a 70% gamma-linolenate concentrate (GLA; an AA intermediate) fed at a fixed dose (0.07 g/day) normalized hepatic PL AA and reduced weight gain selectively in the obese animals. In a follow-up study, 16 obese (fa/fa) and 16 lean (Fa/Fa) 4-week-old male rats were randomized into 4 groups of 8 each and gavaged daily with soybean oil (SOY) containing 55% 18:2ω6 (an AA precursor) or GLA, using a progressive dose (≤ 5% of total calories) based on body weight. A defined diet with 11% of energy as SOY was fed ad libitum for 60 days. GLA obese had lower body weight (p<0.0001) and 60-day cumulative food intake (p<0.05) compared to SOY obese, but neither parameter differed between the lean groups. For the last twenty days cumulative food intake was identical for GLA obese and SOY lean, whereas SOY obese consumed 18% more (p<0.05). Thus the progressive dose of GLA selectively suppressed hyperphagia in obese Zucker rats. Erythrocytes collected at 15-day intervals showed parallel increases in AA in both genotypes over time, suggesting normal AA availability during rapid growth. Thus, the reduced PL AA in the livers from the obese rats probably reflects impaired distribution in selected tissues rather than reduced hepatic production. Due to the potential health risks of enriching tissue lipids with AA, great caution is advised in considering GLA as therapy for human obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号