首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to align two previously published genetic linkage maps, a set of four of the United States Department of Agriculture (USDA) microsatellite linkage markers was mapped in the International Pig Gene Mapping Project (PiGMaP) reference families. Two-point linkage analysis was used between these USDA markers and the set of genes and markers previously mapped on the PiGMaP chromosome 14 map-Markers with threshold lod scores of three or greater were used for multipoint map construction. The USDA and PigGMaP linkage maps of chromosome 14 were aligned using the four USDA microsatellite markers along with three markers that are common to both maps. The PiGMaP genetic linkage map order for chromosome 14 was confirmed and the map was expanded to 193 cM with addition of the new markers.  相似文献   

2.
W Zhang  C Haley  C Moran 《Animal genetics》1995,26(5):361-364
The PiGMaP and USDA porcine linkage maps for chromosomes 2 and 5 have been aligned by typing five USDA microsatellite markers from chromosomes 2 and 4 from chromosome 5 on the PiGMaP reference families. The markers in the two maps can be successfully aligned except for Sw395 on chromosome 2, which is the end-most marker in the USDA map 22 cM remote from the next marker, but which maps to a more central location and in the same position as Sw776 in the PiGMaP families. The mapping of four additional chromosome 5 markers has enabled amalgamation of the two previously separate PiGMaP linkage groups assigned to chromosome 5 and has more than doubled the length of its map. The USDA map of chromosome 5 is considerably shorter than the revised PiGMaP version, particularly between DAGK and Sw1071 , where the corresponding lengths are 9 cM versus 33 cM.  相似文献   

3.
A set of four microsatellite markers from the USDA genetic linkage map of porcine chromosome 13 were mapped in the European Pig Gene Mapping Project (PiGMaP) reference pedigrees. A two-point linkage analysis was performed between these markers and a set of markers known to map to chromosome 13. Pairs of markers that had a lod score greater than three were used to construct a multi-point linkage map, permitting alignment of the United States Department of Agriculture (USDA) map to the PiGMaP.  相似文献   

4.
Recently two main genetic maps [Rohrer et al. Genetics 136, 231 (1994); Archibald et al. Mamm. Genome 6, 157 (1995)] and a cytogenetic map [Yerle et al. Mamm. Genome 6, 175 (1995)] for the porcine genome were reported. As only a very few microsatellites are located on the cytogenetic map, it appears to be important to increase the relationships between the genetic and cytogenetic maps. This document describes the regional mapping of 100 genetic markers with a somatic cell hybrid panel. Among the markers, 91 correspond to new localizations. Our study enabled the localization of 14 new markers found on both maps, of 54 found on the USDA map, and of 23 found on the PiGMaP map. Now 21% and 43% of the markers on the USDA and PiGMaP linkage maps respectively are physically mapped. This new cytogenetic information was then integrated within the framework of each genetic map. The cytogenetic orientation of the USDA linkage maps for Chromosomes (Chrs) 3, 8, 9, and 16 and of PiGMaP for Chr 8 was determined. USDA and PiGMaP linkage maps are now oriented for all chromosomes, except for Chrs 17 and 18. Moreover, the linkage group ``R' from the USDA linkage map was assigned to Chr 6. Received: 21 September 1995 / Accepted: 19 January 1996  相似文献   

5.
A region of chromosome 9, surrounding the interferon-beta (IFNB1) locus and the interferon-alpha (IFNA) gene cluster on 9p13-p22, has been shown to be frequently deleted or rearranged in a number of human cancers, including leukemia, glioma, non-small-cell lung carcinoma, and melanoma. To assist in better defining the precise region(s) of 9p implicated in each of these malignancies, a combined genetic and physical map of this region was generated using the available 9p markers IFNB1, IFNA, D9S3, and D9S19, along with a newly described locus, D9S126. The relative order and distances between these loci were determined by multipoint linkage analysis of CEPH (Centre d'Etude du Polymorphisme Humain) pedigree DNAs, pulsed-field gel electrophoresis, and fluorescence in situ hybridization. All three mapping approaches gave concordant results and, in the case of multipoint linkage analysis, the following gene order was supported for these and other closely linked chromosome 9 markers present in the CEPH database: pter-D9S33-IFNB1/IFNA-D9S126-D9S3-D9S19 -D9S9/D9S15-ASSP3-qter. This map serves to extend preexisting chromosome 9 maps (which focus primarily on 9q) and also reassigns D9S3 and D9S19 to more proximal locations on 9p.  相似文献   

6.
Members of four families in which multiple endocrine neoplasia type 2A (MEN-2A) is segregating were typed for seven DNA markers and one red cell enzyme marker on chromosome 13. Close linkage was excluded between the MEN2A locus and each marker locus tested. By means of multipoint analysis and the genetic map of chromosome 13 developed by Leppert et al., MEN2A was excluded from any position between the most proximal marker locus (D13S6) and the most distal marker locus (D13S3) and from within 12 cMorgans outside these two loci, respectively. However, the support of exclusion within an interval was diminished under the assumption of a substantially larger genetic map in females. The strategy of multipoint analysis, which excluded between 1.5 and 2.0 times more chromosome 13 than did two-point analysis, demonstrates the utility of linkage maps in mapping disease genes.  相似文献   

7.
Linkage mapping of gene-associated SNPs to pig chromosome 11   总被引:3,自引:0,他引:3  
Single nucleotide polymorphisms (SNPs) were discovered in porcine expressed sequence tags (ESTs) orthologous to genes from human chromosome 13 (HSA13) and predicted to be located on pig chromosome 11 (SSC11). The SNPs were identified as sequence variants in clusters of EST sequences from pig cDNA libraries constructed in the Sino-Danish pig genome project. In total, 312 human gene sequences from HSA13 were used for similarity searches in our pig EST database. Pig ESTs showing significant similarity with HSA13 genes were clustered and candidate SNPs were identified. Allele frequencies for 26 SNPs were estimated in a group of 80 unrelated pigs from Danish commercial pig breeds: Duroc, Hampshire, Landrace and Large White. Eighteen of the 26 SNPs genotyped in the PiGMaP Reference Families were mapped by linkage analysis to SSC11. The EST-based SNPs published here are new genetic markers useful for linkage and association studies in commercial and experimental pig populations. This study represents the first gene-associated SNP linkage map of pig chromosome 11 and adds new comparative mapping information between SSC11 and HSA13. Furthermore, our data facilitate future studies aimed at the identification of interesting regions on pig chromosome 11, positional cloning and fine mapping of quantitative trait loci in pig.  相似文献   

8.
Mapping of growth hormone releasing hormone receptor to swine chromosome 18   总被引:7,自引:0,他引:7  
The growth hormone releasing hormone receptor (GHRHR) was mapped in the pig for study as a potential candidate gene in controlling pig quantitative growth and carcass characteristics. Primers were designed from the pig GHRHR sequence to amplify a 1·65-kb intronic fragment between exons 6 and 7. By using a pig–rodent somatic cell hybrid panel, GHRHR was mapped to pig chromosome 18 (SSC18) with 100% concordance, and the regional assignment was SSC18q24 with 89% concordance. The polymerase chain reaction–restriction fragment length polymorphisms (PCR–RFLPs) with Mse I and Taq I were developed to confirm this assignment with linkage analysis by using the European Pig Gene Mapping Project (PiGMaP) reference families. Pig GHRHR was mapped with strong linkage to SSC18 markers S0062 and S0120 (lod > 8). The GHRHR and IGFBP3 were found to map near to each other on human chromosome 7 (HSA7), and the pig IGFBP3 gene has been mapped to SSC18 by others. Our mapping of pig GHRHR increases the comparative information available on the SSC18 maps and further confirms the synteny conservation between HSA7 and SSC18.  相似文献   

9.
Multipoint quantitative-trait linkage analysis in general pedigrees.   总被引:49,自引:12,他引:37       下载免费PDF全文
Multipoint linkage analysis of quantitative-trait loci (QTLs) has previously been restricted to sibships and small pedigrees. In this article, we show how variance-component linkage methods can be used in pedigrees of arbitrary size and complexity, and we develop a general framework for multipoint identity-by-descent (IBD) probability calculations. We extend the sib-pair multipoint mapping approach of Fulker et al. to general relative pairs. This multipoint IBD method uses the proportion of alleles shared identical by descent at genotyped loci to estimate IBD sharing at arbitrary points along a chromosome for each relative pair. We have derived correlations in IBD sharing as a function of chromosomal distance for relative pairs in general pedigrees and provide a simple framework whereby these correlations can be easily obtained for any relative pair related by a single line of descent or by multiple independent lines of descent. Once calculated, the multipoint relative-pair IBDs can be utilized in variance-component linkage analysis, which considers the likelihood of the entire pedigree jointly. Examples are given that use simulated data, demonstrating both the accuracy of QTL localization and the increase in power provided by multipoint analysis with 5-, 10-, and 20-cM marker maps. The general pedigree variance component and IBD estimation methods have been implemented in the SOLAR (Sequential Oligogenic Linkage Analysis Routines) computer package.  相似文献   

10.
Restless legs syndrome (RLS) is a common neurological disorder that affects 5%-12% of all whites. To genetically dissect this complex disease, we characterized 15 large and extended multiplex pedigrees, consisting of 453 subjects (134 affected with RLS). A familial aggregation analysis was performed, and SAGE FCOR was used to quantify the total genetic contribution in these families. A weighted average correlation of 0.17 between first-degree relatives was obtained, and heritability was estimated to be 0.60 for all types of relative pairs, indicating that RLS is a highly heritable trait in this ascertained cohort. A genomewide linkage scan, which involved >400 10-cM-spaced markers and spanned the entire human genome, was then performed for 144 individuals in the cohort. Model-free linkage analysis identified one novel significant RLS-susceptibility locus on chromosome 9p24-22 with a multipoint nonparametric linkage (NPL) score of 3.22. Suggestive evidence of linkage was found on chromosome 3q26.31 (NPL score 2.03), chromosome 4q31.21 (NPL score 2.28), chromosome 5p13.3 (NPL score 2.68), and chromosome 6p22.3 (NPL score 2.06). Model-based linkage analysis, with the assumption of an autosomal-dominant mode of inheritance, validated the 9p24-22 linkage to RLS in two families (two-point LOD score of 3.77; multipoint LOD score of 3.91). Further fine mapping confirmed the linkage result and defined this novel RLS disease locus to a critical interval. This study establishes RLS as a highly heritable trait, identifies a novel genetic locus for RLS, and will facilitate further cloning and identification of the genes for RLS.  相似文献   

11.
Genetic heterogeneity in tuberous sclerosis   总被引:8,自引:0,他引:8  
Tuberous sclerosis (TSC) is an autosomal dominant disorder characterized by widespread hamartosis. Preliminary evidence of linkage between the TSC locus and markers on chromosome 9q34 was established, but subsequently disputed. More recently, a putative TSC locus on chromosome 11 has been suggested and genetic heterogeneity seems likely. Here we describe an approach combining multipoint linkage analysis and heterogeneity tests that has enabled us to obtain significant evidence for locus heterogeneity after studying a relatively small number of families. Our results support a model with two different loci independently causing the disease. One locus (TSC1) maps in the vicinity of the Abelson oncogene at 9q34 and a second locus (TSC2) maps in the region of the anonymous DNA marker Lam L7 and the dopamine D2 receptor gene at 11q23.  相似文献   

12.
Thirty-three microsatellites have been mapped on the PiGMaP porcine genetic map. By comparison with the previously published PiGMaP maps, the maps of chromosome 2 (140 cM/70 cM) and chromosome 3 (180 cM/110 cM) were extended and new markers were mapped on the p-arm extremity of chromosome 7 and on the centromeric extremity of chromosome 15. New orders are proposed for markers on chromosomes 3 and 17. Six microsatellites isolated from cosmids were also localized on the cytogenetic map by fluorescent in situ hybridization. We tested the subcloning ligation mixture–polymerase chain reaction (SLiM-PCR) method for isolating microsatellites from cosmids. Subcloning is more effective when the cosmid harbours several microsatellites whereas SLiM-PCR is more straightforward when the cosmid contains a single microsatellite. Fifteen anonymous microsatellites were regionally assigned by using a hybrid cell panel. For map integration, the determination of a regional assignment of anonymous microsatellites by using a hybrid cell panel offers an alternative to microsatellite isolation from cosmids and their localizations by in situ hybridization.  相似文献   

13.
We present the first radiation hybrid (RH) map of river buffalo (Bubalus bubalis) chromosome 6 (BBU6) developed with a recently constructed river buffalo whole-genome RH panel (BBURH(5000)). The preliminary map contains 33 cattle-derived markers, including 12 microsatellites, 19 coding genes and two ESTs, distributed across two linkage groups. Retention frequencies for markers ranged from 14.4% to 40.0%. Most of the marker orders within the linkage groups on BBU6 were consistent with the cattle genome sequence and RH maps. This preliminary RH map is the starting point for comparing gene order between river buffalo and cattle, presenting an opportunity for the examination of micro-rearrangements of these chromosomes. Also, resources for positional candidate cloning in river buffalo are enhanced.  相似文献   

14.
Development and mapping of ten porcine microsatellite markers   总被引:7,自引:0,他引:7  
Thirty (TG)n microsatellite clones were isolated from a pig genomic library, sequenced, and tested for their suitability to detect polymorphism on a panel of animals by means of the polymerase chain reaction. Ten of these clones were developed into suitable markers and subsequently segregation of these markers was determined in the five PiGMaP reference pedigrees. A linkage analysis was performed on these 10 microsatellites together with 365 other loci that have been typed on these reference families. Eight of the microsatellites have been mapped to eight different linkage groups that have been previously assigned to different chromosomes (chromosomes 1, 6, 7, 9, 14, 15, 17 and 18). Of the remaining two markers, one is X-linked and the other shows no linkage. The number of alleles detected by these microsatellites, in the reference pedigrees, varied from six to sixteen and the heterozygosity varied from 42 to 85% in the 26 unrelated founder animals of these reference pedigrees.  相似文献   

15.
Representational difference analysis (RDA) was performed using pig genomic DNA from a Landrace non-selected control population and a Landrace population selected for increased loin muscle area (LMA) for five generations. Pigs used for the analysis differed phenotypically for various carcass traits and were divergent in genotype at the skeletal muscle ryanodine receptor 1 locus. Two RDA experiments were performed using BamHI and BglII. Fourteen BamHI and 37 BglII difference products were cloned and sequenced. Oligonucleotide primers were designed to amplify RDA difference products and sequence-tagged sites (STS) were developed for 16 RDA fragments (two BamHI and 14 BglII). These 16 STS were mapped using the INRA-Minnesota porcine Radiation Hybrid panel. Polymorphisms identified in nine of the STS were used to place these markers on the PiGMaP genetic linkage map. Sequence-tagged sites were localized to 11 different chromosomes including three markers on chromosome 11 and four markers on chromosome 14. Development of RDA markers increases the resolution of the pig genome maps and markers located within putative quantitative trait locus (QTL) regions can be used to refine QTL positions.  相似文献   

16.
17.
We have used a panel of somatic cell hybrids containing different rearrangements of human chromosome 13 to integrate genetic and physical maps of this chromosome. The positions of 17 translocation/deletion breakpoints on human chromosome 13 have been determined relative to the microsatellite markers on the genetic linkage map compiled by Généthon. Because markers on maps from several other Consortium groups have also been analyzed using many of the same hybrids, it was possible to relate these with the Généthon map. The position of all of the chromosome breakpoints have been placed, wherever possible, between two adjacent markers on the genetic linkage maps using PCR analysis for the presence/absence of the markers in the somatic cell hybrids. The positions of the breakpoints have already been determined cytogenetically, and some of these breakpoints are located at landmark positions on the chromosome. The relative density of markers along the chromosome differs between independently derived maps, and, based on the known locations of certain breakpoints in the physical map, inconsistencies in the genetic maps have been identified.  相似文献   

18.
A consensus linkage map for swine chromosome 7   总被引:1,自引:0,他引:1  
The First International Workshop on Swine Chromosome 7 (SSC7) was held in Minnesuing, Wisconsin, USA on 21–24 September 1995. The objective was to develop a comprehensive linkage map for porcine chromosome 7 by combining genotypic data from four swine reference populations. Contributions of genotypic data were made from the US Meat Animal Research Center, the University of Minnesota, the PiGMaP consortium and the Scandinavian consortium. Primers for selected sequence tagged site markers, to be genotyped across the reference populations, were exchanged to integrate individual maps of SSC7. Eighty-six loci were genotyped; these loci represented microsatellite, minisatellite, single-strand conformation polymorphism, restriction fragment length polymorphism, erythrocyte antigen and protein polymorphisms. Eighteen genes were mapped, including 12 markers within class I, class II and class III regions (four markers in each class) of the swine major histocompatibility complex. Forty-two markers were either genotyped on more than one population or were included in a haplotype system and used to develop skeletal linkage maps that spanned 147·6, 212·7 and 179·5 cM for the male, female and sex-average maps, respectively. A comprehensive linkage map was developed incorporating those markers with more than 30 informative meioses. The comprehensive map was slightly longer than the skeletal map, at 153·3, 215·3 and 183·8 cM, respectively, with only three intervals greater than 10 cM. These results significantly improve the genetic resolution of the porcine chromosome 7 map and represent an accurate approach for the merging of genetic maps produced in different reference populations.  相似文献   

19.
We performed multipoint linkage analysis of the electrophysiological trait ECB21 on chromosome 4 in the full pedigrees provided by the Collaborative Study on the Genetics of Alcoholism (COGA). Three Markov chain Monte Carlo (MCMC)-based approaches were applied to the provided and re-estimated genetic maps and to five different marker panels consisting of microsatellite (STRP) and/or SNP markers at various densities. We found evidence of linkage near the GABRB1 STRP using all methods, maps, and marker panels. Difficulties encountered with SNP panels included convergence problems and demanding computations.  相似文献   

20.
The nature of subtypes in schizophrenia and the meaning of heterogeneity in schizophrenia have been considered a principal controversy in psychiatric research. We addressed these issues in periodic catatonia, a clinical entity derived from Leonhard's classification of schizophrenias, in a genomewide linkage scan. Periodic catatonia is characterized by qualitative psychomotor disturbances during acute psychotic outbursts and by long-term outcome. On the basis of our previous findings of a lifetime morbidity risk of 26.9% of periodic catatonia in first-degree relatives, we conducted a genome scan in 12 multiplex pedigrees with 135 individuals, using 356 markers with an average spacing of 11 cM. In nonparametric multipoint linkage analyses (by GENEHUNTER-PLUS), significant evidence for linkage was obtained on chromosome 15q15 (P = 2.6 x 10(-5); nonparametric LOD score [LOD*] 3.57). A further locus on chromosome 22q13 with suggestive evidence for linkage (P = 1.8 x 10(-3); LOD* 1.85) was detected, which indicated genetic heterogeneity. Parametric linkage analysis under an autosomal dominant model (affecteds-only analysis) provided independent confirmation of nonparametric linkage results, with maximum LOD scores 2.75 (recombination fraction [theta].04; two-point analysis) and 2.89 (theta =.029; four-point analysis), at the chromosome 15q candidate region. Splitting the complex group of schizophrenias on the basis of clinical observation and genetic analysis, we identified periodic catatonia as a valid nosological entity. Our findings provide evidence that periodic catatonia is associated with a major disease locus, which maps to chromosome 15q15.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号