首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Structural organization of the heterochromatic region of human chromosome 9   总被引:2,自引:0,他引:2  
Giemsa-11, G-banding and Lateral Asymmetry staining techniques were used to define the substructure of the C-band heterochromatin of human chromosome 9, in a sample of 108 different chromosomes 9, from 54 individuals. In this sample, the juxtacentromeric portion of the C-band region stained positive by the G-banding technique while Giemsa-11 delineated a more distally located block. Examination of the pericentric inversions generally revealed that the entire C-band region is changed with the substructural organization left intact; i.e. the G-band is proximal, the G-11 distal to the centromere. The partial pericentric inversions were found to have larger than average amounts of G-band heterochromatin on the short arm. The G-11 staining was in its usual position on the long arm with none on the short arm. Such apparent inversions therefore may not represent true inversions. — Long heterochromatic regions frequently had a segmented appearance when stained with G-11; there was a dark G-band within the pale heterochromatic region when stained with the G-banding technique which corresponded in location to the achromatic gap produced by G-11. This extra G-band may have been derived from the juxtacentromeric G-band by processes analogous to unequal crossing over. — Simple lateral asymmetry was consistently present only in the G-band heterochromatin of those chromosomes 9 containing large blocks of G-band positive material. Examination of the portion of the C-band which would correspond to the G-11 positive material revealed no consistent patterns of asymmetry. Usually both strands were heavily stained and symmetrical but occasionally there were light areas present on one strand suggestive of compound lateral asymmetry.  相似文献   

2.
Summary The heterogeneity of the C-band of human chromosome 1 has been evaluated using several selective staining methods: C-banding (CBG), distamycin A plus 4-6-diamidino-2-phenylindole (DA/DAPI) and Giemsa G-11 pattern following the treatment with the restriction endonucleases AluI and HaeIII. The bands produced by each method are characteristic but not identical. The total C-band is resistant to AluI treatment. The bands induced by HaeIII and the one stained by DA/DAPI are markedly similar but smaller than the C-band. The G-11 technique stains yet smaller regions than those of HaeIII and DA/DAPI. Depending on the expression of staining properties, the C-band of chromosome 1 usually consists of three subdivisions: the proximal, intermediate and distal regions, suggesting an extremely heterogeneous nature. The staining variations between different regions are further substantiated by studies of a reciprocal translocation where the proximal region and the remaining C-band of chromosome 1 are separate.  相似文献   

3.
Numerous selective and differential staining techniques have been used to investigate the hierarchical organisation of the human genome. This investigation demonstrates the unique characteristics that are produced on fixed human chromosomes when sequential procedures involving restriction endonuclease TaqI, distamycin A (DA) and 4,6-diamidino-2-phenylindole (DAPI) are employed. TaqI produces extensive gaps in the heterochromatic regions associated with satellite II and III DNAs of human chromosomes 1, 9, 15, 16 and Y. DA/DAPI selectively highlights, as brightly fluorescent C-bands, the heterochromatin associated with the alpha, beta, satellite II and III DNAs of these chromosomes. When DA and DAPI are used on chromosomes before TaqI digestion, and then stained with Giemsa, the centromeric regions appear to be more resistant, producing a distinct C-banding pattern and gaps in the heterochromatin regions. Sequential use of the DA/DAPI technique after TaqI treatment produces a bright fluorescence on the remaining pericentromeric regions of chromosomes 1, 9, 16 and Y, which also displayed a cytochemically unique banding pattern. This approach has produced specific enhanced chromosomal bands, which may serve as tools to characterize genomic heterochromatin at a fundamental level.  相似文献   

4.
The chromosomes of one male and three female gorillas were extensively studied with various regional banding methods. The chromosomes were stained with the fluorescent dyes quinacrine mustard and distamycin A/DAPI (DA/DAPI), which label different subsets of heterochromatin in the chromosome complement. Furthermore, lymphocyte cultures were treated with the cytidine analog 5-azacytidine (5-azaC). The 5-azaC-induced undercondensations were found in most of the DA/DAPI-bands as well as in many telomeric C-bands. The karyotype of the gorilla exhibits a considerable number of heterochromatin variants. Of the different types of heteromorphisms noted, the most striking is that involving the short arm regions of chromosomes 12 to 16 and 23 (satellite stalk regions) and the paracentromeric heterochromatin of chromosomes 17 and 18. There also are numerous heteromorphic C-bands localized in the telomeric regions of homologous chromosome arms. In comparison, only few heteromorphisms occur between C-bands in the centromeric and pericentromeric regions of homologs. Finally, a variability in the fluorescence intensity of quinacrine-bright satellites in the short arms of chromosomes 12 to 16, 22, and 23 is observed.  相似文献   

5.
Characterization of human chromosomal constitutive heterochromatin   总被引:2,自引:0,他引:2  
The constitutive heterochromatin of human chromosomes is evaluated by various selective staining techniques, i.e., CBG, G-11, distamycin A plus 4,6-diamidino-2-phenylindole-2-HCl (DA/DAPI), the fluorochrome D287/170, and Giemsa staining following the treatments with restriction endonucleases AluI and HaeIII. It is suggested that the constitutive heterochromatin could be arbitrarily divided into at least seven types depending on the staining profiles expressed by different regions of C-bands. The pericentromeric C-bands of chromosomes 1, 5, 7, 9, 13-18, and 20-22 consist of more than one type of chromatin, of which chromosome 1 presents the highest degree of heterogeneity. Chromosomes 3 and 4 show relatively less consistent heterogeneous fractions in their C-bands. The C-bands of chromosomes 10, 19, and the Y do not have much heterogeneity but have characteristic patterns with other methods using restriction endonucleases. Chromosomes 2, 6, 8, 11, 12, and X have homogeneous bands stained by the CBG technique only. Among the chromosomes with smaller pericentric C-bands, chromosome 18 shows frequent heteromorphic variants for the size and position (inversions) of the AluI resistant fraction of C-band. The analysis of various types of heterochromatin with respect to specific satellite and nonsatellite DNA sequences suggest that the staining profiles are probably related to sequence diversity.  相似文献   

6.
Summary The acrocentric chromosomes of 18 unrelated individuals were analyzed by sequential staining by the chromomycin A3/methyl green R-banding technique to identify the chromosomes, followed by an indirect immunoperoxidase technique to detect 5-methylcytosine (5MeC)-rich DNA. The short arms of both chromosomes 15 usually (92% of the chromosomes) had a large collection of 5MeC-rich DNA, which was always rich in AT base pairs. Much less commonly (11% of the possible occasions), a collection of 5MeC-rich DNA was seen on the short arm of a chromosome 13, 14, 21 or 22, and this DNA was always rich in GC base pairs. Sequential distamycin A/DAPI (DA/DAPI) and R-banding studies were carried out in 13 of these 18 individuals. There was bright DA/DAPI fluorescence of the 5MeC-rich region on the short arm of chromosome 15 but not on that of any other acrocentric chromosome. One implication of these findings is that bisatellited or other abnormal chromosomes that are DA/DAPI negative and 5MeC positive cannot be derived from number 15. In the case of a de novo chromosome of this type, the specific origin from any other acrocentric chromosome could be demonstrated by examining 5MeC-binding of the parental chromosomes.  相似文献   

7.
Satellite III DNA has been located by in situ hybridization in chromosomes 1, 3--5, 7, 9, 10, 13--18, 20--22, and Y and ribosomal DNA (rDNA) in the acrocentric chromosomes 13--15, 21, and 22. In the acrocentric chromosomes, the satellite DNA is located in the short arm. Here we report comparisons by in situ hybridization of the amount of satellite DNA in Robertsonian translocation and "normal variant" chromosomes with that in their homologs. In almost all dicentric Robertsonian translocations, the amount of satellite DNA is less than that in the normal homologs, but it is rarely completely absent, indicating that satellite DNA is located between the centromere and the nucleolus organizer region (NOR) and that the breakpoints are within the satellite DNA. The amount of satellite DNA shows a range of variation in "normal" chromosomes, and this is still more extreme in "normal variant" chromosomes, those with large short arm (p+ or ph+) generally having more satellite DNA than those with small short arms (p- or ph-). The cytological satellites are heterogeneous in DNA content; some contain satellite DNA, others apparently do not, and the satellite DNA content is not related to the size or intensity of fluorescence of the satellites. The significance of these variations for the putative functions of satellite DNA is discussed.  相似文献   

8.
Recently, in addition to quinacrine staining, fluorochrome techniques have been developed which brilliantly stain other heterochromatic regions. Two of these staining techniques are Distamycin/DAPI (DA/DAPI) and D287/170. We stained the chromosomes of all species of great apes and 14 species of primates (48 individuals) using these three fluorochrome techniques. Only african apes and man show brilliant quinacrine staining while, man and all the great apes show brilliant DA/DAPI staining and only species belonging to the hominoidea (including the siamang) showed bright D287/170 staining. In the lower primates a medium level of DA/DAPI fluorescence was found in some species with large amount of pericentromeric heterochromatin. Brilliant DA/DAPI staining could represent a derived trait linking all great apes and humans, while D287/170 may link all hominoidea. Fluorochrome staining is believed to be correlated with some satellite DNA sequences. However, data available on the chromosome location of satellite DNAs in non-human primates were derived from buoyant density fractions resulting in cross hybridization and now are not considered reliable. Before making any correlation between fluorochrome staining and satellite DNAs in non human primates there is need of data onin situ hybridization with cloned DNA sequences on primate chromosomes. These data would help clarify the evolution and relationship of satellite DNAs and heterochromatin in primates.  相似文献   

9.
The longitudinal differentiation of metaphase chromosomes of the Indian muntjac was studied by digestion with restriction enzymes, in situ hybridization with cloned DNA probes and distamycin A plus DAPI (4-6-diamidino-2-phenylindole) fluorescence staining. The centromeric regions of chromosomes 3 and 3 + X of a male Indian muntjac cell line were distinct from each other and different from those of other chromosomes. Digestion with a combination of EcoRI* and Sau3A revealed a pattern corresponding to that of C-banding. Digestion with AluI, EcoRII or RsaI yielded a band specific to the centromeric region only in chromosomes 3 and 3 + X. Furthermore, HinfI digestion yielded only a band at the centromeric region of chromosome 3, whereas DA-DAPI staining revealed a single band limited to the extreme end of the C-band heterochromatin of the short arm of 3 + X. These results suggest that centromeres of Indian muntjac chromosomes contain at least four different types of repetitive DNA. Such diversity in heterochromatin was also confirmed by in situ hybridization using specific DNA probes isolated and cloned from highly repetitive DNA families. Heterozygosity between chromosome homologs was revealed by restriction enzyme banding. Evidence is presented for the presence of nucleolus organizer regions (NORs) on the long arm of chromosome 1 as well as on the secondary constrictions of 3 and 3 + X.Abbreviations DA distamycin A - DAPI 4-6-diamidino-2-phenylindole - NOR(s) nucleolus organizer region(s) - PBS phosphate-buffered saline - PI propidium iodide  相似文献   

10.
Analysis of chromatin-associated fiber arrays   总被引:7,自引:2,他引:5  
The distribution of constitutive heterochromatin has been investigated in four chromosomal races of the grasshopper Caledia captiva (2n= 23 /24 ) by the C-banding technique. Each of the four races was found to have a distinctive banding pattern which is associated with the inter-racial differences in chromosomal rearrangements. — The Ancestral race has a telocentric chromosome complement with large procentric C-bands which are structurally double on six pairs of chromosomes. The centromeres are unstained. — The General Purpose race has a C-banding pattern very similar to that seen in other Acridine grasshoppers with the majority of its chromosomes showing a centromeric localisation of the bands. — The two southern races, which show a complex polymorphism for presumed pericentric inversions on all twelve chromosomes, also show an unusually high level of interstitial and terminal C-bands. The different locations and numbers of these bands allow unambiguous identification of all the chromosome pairs within the complement. — In two cases, there is good evidence to indicate that a C-band redistribution between acrocentric and metacentric chromosomes has occurred by pericentric inversion. Furthermore, C-band variation on the long arm of the metacentric X-chromosome indicates the presence of a large paracentric inversion. This double inversion system has involved over 95% of the X-chromosome. — The interstitial and terminal C-bands probably have not resulted from heterochromatin movement within the complement but, more likely, have arisen by saltatory duplication of pre-existing sequences on the chromosome. — A new nomenclature system for banded chromosomes is proposed which allows most kinds of chromosomal restructuring and rearrangement to be adequately enumerated.  相似文献   

11.
Modes of DAPI banding and simultaneous in situ hybridization   总被引:11,自引:0,他引:11  
By controlling the degree of chromatin denaturation through formamide incubation, or by heat treatment and/or by high pH, three types of high quality 4,6-diamidino-2-phenylindole (DAPI) bands can be produced sequentially on the same set of 5-bromo-2-deoxyuridine (BrdU)-incorporated chromosomes: first DAPI multibanding (the equivalent of Q-banding), then partial C-banding including distamycin A (DA)/DAPI banding, and finally C-banding pattern. It is assumed that the different DAPI-chromatin interactions following these treatments reflect the different chromatin structures at the chromosomal sites. Since the DAPI banding protocol is compatible with in situ hybridization, the combination of fluorescent in situ hybridization (FISH) with DAPI banding allows the simultaneous detection of signals from the DNA probes and the identification of the chromosomal band location of the probe. We demonstrate this useful application with the localization of the cystic fibrosis and Duchenne muscular dystrophy gene probes to their appropriate bands.  相似文献   

12.
The structural organization of mouse metaphase chromosomes   总被引:1,自引:0,他引:1  
The binding of highly purified anti-nucleoside antibodies to mouse (Mus musculus) metaphase chromosomes was studied by an immunofluorescence technique. The chromosomal DNA was denatured by one of two selective denaturation procedures because these antibodies reacted with single stranded but not native DNA. After ultraviolet irradiation (UV), which produced single stranded regions primarily in AT rich DNA, the binding of antiadenosine (anti-A) produced a pattern of fluorescent bands similar to that produced by quinacrine (Q-bands). Additional foci of bright fluorescence were observed at the centrometric (C-band) regions, which are known to contain AT rich satellite DNA. After photooxidation, which produced single stranded regions in GC rich DNA, the binding of anti-A produced a fluorescent banding pattern similar to the R-banding pattern seen after thermal denaturation and staining with coriphosphine O. After photooxidation, R-band patterns were also obtained with anti-cytidine (anti-C) and anti-5-methylcytidine (anti-M). After either UV irradiation or photooxidation, anti-M, but not anti-C, showed intense binding to the C-band regions of mouse chromosomes. — These findings led to the following conclusions: (1) Antibody banding patterns reflect the presence of a class of AT rich, GC poor DNA in chromosome regions which show bright quinacrine fluorescence and in the regions that contain the AT rich satellite DNA. (2) The alternate, quinacrine dull regions contain a relatively GC rich class of DNA which appears to be more highly methylated than the AT rich DNA in the Q-bright bands, but not the AT rich satellite DNA in the Q-dull C-bands. (3) 5-Methylcytosine residues occur in a sequence of mouse satellite DNA that contains both adjacent pyrimidines and guanine residues. The basic repeating unit of mouse satellite DNA is known to contain the sequence 5-GAAAAATGA-3 (Biro et al., 1975). Therefore, assuming the antibodies used could detect single bases in denatured DNA, the methylated sequence in mouse satellite DNA   相似文献   

13.
M. S. Lin  O. S. Alfi 《Chromosoma》1976,57(3):219-225
This paper describes a 4-6-diamidino-2-phenylindole (DAPI) fluorescent technique for differentiation of sister chromatids and for the study of sister chromatid exchanges (SCE) in mouse chromosomes. The advantages of the DAPI fluorescent technique are also described. Differences in the occurrence of SCE between the centromeric heterochromatin (C-banded) and the chromosomal arm chromatin were studied in mouse cells (RAG) with or without mitomycin C treatment. Single strand exchanges between the DNA double helices in the sister chromatids were not detected. SCE and chromosome breakage appeared to occur more frequently in the centromeric region than in the chromosomal arm. This might play an important role in chromosome evolution in mice.  相似文献   

14.
Large DNA inversions caused by an intrachromosomal recombination between homologous regions located in intron 22 and 5 of the factor VIII gene have recently been identified in patients with severe haemophilia A. To evaluate better the prevalence of this large inversion and to estimate the overall sensitivity of the Southern blot/hybridization method we analysed the factor VIII gene of 49 unrelated patients with severe haemophilia A. All patients were screened for the inversion mutation, TaqI site mutations, and deletions. Mutations were identified in 31 (63%) patients, and comprised 24 large inversions, 4 partial deletions, and 3 point mutations. Three different haplotypes were characterised in the patients presenting the inversion mutation, confirming its independent origin. Two novel deletions are reported: a large one spanning from intron 14 to intron 22 and a deletion of 86 bp comprising the 3 region of exon 1 and 39–41 bp of intron 1. DNA sequencing of the deletion junction showed no significant homology between normal 5 and 3 sequences around the breakpoints. A novel missense mutation is also reported: CGAGGA, Arg-2209 to Gly. These results confirm that the inversion mutation is the most common cause of severe haemophilia A and indicate that the Southern blot/hybridization assay should be used as the first method for screening of mutations in severe haemophilia A.  相似文献   

15.
Petrova NA  Zhirov SV 《Tsitologiia》2008,50(6):535-538
We have found three inherited inversions in Chironomus riparius populations from the Borok fishpond, namely: (A3d-B1a) in the arm A (C5a-C6a) in the arm D and (B3b-4d/e) in the arm F. Increase of heterochromatin in some bands of chromosome F (B3h, B3h + B3c--C1a) and puffs appearance in the arms C, D and E have been observed. We saw also changes in functional activity of nucleolar organizer (N) and Balbiani rings (BRe/BRb). It has been found that some of inversion breakpoints coincide with the Alu and Hinf satellite DNA localization sites.  相似文献   

16.
Pericentric inversions involving the secondary constriction (qh) region of chromosome 9 are considered to be normal variants. The evolutionary mechanisms and conservation of these inversions via Mendelian fashion have been investigated since the advent of banding techniques. Routine cytogenetic techniques cannot provide the fine characterization necessary to determine the type of genetic material involved in these rearrangements. Therefore, the fluorescence in situ hybridization technique with the human centromere-specific alpha satellite and the beta satellite (D9Z5) and classical satellite (D9Z1) human DNA probes were used to identify the breakpoints of chromosome 9 pericentric inversions. Four unique types of pericentric inversions involving the 9qh region were observed, and the mechanism may be due to breakage and reunion at the proposed breakpoints. They are: type A inversions consist of breakpoints within the alpha and beta satellite DNA regions; type B consist of breakpoints within the beta satellite DNA region and band 9q13; type C involve breakage within the beta and classical satellite DNA regions, and type D have breakpoints within the alpha and classical satellite DNA regions. Obviously, reshuffling of satellite DNA sequences has occurred, which has given rise to a variety of heteromorphisms whose clinical significance remains obscure. Received: 21 December 1995 / Revised: 30 May 1996  相似文献   

17.
Lateral asymmetry refers to unequal fluorescent intensity between adjacent regions of sister chromatids. It has been observed in the centromeric regions of mitotic chromosomes of mouse or human origin when cells are grown in 5-bromo-2-deoxyuridine (BrdU) for a single round of DNA synthesis. The chromosome-orientation fluorescence in situ hybridization (CO-FISH) technique was used with pseudodiploid mouse cells to show that the regions of asymmetrical brightness coincide with major satellite repetitive DNA, and that the more heavily BrdU-substituted chromatid is the one that fluoresces less brightly. These observations support a 20 year old hypothesis on the origin of lateral asymmetry. Other observations suggest that differential loss of DNA from the heavily substituted chromatid also contributes to lateral asymmetry.  相似文献   

18.
D. G. Bedo 《Chromosoma》1980,77(3):299-308
In Lucilia cuprina C-banding produces procentric bands on all autosomes and deep staining over most of the X and Y chromosomes which conciderably facilitates the analysis of complex Y chromosome rearrangements. The Y chromosome is generally darkly C-banded throughout while in the X chromosome a pale staining segment is found in the distal portion of the long arm. Modulation of the banding reaction results in grey areas in both X and Y. When C-banding is compared with allocycly it is clear that not all heteropycnotic regions in the sex chromosomes C-band to the same extent. Secondary constrictions in the short arms of both X and Y chromosomes are clearly revealed by C-banding, the X satellite being polymorphic for size.— Q-banding results in a brightly fluorescing band in the short arm of structurally normal Y chromosomes. This band loses its fluorescence in some translocations, probably through a position effect. Hoechst 33258 staining does not produce any brightly fluorescing bands.  相似文献   

19.
Qualitative analysis of C-band heteromorphisms was carried out in 200 infants (100 males and 100 females) in Delhi, India. Partial inversions minor and half inversions were observed as modal levels for chromosomes 1 and 9 in both sexes. No chromosome 16 with a C-band inversion was observed in the present investigation. A significantly higher incidence of percent inversions for chromosomes 1 and 9 was observed in males than in females. The frequency of heterozygous inversion level combinations for chromosome pairs 1 and 9 were remarkably higher than homozygous combinations both in males and females. Our results are compared with the other reported studies, and the possible role of these heteromorphisms in ethnic/racial variation and in developmental disturbances are discussed.  相似文献   

20.
We describe the karyotype ofThalpomys species, from different Brazilian localities of the Cerrado.Thalpomys cerradensis Herskovitz, 1990 showed 2n=36, FN=34 andT. lasiotis Thomas, 1916 2n=38, FN=38. Comparisons of G-band karyotypes showed evident inter-specific homologies indicating that their chromosome complements could be derived from one another by two presumed rearrangements. Both species showed pericentromeric C-band regions in almost all chromosomes but a comparison with CMA3/DA/DAPI staining indicated that the molecular content of heterochromatic regions was different.T. lasiotis specimens from two different localities differed in the morphology of the X chromosome due to the presence of a short heterochromatic arm. These chromosome types are apparently fixed in each population rather than maintained as a polymorphic variation. Phylogenetic analyses supported the monophyly of the genusThalpomys but was not capable of elucidating its phylogenetic relationship to other Akodontini rodents. These analyses also showed inter-individual variation inT. lasiotis, even within a given population. Phylogenetic analyses placedT. lasiotis specimens with different karyotypes in different monophyletic branches. Molecular and karyologic data confirmed the identity of the genusThalpomys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号