首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoreceptor cell axons (R axons) innervate optic ganglia in the Drosophila brain through the tubular optic stalk. This structure consists of surface glia (SG) and forms independently of R axon projection. In a screen for genes involved in optic stalk formation, we identified Fak56D encoding a Drosophila homolog of mammalian focal adhesion kinase (FAK). FAK is a main component of the focal adhesion signaling that regulates various cellular events, including cell migration and morphology. We show that Fak56D mutation causes severe disruption of the optic stalk structure. These phenotypes were completely rescued by Fak56D transgene expression in the SG cells but not in photoreceptor cells. Moreover, Fak56D genetically interacts with myospheroid, which encodes an integrin beta subunit. In addition, we found that CdGAPr is also required for optic stalk formation and genetically interacts with Fak56D. CdGAPr encodes a GTPase-activating domain that is homologous to that of mammalian CdGAP, which functions in focal adhesion signaling. Hence the optic stalk is a simple monolayered structure that can serve as an ideal system for studying glial cell morphogenesis and the developmental role(s) of focal adhesion signaling.  相似文献   

2.
DFak56 is a novel Drosophila melanogaster focal adhesion kinase   总被引:2,自引:0,他引:2  
The mammalian focal adhesion kinase (FAK) family of nonreceptor protein-tyrosine kinases have been implicated in controlling a multitude of cellular responses to the engagement of cell surface integrins and G protein-coupled receptors. We describe here a Drosophila melanogaster FAK homologue, DFak56, which maps to band 56D on the right arm of the second chromosome. Full-length DFak56 cDNA encodes a phosphoprotein of 140 kDa, which shares strong sequence similarity not only with mammalian p125(FAK) but also with the more recently described mammalian Pyk2 (also known as CAKbeta, RAFTK, FAK2, and CADTK) FAK family member. DFak56 has intrinsic tyrosine kinase activity and is phosphorylated on tyrosine in vivo. As is the case for FAK, tyrosine phosphorylation of DFak56 is increased upon plating Drosophila embryo cells on extracellular matrix proteins. In situ hybridization and immunofluorescence staining analysis showed that DFak56 is ubiquitously expressed with particularly high levels within the developing central nervous system. We utilized the UAS-GAL4 expression system to express DFak56 and analyze its function in vivo. Overexpression of DFak56 in the wing imaginal disc results in wing blistering in adults, a phenotype also observed with both position-specific integrin loss of function and position-specific integrin overexpression. Our results imply a role for DFak56 in adhesion-dependent signaling pathways in vivo during D. melanogaster development.  相似文献   

3.
In response to alphabeta1 integrin signaling, transducers such as focal adhesion kinase (FAK) become activated, relaying to specific machineries and triggering distinct cellular responses. By conditionally ablating Fak in skin epidermis and culturing Fak-null keratinocytes, we show that FAK is dispensable for epidermal adhesion and basement membrane assembly, both of which require alphabeta1 integrins. FAK is also dispensible for proliferation/survival in enriched medium. In contrast, FAK functions downstream of alphabeta1 integrin in regulating cytoskeletal dynamics and orchestrating polarized keratinocyte migration out of epidermal explants. Fak-null keratinocytes display an aberrant actin cytoskeleton, which is tightly associated with robust, peripheral focal adhesions and microtubules. We find that without FAK, Src, p190RhoGAP, and PKL-PIX-PAK, localization and/or activation at focal adhesions are impaired, leading to elevated Rho activity, phosphorylation of myosin light chain kinase, and enhanced tensile stress fibers. We show that, together, these FAK-dependent activities are critical to control the turnover of focal adhesions, which is perturbed in the absence of FAK.  相似文献   

4.
The focal adhesion kinase (FAK) protein-tyrosine kinase plays important roles in cell adhesion in vertebrates. Using polymerase chain reaction-based cloning strategy, we cloned a Drosophila gene that is homologous to the vertebrate FAK family of protein-tyrosine kinases. We designated this gene Dfak56 and characterized its gene product. The overall protein structure and deduced amino acid sequence of Dfak56 show significant similarity to those of FAK and PYK2. Dfak56 has in vitro autophosphorylation activity at tyrosine residues. Expression of the Dfak56 mRNA and the protein was observed in the central nervous system and the muscle-epidermis attachment site in the embryo, where Drosophila position-specific integrins are localized. The results suggest that like FAK in vertebrates, Dfak56 functions downstream of integrins. Dfak56 was tyrosine-phosphorylated upon integrin-dependent attachment of the cell to the extracellular matrix. We conclude that the Dfak56 tyrosine kinase is involved in integrin-mediated cell adhesion signaling and thus is a functional homolog of vertebrate FAK.  相似文献   

5.
Macrophage stimulating protein (MSP) is a growth and motility factor that mediates its activity via the RON/STK receptor tyrosine kinase. MSP promotes integrin-dependent epithelial cell migration, which suggests that MSP may regulate integrin receptor functions. Integrins are cell surface receptors for extracellular matrix. Epithelial cell adhesion and motility are mediated by integrins. We studied the enhancement by MSP of cell adhesion and the molecular mechanisms mediating this effect. MSP decreased the time required for adhesion of 293 and RE7 epithelial cells to substrates coated with collagen or fibronectin. Prevention of adhesion by an RGD-containing peptide showed that the cell-substrate interaction was mediated by integrins. Wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3-K), blocked MSP-dependent adhesion, which shows that PI3-K is in the MSP-induced adhesion pathway. MSP also affected focal adhesion kinase (FAK) which is important for some types of cell adhesion and motility. Although MSP caused PI3-K-independent tyrosine phosphorylation and activation of FAK, experiments with dominant-negative FAK constructs showed that FAK does not mediate the effects of MSP on cell adhesion or motility. Thus PI3-K, but not FAK, mediates MSP-induced integrin-dependent adhesion of epithelial cells. Also, we found ligand-independent association between RON and beta1 integrin, which is additional evidence for a relationship between these two receptor systems.  相似文献   

6.
《The Journal of cell biology》1993,123(4):993-1005
The integrin family of heterodimeric cell surface receptors play critical roles in multiple biological processes by mediating cellular adhesion to the extracellular matrix (ECM). Adhesion triggers intracellular signaling cascades, including tyrosine phosphorylation and elevation of [Ca2+]i. The Focal Adhesion Kinase (FAK or pp125FAK), a protein tyrosine kinase that colocalizes with integrins in cellular focal adhesions, is a prime candidate for a mediator of integrin signaling events. Here we report an analysis of the domain structure of FAK in which we have identified a contiguous stretch of 159 amino acids within the COOH terminus essential for correct subcellular localization. When placed in the context of an unrelated cytosolic protein, this Focal Adhesion Targeting (FAT) sequence functions to efficiently mediate the focal adhesion localization of this fusion protein. Furthermore, this analysis suggests that pp125FAK cannot be activated oncogenically by mutation. This result could be explained if pp125FK either exhibits a narrow substrate specificity or is diametrically opposed by cellular phosphatases or other cellular processes.  相似文献   

7.
To investigate the mechanisms responsible for survival and apoptosis/anoikis in normal human intestinal epithelial crypt cells, we analyzed the roles of various signaling pathways and cell adhesion on the expression of six Bcl-2 homologs (Bcl-2, Bcl-XL, Mcl-1, Bax, Bak, Bad) in the well established HIEC-6 cell model. Pharmacological inhibitors and/or dominant-negative constructs were used to inhibit focal adhesion kinase (Fak) and p38 isoforms, as well as the phosphatidylinositol 3'-kinase (PI3-K)/Akt-1 and mitogen-activated protein kinase [MAPK] kinase (MEK)/extracellular regulated kinases (Erk) pathways. Cell adhesion was disrupted by antibody-inhibition of integrin binding or forced cell suspension. The activation levels of studied kinase pathways were also analyzed. Herein, we report that beta1 integrins, Fak, and the PI3-K/Akt-1 pathway, but not beta4 integrins or the MEK/Erk pathway, are crucial for the survival of HIEC-6 cells. Conversely, p38beta, but not p38alpha or gamma, is required for the induction of apoptosis/anoikis in HIEC-6 cells. However, each of the signaling molecules/pathways analyzed were found to affect distinctively the individual expression of the Bcl-2 homologs studied. For example, the inhibition of the PI3-K/Akt-1 pathway down-regulated Bcl-XL, Mcl-1, and Bad, while at the same time up-regulating Bax, whereas the inhibition of Fak up-regulated both Bax and Bak, down-regulated Bad, and did not affect the other Bcl-2 homologs analyzed. These results indicate that integrins, Fak, PI3-K/Akt-1, MEK/Erk, and p38 isoforms perform distinct roles in the regulation of HIEC-6 cell survival and/or death. In addition, our data show that the functions performed by these molecules/pathways in promoting cell survival or apoptosis/anoikis translate into complex, differential modulations of individual Bcl-2 homologs.  相似文献   

8.
We have expressed the beta1B integrin subunit in beta1-deficient GD25 cells to examine beta1B functions without the interference of endogenous beta1A expression. As previously reported [Retta et al., 1998, Mol. Biol. Cell 9, 715-731], the beta1B integrins did not mediate cell adhesion under normal culture conditions, while the presence of 0.3 mM Mn(2+) allowed beta1B integrins to support adhesion. Mn(2+), as well as the small soluble peptide GRGDS, induced a beta1B conformation, which was recognized by the mAb 9EG7, a marker for active or ligand-bound integrins. beta1B integrins were found to localize to a subset of focal contacts in a ligand-independent manner on fibronectin, but not on vitronectin. However, clustering of beta1B did not induce tyrosine phosphorylation of FAK, p130(Cas), or paxillin, as studied by beta1B-mediated adhesion, to fibronectin in the presence of Mn(2+) or to anti-beta1 antibody in DMEM. Induction of ligand-occupied conformation by the GRGDS peptide during the adhesion to anti-beta1 antibody also failed to trigger FAK phosphorylation. Stimulation of tyrosine phosphorylation on FAK, p130(Cas), and paxillin by adhesion via integrin alphaVbeta3 to fibronectin or vitronectin was not disturbed in GD25-beta1B cells compared to the untransfected GD25 cells, nor were any negative effects of beta1B observed on alphaVbeta3-mediated cell attachment, spreading, and actin organization, or on the cell proliferation rate. These results show that the reported negative effects of beta1B on adhesive events do not apply to alphaVbeta3-dependent interactions and suggest that they may specifically act on beta1 integrins.  相似文献   

9.
IL-32 can be expressed in several isoforms. The amino acid sequences of the major IL-32 isoforms were used to predict the secondary and tertiary protein structure by I-TASSER software. The secondary protein structure revealed coils and α-helixes, but no β sheets. Furthermore, IL-32 contains an RGD motif, which potentially activates procaspase-3 intracellular and or binds to integrins. Mutation of the RGD motif did not result in inhibition of the IL-32β- or IL-32γ-induced cytotoxicity mediated through caspase-3. Although IL-32α interacted with the extracellular part of αVβ3 and αVβ6 integrins, only the αVβ3 binding was inhibited by small RGD peptides. Additionally, IL-32β was able to bind to αVβ3 integrins, whereas this binding was not inhibited by small RGD peptides. In addition to the IL-32/integrin interactions, we observed that IL-32 is also able to interact with intracellular proteins that are involved in integrin and focal adhesion signaling. Modeling of IL-32 revealed a distinct α-helix protein resembling the focal adhesion targeting region of focal adhesion kinase (FAK). Inhibition of FAK resulted in modulation of the IL-32β- or IL-32γ-induced cytotoxicity. Interestingly, IL-32α binds to paxillin without the RGD motif being involved. Finally, FAK inhibited IL-32α/paxillin binding, whereas FAK also could interact with IL-32α, demonstrating that IL-32 is a member of the focal adhesion protein complex. This study demonstrates for the first time that IL-32 binds to the extracellular domain of integrins and to intracellular proteins like paxillin and FAK, suggesting a dual role for IL-32 in integrin signaling.  相似文献   

10.
Muscle cell survival depends upon the presence of various integrins with affinities for different extracellular matrix proteins. The absence of either alpha(5) or alpha(7) integrins leads to degenerative disorders of skeletal muscle, muscular dystrophies. To understand the cell survival signals that are mediated by integrin engagement with matrix proteins, we studied the early signaling events initiated by the attachment of muscle cells to fibronectin, an interaction that is mediated primarily by alpha(5) integrins. Cells that express alpha(5) integrin rapidly spread on fibronectin, and this process is associated with the phosphorylation of focal adhesion kinase (FAK). Cells deficient in alpha(5) integrin failed to spread or promote FAK phosphorylation when plated on fibronectin. For alpha(5)-expressing cells, both spreading and FAK phosphorylation could be blocked by inhibitors of protein kinase C (PKC), indicating that PKC is necessary for this "outside-in signaling" mediated by alpha(5) integrin. Surprisingly, activators of PKC could promote spreading and FAK phosphorylation in alpha(5)-deficient muscle cells plated on fibronectin. This PKC-induced cell spreading appeared to be due to activation of alpha(4) integrins ("inside-out signaling") since it could be blocked by peptides that specifically inhibit alpha(4) integrin binding to fibronectin. A model of integrin signaling in muscle cells is presented in which there is a positive feedback loop involving PKC in both outside-in and inside-out signaling, and the activation of this cycle is essential for cell spreading and downstream signaling to promote cell survival. In addition, the data indicate a cross-talk that occurs between integrins in which the outside-in signaling via one integrin can promote the activation of another integrin via inside-out signaling.  相似文献   

11.
《The Journal of cell biology》1995,130(5):1181-1187
The integrins have recently been implicated in signal transduction. A likely mediator of integrin signaling is focal adhesion kinase (pp125FAK or FAK), a structurally distinct protein tyrosine kinase that becomes enzymatically activated upon engagement of integrins with their ligands. A second candidate signaling molecule is paxillin, a focal adhesion associated, cytoskeletal protein that coordinately becomes phosphorylated on tyrosine upon activation of pp125FAK. Paxillin physically complexes with two protein tyrosine kinases, pp60src and Csk (COOH-terminal src kinase), and the oncoprotein p47gag-crk, each of which could function as part of a paxillin signaling complex. Using an in vitro assay we have established that the cytoplasmic domain of the beta 1 integrin can bind to paxillin and pp125FAK from chicken embryo cell lysates. The NH2-terminal, noncatalytic domain of pp125FAK can bind directly to the cytoplasmic tail of beta 1 and recognizes integrin sequences distinct from those involved in binding to alpha-actinin. Paxillin binding is independent of pp125FAK binding despite the fact that both bind to the same region of beta 1. These results demonstrate that the cytoplasmic domain of the beta subunits of integrins contain binding sites for both signaling molecules and structural proteins suggesting that integrins can coordinate the generation of cytoplasmic signals in addition to their role in anchoring components of the cytoskeleton.  相似文献   

12.
Platelets with wings: the maturation of Drosophila integrin biology   总被引:1,自引:0,他引:1  
The integrin family of cell surface receptors is strongly conserved in metazoans, making simple invertebrate genetic systems valuable contributors to understanding integrin function. The Drosophila integrins have long served as a paradigm for genetic studies of adhesion proteins during development. Currently, Drosophila experiments are exploring more general aspects of integrin biology. Genetic screens are identifying proteins involved in integrin adhesion complexes and signaling, and structures such as embryonic muscle attachments can be manipulated experimentally to dissect the functions of cytoplasmic components of integrin adhesion sites in whole animals. Drosophila also is beginning to yield some insights into integrin heterodimer structure and function.  相似文献   

13.
Cell-cell adhesion via the ECM: integrin genetics in fly and worm.   总被引:1,自引:0,他引:1  
N H Brown 《Matrix biology》2000,19(3):191-201
Integrins are essential for the development of the two genetically tractable invertebrate model organisms, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster. Just two integrins are present in C. elegans: one putative RGD binding integrin alphapat-2betapat-3, corresponding to Drosophila alphaPS2betaPS and vertebrate alpha5beta1, alphaVbeta1 and alpha8beta1, and one putative laminin binding integrin alphaina-1betapat-3, corresponding to Drosophila alphaPS1betaPS and vertebrate alpha3beta1, alpha6beta1 and alpha7beta1. In this review, the function of this minimal set of integrins during the development of these two invertebrates is compared. Despite the differences in bodyplan and developmental strategy, integrin adhesion to the extracellular matrix is required for similar processes: the formation of the link that translates muscle contraction into movement of the exoskeleton, cell migration, and morphogenetic interactions between epithelia. Other integrin functions, such as regulation of gene expression, have not yet been experimentally demonstrated in both organisms. Additional proteins have been characterised in each organism that are essential for integrin function, including extracellular matrix ligands and intracellular interacting proteins, but so far different proteins have been found in the two organisms. This in part represents the fact that the characterisation of the full set of interacting proteins is not complete in either system. However, in other cases different proteins appear to be used for similar functions in the two animals. The continued use of genetic approaches to identify proteins required for integrin function in these two model organisms should lead to the identification of the minimal set of conserved components that form integrin adhesive structures.  相似文献   

14.
Focal adhesion kinase: protein interactions and cellular functions   总被引:12,自引:0,他引:12  
Integrin-mediated cell adhesion to extracellular matrix (ECM) plays important roles in a variety of biological processes. Recent studies suggested that integrins mediate signal transduction across the plasma membrane via activating several intracellular signaling pathways. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that has been shown to be a major mediator of integrin signal transduction pathways. Upon activation by integrins, FAK undergoes autophosphorylation as well as associations with several other intracellular signaling molecules. These interactions in the signaling pathways have been shown to regulation a variety of cellular functions such as cell spreading, migration, cell proliferation, apoptosis and cell survival. Recent progress in the understanding of FAK interactions with other proteins in the regulation of these cellular functions will be discussed in this review.  相似文献   

15.
The streptococcal collagen-like proteins Scl1 and Scl2 are prokaryotic members of a large protein family with domains containing the repeating amino acid sequence (Gly-Xaa-Yaa)(n) that form a collagen-like triple-helical structure. Here, we test the hypothesis that Scl variant might interact with mammalian collagen-binding integrins. We show that the recombinant Scl protein p176 promotes adhesion and spreading of human lung fibroblast cells through an alpha2beta1 integrin-mediated interaction as shown in cell adhesion inhibition assays using anti-alpha2beta1 and anti-beta1 integrins monoclonal antibodies. Accordingly, C2C12 cells stably expressing alpha2beta1 integrin as the only collagen-binding integrin show productive cell adhesion activities on p176 that can be blocked by an anti-alpha2beta1 integrin antibody. In addition, p176 promotes tyrosine phosphorylation of p125(FAK) of C2C12 cells expressing alpha2beta1 integrin, whereas parental cells do not. Furthermore, C2C12 adhesion of human lung fibroblast cells to p176 induces phosphorylation of p125FAK, p130CAS, and p68Paxillin proteins. In a domain swapping experiment, we show that integrin binds to the collagenous domain of the Scl protein. Moreover, the recombinant inserted domain of the alpha2 integrin interacts with p176 with a relatively high affinity (K(D) = 17 nm). Attempts to identify the integrin sites in p176 suggest that more than one site may be involved. These studies, for the first time, suggest that the collagen-like proteins of prokaryotes retained not only structural but also functional characteristics of their eukaryotic counterparts.  相似文献   

16.
Cell migration is a dynamic process that involves the continuous formation, maturation, and turnover of matrix-cell adhesion sites. New (nascent) adhesions form at the protruding cell edge in a tension-independent manner and are comprised of integrin receptors, signaling, and cytoskeletal-associated proteins. Integrins recruit focal adhesion kinase (FAK) and the cytoskeletal protein talin to nascent adhesions. Canonical models support a role for talin in mediating FAK localization and activation at adhesions. Here, alternatively, we show that FAK promotes talin recruitment to nascent adhesions occurring independently of talin binding to β1 integrins. The direct binding site for talin on FAK was identified, and a point mutation in FAK (E1015A) prevented talin association and talin localization to nascent adhesions but did not alter integrin-mediated FAK recruitment and activation at adhesions. Moreover, FAK E1015A inhibited cell motility and proteolytic talin cleavage needed for efficient adhesion dynamics. These results support an alternative linkage for FAK-talin interactions within nascent adhesions essential for the control of cell migration.  相似文献   

17.
Integration of signalling pathways initiated by receptor tyrosine kinases and integrins is essential for growth-factor-mediated biological responses. Here we show that co-stimulation of growth-factor receptors and integrins activates the focal-adhesion kinase (FAK) family to promote outgrowth of neurites in PC12 and SH-SY5Y cells. Pyk2 and FAK associate with adhesion-based complexes that contain epidermal growth factor (EGF) receptors, through their carboxy- and amino-terminal domains. Expression of the C-terminal domain of Pyk2 or of FAK is sufficient to block neurite outgrowth, but not activation of extracellular-signal-regulated kinase (ERK). Moreover, activation and autophosphorylation of Pyk2/FAK, as well as of effectors of their adhesion-targeting domains, such as paxillin, are important for propagation of signals that control neurite formation. Thus, Pyk2/FAK have important functions in signal integration proximal to integrin/growth-factor receptor complexes in neurons.  相似文献   

18.
Integrin-mediated signal transduction pathways.   总被引:19,自引:0,他引:19  
Integrins serve as adhesion receptors for extracellular matrix proteins and also transduce biochemical signals into the cell. They regulate a variety of cellular functions, including spreading, migration, proliferation and apoptosis. Many signaling pathways downstream of integrins have been identified and characterized and are discussed here. In particular, integrins regulate many protein tyrosine kinases and phosphatases, such as FAK and Src, to coordinate many of the cell processes mentioned above. The regulation of MAP kinases by integrins is important for cell growth or other functions, and the putative roles of Ras and FAK in these pathways are discussed. Phosphatidylinositol lipids and their modifying enzymes, particularly PI 3-kinase, are strongly implicated as mediators of integrin-regulated cytoskeletal changes and cell migration. Similarly, actin cytoskeleton regulation by the Rho family of GTPases is coordinated with integrin signaling to regulate cell spreading and migration, although the exact relationship between these pathways is not clear. Finally, intracellular pH and calcium fluxes by integrins are suggested to affect a variety of cellular proteins and functions.  相似文献   

19.
Talin serves an essential function during integrin-mediated adhesion in linking integrins to actin via the intracellular adhesion complex. In addition, the N-terminal head domain of talin regulates the affinity of integrins for their ECM-ligands, a process known as inside-out activation. We previously showed that in Drosophila, mutating the integrin binding site in the talin head domain resulted in weakened adhesion to the ECM. Intriguingly, subsequent studies showed that canonical inside-out activation of integrin might not take place in flies. Consistent with this, a mutation in talin that specifically blocks its ability to activate mammalian integrins does not significantly impinge on talin function during fly development. Here, we describe results suggesting that the talin head domain reinforces and stabilizes the integrin adhesion complex by promoting integrin clustering distinct from its ability to support inside-out activation. Specifically, we show that an allele of talin containing a mutation that disrupts intramolecular interactions within the talin head attenuates the assembly and reinforcement of the integrin adhesion complex. Importantly, we provide evidence that this mutation blocks integrin clustering in vivo. We propose that the talin head domain is essential for regulating integrin avidity in Drosophila and that this is crucial for integrin-mediated adhesion during animal development.  相似文献   

20.
R-Ras regulates integrin function, but its effects on integrin signaling pathways have not been well described. We demonstrate that activation of R-Ras promoted focal adhesion formation and altered localization of the alpha2beta1 integrin from cell-cell to cell-matrix adhesions in breast epithelial cells. Constitutively activated R-Ras(38V) dramatically enhanced focal adhesion kinase (FAK) and p130(Cas) phosphorylation upon collagen stimulation or clustering of the alpha2beta1 integrin, even in the absence of increased ligand binding. Signaling events downstream of R-Ras differed from integrins and K-Ras, since pharmacological inhibition of Src or disruption of actin inhibited integrin-mediated FAK and p130(Cas) phosphorylation, focal adhesion formation, and migration in control and K-Ras(12V)-expressing cells but had minimal effect in cells expressing R-Ras(38V). Therefore, signaling from R-Ras to FAK and p130(Cas) has a component that is Src independent and not through classic integrin signaling pathways and a component that is Src dependent. R-Ras effector domain mutants and pharmacological inhibition suggest a partial role for phosphatidylinositol 3-kinase (PI3K), but not Raf, in R-Ras signaling to FAK and p130(Cas). However, PI3K cannot account for the Src-independent pathway, since simultaneous inhibition of both PI3K and Src did not completely block effects of R-Ras on FAK phosphorylation. Our results suggest that R-Ras promotes focal adhesion formation by signaling to FAK and p130(Cas) through a novel mechanism that differs from but synergizes with the alpha2beta1 integrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号