首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Membranes of adjacent cells form intercellular junctional complexes to mechanically anchor neighbour cells (anchoring junctions), to seal the paracellular space and to prevent diffusion of integral proteins within the plasma membrane (tight junctions) and to allow cell-to-cell diffusion of small ions and molecules (gap junctions). These different types of specialised plasma membrane microdomains, sharing common adaptor molecules, particularly zonula occludens proteins, frequently present intermingled relationships where the different proteins co-assemble into macromolecular complexes and their expressions are co-ordinately regulated. Proteins forming gap junction channels (connexins, particularly) and proteins fulfilling cell attachment or forming tight junction strands mutually influence expression and functions of one another.  相似文献   

2.
Ectoplasmic specializations are actin filament-endoplasmic reticulum complexes that occur in Sertoli cells at sites of intercellular attachment. At sites between inter-Sertoli cell attachments, near the base of the cells, the sites are also related to tight junctions. We studied the characteristics of ectoplasmic specializations from six species using conventional views in which thin sections were perpendicular to the plane of the membranes, we used rare views in which the sections were in the plane of the membrane (en face views), and we also used the freeze-fracture technique. Tissues postfixed by osmium ferrocyanide showed junctional strands (fusion points between membranes) and actin bundles, actin sheets, or both, which could be visualized simultaneously. En face views demonstrated that the majority of tight junctional strands ran parallel to actin filament bundles. Usually, two tight junctional strands were associated with each actin filament bundle. Parallel tight junctions were occasionally extremely close together ( approximately 12 nm apart). Tight junctional strands were sometimes present without an apparent association with organized actin bundles or they were tangential to actin bundles. En face views showed that gap junctions were commonly observed intercalated with tight junction strands. The results taken together suggest a relationship of organized actin with tight junction complexes. However, the occasional examples of tight junction complexes being not perfectly aligned with actin filament bundles suggest that a precise and rigidly organized actin-tight junction relationship described above is not absolutely mandatory for the presence or maintenance of tight junctions. Species variations in tight junction organization are also presented.  相似文献   

3.
Human fetal primary tooth germs in the cap stage were fixed with a glutaraldehyde-formaldehyde mixture, and formative processes of tight and gap junctions of the inner enamel epithelium and preameloblasts were examined by means of freeze-fracture replication. Chains of small clusters of particles on the plasma membrane P-face of the inner enamel epithelium and preameloblasts were the initial sign of tight junction formation. After arranging themselves in discontinuous, linear arrays in association with preexisting or forming gap junctions, these particles later began revealing smooth, continuous tight junctional strands on the plasma membrane P-face and corresponding shallow grooves of a similar pattern on the E-face. Although they exhibited evident meshwork structures of various extents at both the proximal and distal ends of cell bodies, they formed no zonulae occludentes. Small assemblies of particles resembling gap junctions were noted at points of cross linkage of tight junctional strands; but large, mature gap junctions no longer continued into the tight junction meshwork structure. Gap junctions first appeared as very small particle clusters on the plasma membrane P-face of the inner enamel epithelium. Later two types of gap junctions were recognized: one consisted of quite densely aggregated particles with occasional particle-free areas, and the other consisted of relatively loosely aggregated particles with particle-free areas and aisles. Gap junction maturation seemed to consist in an increase of particle numbers. Fusion of gap junctions in the forming stage too was recognized. The results of this investigation suggest that, from an early stage in their development, human fetal ameloblasts possess highly differentiated cell-to-cell interrelations.  相似文献   

4.
Intercellular junction formation in preimplantation mouse embryos was investigated with thin-section and freeze-fracture electron microscopy. At the four-cell stage, regions of close membrane apposition with focal points of membrane contact and occasional underlying cytoplasmic densities were observed between blastomeres of thin-sectioned embryos. Corresponding intramembrane specializations were not, however, observed in freeze-fractured embryos. At the 8- to 16-cell stage, small gap and macula occludens junctions and complexes of these junctions were observed at all levels between blastomeres of freeze-fractured embryos. As development progressed from the early to mid 8- to 16-cell stage, the size of the occludens/gap junction complexes increased, forming fascia occludens/gap junction complexes. At the morula stage, gap junctions and occludens/gap junction complexes were observed on both presumptive trophoblast and inner cell-mass cells. Zonula occludens junctions were first observed at the morula stage on presumptive trophoblast cells of freeze-fractured embryos. The number of embryos possessing zonula occludens junctions increased at the mid compared to the early morula stage. At the blastocyst stage, junctional complexes consisting of zonula occludens, macula adherens, and gap junctions were observed between trophoblast cells of freeze-fractured and thin-sectioned embryos. Isolated gap and occludens junctions, adherens junctions, and occludens/gap junction complexes were observed on trophoblast and inner cell-mass cells.  相似文献   

5.
The tight junction: a multifunctional complex   总被引:2,自引:0,他引:2  
  相似文献   

6.
Basally located tight junctions between Sertoli cells in the postpubertal testis are the largest and most complex junctional complexes known. They form at puberty and are thought to be the major structural component of the "blood-testis" barrier. We have now examined the development of these structures in the immature mouse testis in conjunction with immunolocalization of the tight-junction-associated protein ZO-1 (zonula occludens 1). In testes from 5-day-old mice, tight junctional complexes are absent and ZO-1 is distributed generally over the apicolateral, but not basal, Sertoli cell membrane. As cytoskeletal and reticular elements characteristic of the mature junction are recruited to the developing junctions, between 7 and 14 days, ZO-1 becomes progressively restricted to tight junctional regions. Immunogold labeling of ZO-1 on Sertoli cell plasma membrane preparations revealed specific localization to the cytoplasmic surface of tight junctional regions. In the mature animal, ZO-1 is similarly associated with tight junctional complexes in the basal aspects of the epithelium. In addition, it is also localized to Sertoli cell ectoplasmic specializations adjacent to early elongating, but not late, spermatids just prior to sperm release. Although these structures are not tight junctions, they do have a similar cytoskeletal arrangement, suggesting that ZO-1 interacts with the submembrane cytoskeleton. These results show that, in the immature mouse testis, ZO-1 is present on the Sertoli cell plasma membrane in the absence of recognizable tight junctions. In the presence of tight junctions, however, ZO-1 is found only at the sites of junctional specializations associated with tight junctions and with elongating spermatids.  相似文献   

7.
In cell culture, both endothelial and epithelial cell monolayers have been found to generate structurally similar tight junctional complexes, as assessed by thin complexes of the two cell types are, at least in part, responsible for the very different permeability characteristics of native endothelial and epithelial cell monolayers. The purpose of this work was to compare cultured endothelial and epithelial cells with respect to the function of their tight junctional complexes in regulating the movement of macromolecules and ions across the cell monolayers, and define functional parameters to characterize the tight junctional complexes. Bovine aorta endothelial cells and T84 colonic carcinoma epithelial cells were cultured on a microporous membrane support. The permeability coefficients of inulin, albumin, and insulin were determined with the cell monolayers and compared with the permeability coefficients obtained with 3T3-C2 fibroblasts, a cell line that does not generate tight junctions. Electrical resistance measurements across the monolayer-filter systems were also compared. The permeability coefficient of albumin across the endothelial cell monolayer compared favorably with other reported values. Likewise, the electrical resistance across the T84 cell monolayer was in good agreement with published values. Utilizing permeability coefficients for macromolecules as an index of tight junction function, we found that a distinction between a lack of tight junctions (fibroblasts), the presence of endothelial tight junctions, and the presence of epithelial tight junctions was readily made. However, when utilizing electrical resistance as an index of tight junction function, identical measurements were obtained with fibroblasts and endothelial cells. This indicates that more than one index of tight junction function is necessary to characterize the junctional complexes. Although structurally similar, epithelial cell and endothelial cell tight junctions perform very different functions, and, from our data, we conclude that the demonstration of tight junctional structures by electron microscopy is not relevant to the functional nature of the junction: structure does not imply function. A minimal assessment of tight junction function should rely on both the determination of the electrical resistance across the cell monolayer, and the determination of the permeability coefficients of selected macromolecules.  相似文献   

8.
Application of carbon tetrachloride produced a progressive proliferation of tight junctions in the rat liver. This system proved to be rapid and highly reproducable and affords the opportunity for tracing the fate of tight junctions in freeze-fracture replicas, facilitating investigations on their formation and function. Beginning on day one carbon tetrachloride treatments resulted in the progressive loosening and fragmentation of the junctional meshwork. After three to four days the membrane outside the zonulae occludentes was extensively filled with proliferated discrete junctional elements often forming complex configurations. From the fifth day on the zonulae occludentes were restricted again predominantly around the bile canaliculus margins. But the junctional meshwork of the zonulae occludentes remained loosened in comparison to those in the control rats. It could be shown that tight junction proliferation on the lateral surface of the plasmalemma occurred both through de novo formation from discrete centers of growth by addition of intramembranous particles and through reorganization of preexistent junctional strands of the fragmented zonulae occludentes bodies. Whereas the large gap junctions close associated with the zonulae occludentes remained more or less unaffected during the experiments, small gap junctions increased in number after five days and were located at the margin or in the tight junction domain. It is assumed that the degeneration of the tight junctions served as a pool for intramembranous particles which form the gap junctions. The results of these observations are discussed in relation to those obtained in other systems.  相似文献   

9.
The behaviour of primary cultures of dissociated embryonic chick pigmented retina epithelial (PRE) cells has been investigated. Isolated PRE cells have a mean speed of locomotion of 7-16 mum/h. Collisions between the cells normally result in the development of stable contacts between the cells involved. This leads to a gradual reduction in the number of isolated cells and an increase in the number of cells incorporated into islands. Ultrastructural observations of islands of cells after 24 h in culture show that junctional complexes are present between the cells. These complexes consist of 2 components: (a) an apically situated region of focal tight junctions and/or gap junctions, and (b) a more ventrally located zonula adhaerens with associated cytoplasmic filaments forming a band running completely around the periphery of each cell. The intermembrane gap in the region of the zonula is 6-0-12-0 nm. The junctional complexes become more differentiated with time and after 48 h in culture consist of an extensive region of tight junctions and/or gap junctions and a more specialized zonula adhaerens. It is suggested that the development of junctional complexes may be responsible for the stable contacts that the cells display in culture.  相似文献   

10.
The tight junctions between Sertoli cells were examined by freeze-fracture in 3-month-old prenatally irradiated rats, whose seminiferous tubules are devoid of germ cells. The replicas from irradiated tubules show elaborate interdigitations of the lateral membranes of Sertoli cells and very extensive tight junctions. These junctions are characterized by a great number of continuous parallel or complex interweaving strands of intramembranous particles, preferentially associated with E fracture faces. The presence of highly cross-linked tight junctional strands is compatible with an epithelium deprived of germ cells, with a reduced need for flexibility. Anomalous ectoplasmic specializations, consisting of groups of cisternae arranged perpendicularly to the lateral surface, are found in the irradiated tubules. These structures may be involved in a storage mechanism of redundant lateral membrane resulting from the elimination of germ cells. Typical gap junctions, intercalated between the tight junctional strands, are larger and more frequently found in treated animals than in controls. These findings indicate that a very tight permeability barrier seems to be established in the irradiated testis even in the absence of germ cells. Thus, the formation and maintenance of Sertoli tight junctions do not appear to be directly dependent on the presence of germ cells. Nevertheless, the alterations detected in the tight junction architecture and in the ectoplasmic specializations indicate that maturing germ cells probably contribute to the functional organization of the blood—testis barrier in the normal testis.  相似文献   

11.
The development and modulation of Sertoli cell junctions was studied in newborn and adult mink during the active and inactive spermatogenic phases. The techniques used were electron microscopy of freeze-fractured replicas and thin sections of tissues infused with horseradish peroxidase as a junction permeability tracer. In the newborn, freeze-fractured developing junctions had either spherical or fibrillar particles. In addition, junctional domains where particles were associated preferentially with the E-face, and others where particles were associated preferentially with the P-face, were found developing either singly or conjointly within a given membrane segment, thus yielding a heterogeneous junctional segment. Coincidently with the development of a tubular lumen and the establishment of a competent blood-testis barrier, junctional strands were composed primarily of particulate elements associated preferentially with the E-face. In adult mink during active spermatogenesis, cell junctions were found on the entire lateral Sertoli cell plasma membrane from the basal to the luminal pole of the cell. In the basal third of the Sertoli cell, membranous segments that faced a spermatogonium or a migrating spermatocyte displayed forming tight, gap, and adherens junctions. In the middle third, abutting membrane segments localized above germ cells were involved in continuous zonules and in adherens junctions. In the apical or luminal third, the zonules were discontinuous, and the association of junctional particles with the E-face furrow was lost. Gap junctions increased in both size and numbers. Junctional vesicles that appeared as annular gap and tight-junction profiles in thin sections or as hemispheres in freeze-fracture replicas were present. Reflexive tight and gap junctions were formed through the interaction of plasma membrane segments of the same Sertoli cell. Internalized junctional vesicles were also present in mature spermatids. During the inactive spermatogenic phase, cell junctions were localized principally in the basal third of the Sertoli cell; junctional strands resembled those of the newborn mink. During the active spermatogenic phase, continuous zonules were competent in blocking passage of the protein tracer. During the inactive phase the blood-testis barrier was incompetent in blocking entry of the tracer into the seminiferous epithelium. It is proposed that modulation of the Sertoli cell zonules being formed at the base and dismantled at the apex of the seminiferous epithelium follows the direction of germ cell migration and opposes the apicobasal direction of junction formation reported for most epithelia.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
ASSEMBLY OF GAP JUNCTIONS DURING AMPHIBIAN NEURULATION   总被引:20,自引:16,他引:4       下载免费PDF全文
Sequential thin-section, tracer (K-pyroantimonate, lanthanum, ruthenium red, and horseradish peroxidase), and freeze-fracture studies were conducted on embryos and larvae of Rana pipiens to determine the steps involved in gap junction assembly during neurulation. The zonulae occludentes, which join contiguous neuroepithelial cells, fragment into solitary domains as the neural groove deepens. These plaque-like contacts also become permeable to a variety of tracers at this juncture. Where the ridges of these domains intersect, numerous 85-Å participles apparently pile up against tight junctional remnants, creating arrays recognizable as gap junctions. With neural fold closure, the remaining tight junctional elements disappear and are replaced by macular gap junctions. Well below the junctional complex, gap junctions form independent of any visible, preexisting structure. Small, variegated clusters, containing 4–30 particles located in flat, particle-free regions, characterize this area. The number of particles within these arrays increases and they subsequently blend together into a polygonally packed aggregate resembling a gap junction. The assembly process in both apical and basal regions conforms with the concept of translational movement of particles within a fluid plasma membrane.  相似文献   

13.
Summary Freeze-fracture electron microscopy has been used in conjunction with the antibiotic filipin to investigate possible differences in the distribution of sterols in ciliary and somatic cell membranes of scallop and mussel gill epithelial cells. Contrary to previous reports, we find that filipin-sterol lesions can occur among the strands of the ciliary necklace but they are partially excluded from the smooth neck region above the necklace where the membrane is tightly apposed to the axonemal microtubules. No obvious differences in filipin-sterol lesions occur in the membranes of mussel gill cilia of varying mechanical sensitivity. Although abundant in the apical plasma membrane, filipin-sterol complexes are rare within the membranes of microvilli. Filipin-sterol lesions form outside the loosely parallel particle strands of septate junctions, sometimes increasing their relative orderliness. At sufficiently high density, filipin-sterol protrusions within the plasma membrane result in mass aggregation of gap junctions, possibly through recruitment of unorganized connexons.  相似文献   

14.
The structure and function of intercellular tight (occluding) junctions, which constitute the anatomical basis for highly regulated interfaces between tissue compartments such as the blood-testis and blood-brain barriers, are well known. Details of the synthesis and assembly of tight junctions, however, have been difficult to determine primarily because no model for study of these processes has been recognized. Primary cultures of brain capillary endothelial cells are proposed as a model in which events of the synthesis and assembly of tight junctions can be examined by monitoring morphological features of each step in freeze-fracture replicas of the endothelial cell plasma membrane. Examination of replicas of non-confluent monolayers of endothelial cells reveals the following intramembrane structures proposed as 'markers' for the sequential events of synthesis and assembly of zonulae occludentes: development of surface contours consisting of elongate terraces and furrows (valleys) orientated parallel to the axis of cytoplasmic extensions of spreading endothelial cells, appearance of small circular PF face depressions (or volcano-like protrusions on the EF face) that represent cytoplasmic vesicle-plasma membrane fusion sites, which are positioned in linear arrays along the contour furrows, appearance of 13-15 nm intramembrane particles at the perimeter of the vesicle fusion sites, and alignment of these intramembrane particles into the long, parallel, anastomosed strands characteristic of mature tight junctions. These structural features of brain endothelial cells in monolayer culture constitute the morphological expression of: reshaping the cell surface to align future junction-containing regions with those of adjacent cells, delivery and insertion of newly synthesized junctional intramembrane particles into regions of the plasma membrane where tight junctions will form, and aggregation and alignment of tight junction intramembrane particles into the complex interconnected strands of mature zonulae occludentes. The distribution of filipin-sterol complex-free regions on the PF intramembrane fracture face of junction-forming endothelial plasmalemmae corresponds precisely to the furrows, aligned vesicle fusion sites and anastomosed strands of tight junctional elements.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Small rab/Ypt1/Sec4 GTPase family have been involved in the regulation of membrane traffic along the biosynthetic and endocytic pathways in eucaryotic cells. Polarized epithelial cells have morphologically and functionally distinct apical and basolateral surfaces separated by tight junctions. The establishment and maintenance of these structures require delivery of membrane proteins and lipids to these domains. In this work, we have isolated a cDNA clone from a human intestinal cDNA library encoding a small GTPase, rab13, closely related to the yeast Sec4 protein. Confocal microscopy analysis on polarized Caco-2 cells shows that rab13 protein colocalized with the tight junction marker ZO- 1. Cryostat sections of tissues confirm that rab13 localized to the junctional complex region of a variety of epithelia, including intestine, kidney, liver, and of endothelial cells. This localization requires assembly and integrity of the tight junctions. Disruption of tight junctions by incubation in low Ca2+ media induces the redistribution of rab13. In cells devoid of tight junctions, rab13 was found associated with vesicles dispersed throughout the cytoplasm. Cell- cell contacts initiated by E-cadherin in transfected L cells do not recruit rab13 to the resulting adherens-like junction complexes. The participation of rab13 in polarized transport, in the assembly and/or the activity of tight junctions is discussed.  相似文献   

16.
In the adult rat hepatocyte, gap junction proteins consist of connexin 32 (Cx32) and connexin 26 (Cx26). Previously, we reported that both Cx32 and Cx26 were markedly induced and maintained in primary cultures of adult rat hepatocytes. The reappearing gap junctions were accompanied by increases in both the proteins and the mRNAs, and they were well maintained together with extensive gap junctional intercellular communication (GJIC) for more than 4 weeks. In the present study, we examined the cellular location of the gap junction proteins and the structures in the hepatocytes cultured in our system, using confocal laser microscopy and immunoelectron microscopy of cells processed for Cx32 and Cx26 immunocytochemistry and freeze-fracture analysis. In immunoelectron microscopy, the size of Cx32-immunoreactive gap junction structures on the plasma membrane increased with time of culture, and some of them were larger than those in liver sectionsin vivo.Freeze-fracture analysis also showed that the size of gap junction plaques increased and that the larger gap junction plaques were composed of densely packed particles. These results suggest that in this culture system, not only the synthesis of Cx proteins but also the size of the gap junction plaques was increased markedly. In the adluminal lateral membrane of the cells, Cx32-immunoreactive lines were observed and many small gap junction plaques were closely associated with a more developed tight junction network. In the basal region of the cells, small Cx32- and Cx26-immunoreactive dots were observed in the cytoplasm and several annular structures labeled with the antibody to Cx32 were observed in the cytoplasm. These results indicated the formation and degradation of gap junctions in the cultured hepatocytes.  相似文献   

17.
The ultrastructural morphology of the PCC4azal embryonal carcinoma cells and their differentiated counterparts, endoderm-like cells and giant cells, was characterized and compared with that of the cells of embryoid bodies. The ultrastructure of the PCC4azal embryonal carcinoma cells is similar to that of the embryonal carcinoma cells of the embryoid body. These cells are small, with a large nucleus and relatively few cytoplasmic organelles. Gap junctions and modified adherens junctions are formed at some areas of intercellular contact between the embryonal carcinoma cells. The differentiated PCC4azal endoderm-like cells have a more developed cytoplasm, containing an extensive endoplasmic reticulum with large Golgi regions. Most striking is the de novo appearance of epithelial-like junctional complexes which join the apical borders between the endoderm-like cells, thus polarizing the cell monolayer. The zonula occludens junctions of the junctional complex are extensive, consisting of six or more strands of tight junctional ridges. Terminal webs are present in the apical regions that are inserted into the zonula adherens region of the junctional complex. Gap junctions continue to join neighboring cells, and some gap junctions are intercalated within tight junctional ridges. The ultrastructure of the differentiated endodermal cells of the embryoid bodies is very similar to that of the PCC4azal endoderm-like cells. The embryoid body endodermal cells form similar junctional complexes which also contain continuous belts of tight junctions that are intercalated with gap junctions. As the PCC4azal endoderm-like cells are transformed to giant cells, a massive cytoskeleton is formed, consisting of a large complex system of 10-nm filaments, microtubules, and 7-nm microfilaments. The junctional complexes that were present during the endodermal stage are partially disassembled as the giant cells migrate apart. Thus, the differentiation process in this system is characterized by significant and distinctive morphological changes.  相似文献   

18.
19.
A heterogeneous continuum theory of biological membrane interactions is presented which takes account of the spatial inhomogeneity of intramembranous particle patterns observed in ultrastructural studies of junctional complexes using the freeze-cleaved technique. The theory attempts to explain (i) how electrostatic and electrodynamic forces between particles of different biochemical composition in the same and opposing membranes might give rise to the specialized particle configurations characteristic of tight and gap junctions, (ii) how the spatial non-uniformity of the membrane proteins quantitatively modifies the local long range molecular level force field between adjacent membrane bilayers and (iii) how membrane elastic stresses and the modified molecular level forces combine to determine the equilibrium configurations of the various junctional complexes. The mathematical problem is highly non-linear since the molecular forces are a rapidly varying function of the local membrane spacing which is a priori unknown. The simplified dimensionless boundary value problem to determine the junction geometry has been reduced to a fourth order quasi one-dimensional equation with split end point conditions. The equation is singular in the vicinity of the junction complex and special solution techniques had to be employed. The numerical results are in reasonable quantitative agreement with electron microscopic observations of tight, gap and venous junctions.  相似文献   

20.
In different epithelia, cell membranes contacting one another form intercellular junctional complexes including tight, adherens and gap junctions, which could mutually influence the expression of each other. We have here investigated the role of Cx43 in the control of adherens and tight junction proteins (N-cadherin, β-catenin, occludin and ZO-1) by using conditional Sertoli cell knockout Cx43 (SCCx43KO−/−) transgenic mice and specific anti-Cx43 siRNA. Gap junction coupling and Cx43 levels were reduced in SCCx43KO−/− as compared to Wild-type testes. Ultrastructural analysis revealed disappearance of gap junctions, the presence of tight and adherens junctions and persistent integrity of the blood-testis barrier in SCCx43KO−/− testis. Occludin, N-cadherin and β-catenin levels were enhanced in SCCx43KO−/− mice as compared to Wild-type animals whereas ZO-1 levels were reduced. Cx43 siRNA blocked gap junction functionality in Sertoli cells and altered tight and adherens protein levels. The Cx43 control of tight and adherens junctions appeared channel-dependent since gap junction blockers (glycyrrhetinic acid and oleamide) led to similar results. These data suggest that the control of spermatogenesis by Cx43 may be mediated through Sertoli cell Cx43 channels, which are required, not only in cell/cell communication between Sertoli and germ cells, but also in the regulation of other junctional proteins essential for the blood-testis barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号