首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Several prolinal derivatives were synthesized and examined for their inhibitory activity on post-proline cleaving enzymes from Flavobacterium meningosepticum and bovine brain and their possible properties as nootropic agents. Almost all the compounds tested inhibited the activity of both enzymes at low IC50 values of the order of nM, but a specificity difference was observed with alkylacyl-prolinal derivatives which strongly inhibited only the bacterial enzyme. Prolyl-prolinal derivatives were the most effective inhibitors for both enzymes. In the passive avoidance test using amnesic rats experimentally induced with scopolamine, the prolinal derivatives that have potent inhibitory activity toward post-proline cleaving enzymes showed also strong anti-amnesic activities at doses of 10 ~ 1000μg/kg, i.p. Some of the compounds showed a bell-shape dose dependency. These results suggest that the post-proline cleaving enzymes play an important role in the regulation of learning and memory consolidation in the brain and inhibitors of these enzymes are suggested as possible candidates for nootropic agents, particularly for an anti-amnesic drug.  相似文献   

2.
Abstract: Rabbits were subjected to hypoxia (5% O2) for up to 90 min and allowed to recover for a maximum of 4 days. Hippocampus homogenate was assayed for fodrin breakdown product (BDP). After separation into a nuclear and mitochondrial fraction (NMF), a membrane and microsomal fraction (MMF), and a cytosolic fraction (CF), samples were assayed for μ-calpain, m-calpain, and calpastatin immunoreactivity. Calpain and calpastatin immunoreactivity decreased in the NMF and CF but increased in the MMF during hypoxia and short-term recovery. This translocation occurred in parallel with the increase in fodrin BDP. Because the increase in the MMF was not large enough to explain the decrease in the other two fractions, it was assumed that the translocation and activation was accompanied by a reduction in the total amounts of calpains and calpastatin. Glucocorticoid pretreatment (beta-methasone, 0.4 mg × kg−1× day−1) for 7 days produced a decrease in the ratio of activated μ-calpain in all three fractions in nearly all samples before, during, and after hypoxia, compared with untreated animals. Glucocorticoid pretreatment also prevented the increase in fodrin BDP that occurred in untreated animals during hypoxia and short-term recovery, indicating impairment of calpain activation.  相似文献   

3.
4.
Sumbul S  Bano B 《Neurochemical research》2006,31(11):1327-1336
Cystatin are thiol proteinase inhibitors ubiquitously present in mammalian body and serve various important physiological functions. In the present study two cystatins were isolated from goat brain using alkaline treatment, ammonium sulphate fractionation, gel filtration and ion exchange chromatography. The high molecular mass cystatin of 70.8 kDa was named as HM-GBC (high molecular mass goat brain cystatin) and the low molecular mass cystatin of 12.72 kDa was named as LM-GBC (low molecular mass goat brain cystatin). The molecular mass determined by SDS-PAGE was found to be 70.8 and 12.88 kDa for HM-GBC and LM-GBC, respectively, however with gel filtration the masses were found to be 70.8 and 12.58 kDa. Both the cystatins were found to be stable in broad range of pH and temperature. HM-GBC was found to have 2% carbohydrate content while LM-GBC lacks any carbohydrate content. Both cystatins were found to be devoid of any sulphydryl content. Stoke's radii of 36 and 16 A, and diffusion coefficient of 6.189 x 10(-15) and 1.392 x 10(-14) cm(2)/s were calculated for HM-GBC and LM-GBC. K (i) values with papain were found to be 1.875 x 10(-8) and 3.125 x 10(-8) M for HM-GBC and LM-GBC, respectively. K (+1), K (-1) and half-life calculated along with K (i) values obtained showed that HM-GBC inhibited papain more specifically as compared to LM-GBC. The IC(50) values obtained for HM-GBC and LM-GBC also showed that HM-GBC binds more effectively to papain than LM-GBC. Ultraviolet and fluorescence spectra indicated that upon formation of papain-HM-GBC/LM-GBC complex there is significant conformational change after interaction in one or both the proteins of the complex.  相似文献   

5.
Although the calpain system has been studied extensively in mammalian animals, much less is known about the properties of μ-calpain, m-calpain, and calpastatin in lower vertebrates such as fish. These three proteins were isolated and partly characterized from rainbow trout, Oncorhynchus mykiss, muscle. Trout m-calpain contains an 80-kDa large subunit, but the  26-kDa small subunit from trout m-calpain is smaller than the 28-kDa small subunit from mammalian calpains. Trout μ-calpain and calpastatin were only partly purified; identity of trout μ-calpain was confirmed by labeling with antibodies to bovine skeletal muscle μ-calpain, and identity of trout calpastatin was confirmed by specific inhibition of bovine skeletal muscle μ- and m-calpain. Trout μ-calpain requires 4.4 ± 2.8 μM and trout m-calpain requires 585 ± 51 μM Ca2+ for half-maximal activity, similar to the Ca2+ requirements of μ- and m-calpain from mammalian tissues. Sequencing tryptic peptides indicated that the amino acid sequence of trout calpastatin shares little homology with the amino acid sequences of mammalian calpastatins. Screening a rainbow trout cDNA library identified three cDNAs encoding for the large subunit of a putative m-calpain. The amino acid sequence predicted by trout m-calpain cDNA was 65% identical to the human 80-kDa m-calpain sequence. Gene duplication and polyploidy occur in fish, and the amino acid sequence of the trout m-calpain 80-kDa subunit identified in this study was 83% identical to the sequence of a trout m-calpain 80-kDa subunit described earlier. This is the first report of two isoforms of m-calpain in a single species.  相似文献   

6.
Aims Taurine as an endogenous substance possesses a number of cytoprotective properties. In the study, we have evaluated the neuroprotective effect of taurine and investigated whether taurine exerted neuroprotection through affecting calpain/calpastatin or caspase-3 actions during focal cerebral ischemia, since calpain and caspase-3 play central roles in ischemic neuronal death. Methods Male Sprague–Dawley rats were subjected to 2 h of middle cerebral artery occlusion (MCAo), and 22 h of reperfusion. Taurine was administrated intravenously 1 h after MCAo. The dose–responses of taurine to MCAo were determined. Next, the effects of taurine on the activities of calpain, calpastatin and caspase-3, the levels of calpastatin, microtubule-associated protein-2 (MAP-2) and αII-spectrin, and the apoptotic cell death in penumbra were evaluated. Results Taurine reduced neurological deficits and decreased the infarct volume 24 h after MCAo in a dose-dependent manner. Treatment with 50 mg/kg of taurine significantly increased the calpastatin protein levels and activities, and markedly reduced the m-calpain and caspase-3 activities in penumbra 24 h after MCAo, however, it had no significant effect on μ-calpain activity. Moreover, taurine significantly increased the MAP-2 and αII-spectrin protein levels, and markedly reduced the ischemia-induced TUNEL staining positive score within penumbra 24 h after MCAo. Conclusions Our data demonstrate the dose-dependent neuroprotection of taurine against transient focal cerebral ischemia, and suggest that one of protective mechanisms of taurine against ischemia may be blocking the m-calpain and caspase-3-mediated apoptotic cell death pathways.  相似文献   

7.
A lipase with a high molecular weight was purified from Chromobacterium viscosum by chromatography using the Amberlite CG–50 and Sephadex G–75. The purified lipase (Lipase A) was found to be homogeneous by disc electrophoresis.

Lipase A had an optimum pH around 7 for lipolysis of olive oil and the enzyme was stable at the range of pH 4 to 9 and below 50°C. Zn2+, Cu2+, Fe3+ and high concentrations of l-cysteine, iodoacetic acid and NBS had remarkable inhibitory effects. Bile salts were activator. Lipase A was more active on water insoluble esters than water soluble esters. The isoelectric point of the enzyme was pH 4.7.  相似文献   

8.
Alanine Aminotransferase in Bovine Brain: Purification and Properties   总被引:5,自引:3,他引:2  
Abstract: Mitochondrial and cytosolic alanine aminotransferases (EC 2.6.1.2) were partially purified (140- and 180-fold, respectively) from bovine brain cortex by means of (NH4)2SO4 precipitation, gel filtration on Sephadex G-150, and ion-exchange chromatography on DEAE A-50 and characterized. The enzymes exhibited identical molecular weights (110,000 ± 10,000) and pH optima (7.8), but were eluted from CM Sephadex C-50 at different ionic strengths. Isoelectric focusing of the enzymes indicated a pi value of 5.2 for the cytosolic enzyme and 7.2 for the mitochondrial enzyme. The K m values of the mitochondrial enzyme were 5.1 m M , 6.6 m M , 0.7 m M , and 0.4 m M and of the cytosolic isozyme were 30.3 m M , 4.3 m M , 0.7 m M , and 0.5 m M for alanine, glutamate, 2-oxoglutarate, and pyruvate, respectively. The results indicated that two forms of alanine aminotransferase exist in nerve tissue, which suggests that they may play different roles in the cellular metabolism of nerve tissue.  相似文献   

9.
A high molecular weight kininogen has been isolated from rat plasma and purified. At each preparative step the kininogen concentration and purity were monitored by assay on the perfused isolated rat uterus in terms of bradykinin equivalents formed per mg protein following incubation of the plasma fractions with rodent acid protease for 24 hours at 37 and pH 4.0. Kinin formation by crystalline trypsin and human pancreatic kallikrein also was compared. Citrated rat plasma first was precipitated with 43% ammonium sulfate. The kininogen fractions then were subjected to a series of gel filtration ion exchange chromatographic columns that included G-200 Sephadex, G-200: G-100 Sephadex interconnected columns, DEAE-A50 Sephadex, and hydroxylapatite. The kininogen fractions finally were subjected to preparative polyacrylamide gel electrophoresis, resulting in a final purification of 92.9-fold compared to the initial rat plasma. A single major kininogen protein band and a minor band of protein impurity were obtained on disc gel electrophoresis. Only the pancreatic kallikrein did not form kinin from this purified kininogen. The apparent molecular weight was estimated by SDS polyacrylamide gel technique to be 110,000.  相似文献   

10.
Abstract: Clathrin has been purified to electrophoretic homogeneity by initial extraction of clathrin from purified coated vesicle fraction, followed by column chromatographies with gel filtration. DEAE-cellulose, and hydroxylapatite and finally by preparative sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Antibody specific to clathrin has also been obtained. Two forms of native clathrin, fast and slow components, have been prepared to about 95% purity by hydroxylapatite column chromatography. Both fast and slow components are believed to represent two different aggregates of clathrin subunit because they comigrate in agarose electrophoresis. pH 7.4, and also migrate as clathrin subunit on SDS-PAGE with a molecular weight of 175,000. Furthermore, both components cross-react with antibody against purified clathrin and compete for antibody binding site with labeled fast component. The fast component can also be converted to the slow component. In addition to clathrin, two proteins of about 38,000 and 35,000 M.W. that consistently co-purified with native clathrin are probably also intrinsic to coated vesicle.  相似文献   

11.
Purification and Properties of Bovine Brain Dopamine β-Hydroxylase   总被引:1,自引:1,他引:0  
Abstract: Dopamine β-hydroxylase (DBH) was purified from bovine brain by a series of steps including extraction with 0.5% Triton X-100, ammonium sulfate fractionation, and serial chromatographies with Concanavalin A (Con A)-Sepharose, Biogel A-1.5 m, DEAE-Sephadex, and phenyl-Sepharose. The overall purification was approximately 4200-fold and the final specific activity was 147 nmol/min/mg protein. Bovine brain DBH was apparently a glycoprotein and interacted with immobilized Con A. Furthermore, the enLyme bound to phenyl-substituted agarose by hydrophobic interaction. An approximate molecular weight was estimated to be 400,000 by gel filtration; the protein eluted earlier than bovine adrenal DBH with a molecular weight estimated to be 290,000. The Km values toward tyramine and ascorbate were 1.53 and 1.42 mM, respectively, the optimal pH was 5.0 in the presence of 20 mM tyramine as substrate. Immunological titration studies indicated that bovine brain and adrenal DBH had common antigenic sites. Our data showed a close similarity between the bovine brain and adrenal enzymes.  相似文献   

12.
Sorbitol dehydrogenase (EC 1.1.1.14) was isolated from bovine brain and purified 3,000-fold to apparent homogeneity, as judged by polyacrylamide gel electrophoresis. The purified enzyme had a specific activity of 36 units/mg of protein; a molecular weight of 39,000 for each of the four identical subunits and 155,000 for the intact enzyme were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel exclusion chromatography, respectively. The presence of one Zn2+ per subunit was confirmed by atom absorption spectroscopy; inactivation of the enzyme by metal-chelating agents points to the essential role that Zn2+ plays in the catalytically competent enzyme. The enzyme is also inactivated by thiol-blocking reagents; with respect to inactivation by sodium pyrophosphate, sorbitol dehydrogenase is different from closely related alcohol dehydrogenase.  相似文献   

13.
Acetaldehyde and biogenic aldehydes were used as substrates to investigate the subcellular distribution of aldehyde dehydrogenase activity in autopsied human brain. With 10 microM acetaldehyde as substrate, over 50% of the total activity was found in the mitochondrial fraction and 38% was associated with the cytosol. However, with 4 microM 3,4-dihydroxyphenylacetaldehyde and 10 microM indoleacetaldehyde as substrates, 40-50% of the total activity was found in the soluble fraction, the mitochondrial fraction accounting for only 15-30% of the total activity. These data suggested the presence of distinct aldehyde dehydrogenase isozymes in the different compartments. The mitochondrial and cytosolic fractions were, therefore, subjected to salt fractionation and ion-exchange chromatography to purify further the isozymes present in both fractions. The kinetic data on the partially purified isozymes revealed the presence of a low Km isozyme in both the mitochondria and the cytosol, with Km values for acetaldehyde of 1.7 microM and 10.2 microM, respectively. However, the cytosolic isozyme exhibited lower Km values for the biogenic aldehydes. Both isozymes were activated by Mg2+ and Ca2+ in phosphate buffers (pH 7.4). Also, high Km isozymes were found in the mitochondria and in the microsomes.  相似文献   

14.
15.
A large form of human prolactin (molecular weight 150 000–170 000) was purified from the residue remaining after extraction at neutral pH of homogenized frozen pituitaries. This purification involved extraction at pH 9.8, molecular sieve chromatography on Sepharose CL-6B, and hydrophobic interaction chromatography on pentyl-Sepharose 4B. The procedure was followed by radioimmunoassay. The large form of prolactin was prepared both from fresh and from long-term stored residues. In the latter case the final yield was considerably higher. By zone electrophoresis in agarose suspension the prolactin preparation was separated into four or five immunoactive components. In sedimentation equilibrium analysis in the ultracentrifuge, however, these isohormones showed heterogeneity, which was suggested to be caused by dissociation. Evaluation of data obtained from the bottom region of the cells gave molecular weight values of the components in the range of 160 000 – 180 000. One of the is hormones s further studied and exhibited bioactivity in the local crop-sac assay and showed an amino acid composition closely similar to that of the native monomer prolactin. The high molecular weight prolactin was partially dissociated by treatment with 50% ethylene glycol or 1 M propionic acid or 6 M guanidine hydrochloride. Molecular sieve chromatography in the presence of these dissociating agents, resolved the prolactin activity into three separate peaks. The most retarded fraction, which eluted in a position corresponding to that of native monomer prolactin was characterized by electrophoresis and amino acid analysis. The results were supporting evidence that the dissociation procedure gave a monomer which had a lower amide content than the native monomer. Furthermore, its specific immunoactivity was 2–3 times higher than the activity of the intact large form.  相似文献   

16.
We studied the effects of aluminum salts on the degradation of human neurofilament subunits (NF-H, NF-M, and NF-L, the high, middle, and low molecular weight subunits, respectively) and other cytoskeletal proteins using calcium-activated neutral proteinase (calpain) purified from human brain. Calpain-mediated proteolysis of NF-L, tubulin, and glial fibrillary acidic protein (GFAP), three substrates that displayed constant digestion rates in vitro, was inhibited by AlCl3 (IC50 = 200 microM) and by aluminum lactate (IC50 = 400 microM). Aluminum salts inhibited proteolysis principally by affecting the substrates directly. After exposure to 400 microM aluminum lactate and removal of unbound aluminum, human cytoskeletal proteins were degraded two- to threefold more slowly by calpain. When cytoskeleton preparations were exposed to aluminum salt concentrations of 100 microM or higher, proportions of NF-M and NF-H formed urea-insoluble complexes of high apparent molecular mass, which were also resistant to proteolysis by calpain. Complexes of tubulin and of GFAP were not observed under the same conditions. Aluminum salts irreversibly inactivated calpain but only at high aluminum concentrations (IC50 = 1.2 and 2.1 mM for aluminum lactate and AlCl3, respectively), although longer exposure to the ion reduced by twofold the levels required for protease inhibition. These interactions of aluminum with neurofilament proteins and the effects on proteolysis suggest possible mechanisms for the impaired axoplasmic transport of neurofilaments and their accumulation in neuronal perikarya after aluminum administration in vivo.  相似文献   

17.
6-Phosphogluconate dehydrogenase has been purified from human brain to a specific activity of 22.8 U/mg protein. The molecular weight was 90,000. At low ionic strengths enzyme activity increased, due to an increase in Vmax and a decrease in Km for 6-phosphogluconate, and activity subsequently decreased as the ionic strength was increased (above 0.12). Both 6-phosphogluconate and NADP+ provided good protection against thermal inactivation, with 6-phosphogluconate also providing considerable protection against loss of activity caused by p-chloromercuribenzoate and iodoacetamide. Initial velocity studies indicated the enzyme mechanism was sequential. NADPH was a competitive inhibitor with respect to NADP+, and the Ki values for this inhibition were dependent on the concentration of 6-phosphogluconate. Product inhibition by NADPH was noncompetitive when 6-phosphogluconate was the variable substrate, whereas inhibition by the products CO2 and ribulose 5-phosphogluconate and NADP+ were varied. In totality these data suggest that binding of substrates to the enzyme is random. CO2 and ribulose 5-phosphate are released from the enzyme in random order with NADPH as the last product released.  相似文献   

18.
With the successful clinical trials, multifunctional glycoprotein bovine lactoferrin is gaining attention as a safe nutraceutical and biologic drug targeting cancer, chronic-inflammatory, viral and microbial diseases. Interestingly, recent findings that human lactoferrin oligomerizes under simulated physiological conditions signify the possible role of oligomerization in the multifunctional activities of lactoferrin molecule during infections and in disease targeting signaling pathways. Here we report the purification and physicochemical characterization of high molecular weight biomacromolecular complex containing bovine lactoferrin (≥250 kDa), from bovine colostrum, a naturally enriched source of lactoferrin. It showed structural similarities to native monomeric iron free (Apo) lactoferrin (∼78–80 kDa), retained anti-bovine lactoferrin antibody specific binding and displayed potential receptor binding properties when tested for cellular internalization. It further displayed higher thermal stability and better resistance to gut enzyme digestion than native bLf monomer. High molecular weight bovine lactoferrin was functionally bioactive and inhibited significantly the cell proliferation (p<0.01) of human breast and colon carcinoma derived cells. It induced significantly higher cancer cell death (apoptosis) and cytotoxicity in a dose-dependent manner in cancer cells than the normal intestinal cells. Upon cellular internalization, it led to the up-regulation of caspase-3 expression and degradation of actin. In order to identify the cutting edge future potential of this bio-macromolecule in medicine over the monomer, its in-depth structural and functional properties need to be investigated further.  相似文献   

19.
Canavan disease, an autosomal recessive disorder, is characterized biochemically by N-acetylaspartic aciduria and aspartoacylase (N-acyl-L-aspartate amidohydrolase; EC 3.5.1.15) deficiency. However, the role of aspartoacylase and N-acetylaspartic acid in brain metabolism is unknown. Aspartoacylase has been purified to apparent homogeneity with a specific activity of approximately 19,000-20,000 nmol of aspartate released/mg of protein. The native enzyme is a 58-kDa monomer. The purified aspartoacylase activity is enhanced by divalent cations, nonionic detergents, and dithiothreitol. Low levels of dithiothreitol or beta-mercaptoethanol are required for enzyme stability. Aspartoacylase has a Km of 8.5 x 10(-4) M and a Vmax of 43,000 nmol/min/mg of protein. Inhibition of aspartoacylase by glycyl-L-aspartate and amino derivatives of D-aspartic acid suggests that the carbon backbone of the substrate is primarily involved in its interaction with the active site and that a blocked amino group is essential for the catalytic activity of aspartoacylase. Biochemical and immunocytochemical studies revealed that aspartoacylase is localized to white matter, whereas the N-acetylaspartic acid concentration is threefold higher in gray matter than in white matter. Our studies so far indicate that aspartoacylase is conserved across species during evolution and suggest a significant role for aspartoacylase and N-acetylaspartic acid in normal brain biology.  相似文献   

20.
The major aminopeptidase from human post-mortem brain (occipital cortex) was purified to homogeneity (as judged by polyacrylamide gel electrophoresis) by anion-exchange chromatography (two steps) and gel filtration (two steps). The molecular weight of the enzyme was estimated as 105,000 from gel filtration. Maximum activity was obtained in the presence of 0.5 mM Ca2+ and 1 mM 2-mercaptoethanol at pH 7.3. Enzyme activity was lost on freezing and thawing or on lyophilization. The enzyme was inhibited by metal-ion chelating agents, sulphydryl blocking agents, bestatin, and puromycin. A series of amino acyl-7-amido-4-methylcoumarins was hydrolysed by the enzyme, with the alanyl derivative being hydrolysed most rapidly (Km 170 microM). Specificity studies with a series of alanine dipeptides suggested that a hydrophobic second residue favoured hydrolysis. Several naturally occurring neuropeptides, including Leu5-enkephalin (Km 180 microM), cholecystokinin octapeptide, and Arg8-vasopressin, were hydrolysed by the aminopeptidase. In a series of opioid peptides, increasing chain length led to decreased susceptibility to hydrolysis. Sulphation of the Tyr1 residue of Leu5-enkephalin and the Tyr2 residue of cholecystokinin octapeptide made the peptides more resistant to hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号