首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Underground rhizomes of emergent aquatic macrophytes are important for perennation, vegetative spread, competition and anchorage. In four species we examined the potential for the development of oxidized phyllospheres around rhizome apical buds, similar to the protective oxygenated rhizospheres around roots. Redox potentials and polarographic measurements of radial oxygen loss were recorded using platinum cathodes around the apical buds. The aeration pathway from atmosphere to phyllosphere was investigated anatomically and by applied pressurized gas flow. Redox potentials increased by +400, +45, +200 and +340 mV around rhizome apices of Phragmites australis, Oryza rhizomatis, Carex rostrata and Glyceria maxima, respectively. Radial oxygen loss from rhizome apices of Phragmites was increased by convective gas flow through the rhizome and by shoot de-submergence, and decreased by resistances applied within the aeration pathway and by shoot submergence. We conclude that oxygen passes via internal gas-space connections between aerial shoot, rhizome and underground buds and into the phyllosphere regions via scale-leaf stomata and surfaces on the buds. We suggest that oxidized phyllospheres may protect rhizome apices against phytotoxins in waterlogged soils, just as oxidized rhizospheres protect roots.  相似文献   

2.
The amount of oxygen released from the roots of Phragmites australis was quantified to examine the effects of airflow through dead culms, radiation, and temperature on radial oxygen loss (ROL). To investigate the effect of dead culms on ROL quantitatively, the ROL of individual plants with open dead culms was compared to that of plants with sealed dead culms as a function of light intensity and temperature. The relationship between ROL and plant morphology (aboveground biomass, shoot diameter, shoot height) was investigated. When exposed to 300, 600, and 900 μmol m−2 s−1 light, the ROL was 15.6, 22.5, and 30.9 μmol O2 g−1 dry root day−1, respectively, from plants with open dead culms and 11.0, 16.4, and 23.3 μmol O2 g−1 dry root day−1, respectively, from plants with sealed dead culms. The ROL from plants with open dead culms was obviously higher than that from plants with sealed dead culms in every condition. The ROL from plants with open culms was 37% and 30% higher than that from plants with sealed culms at 20°C and 30°C, respectively. The effects of plant-specific parameters such as leaf area and shoot diameter on radial oxygen loss were evident. From the point of view of rhizosphere oxidation during the growing season, the existence of open dead culms should be taken into consideration for optimal plant management in constructed wetlands. This study provides a theoretical understanding of the effects of open dead culms, light conditions, and temperature on radial oxygen loss. Handling editor: S. M. Thomaz  相似文献   

3.
4.
BACKGROUND AND AIMS: Akagare and Akiochi are diseases of rice associated with sulfide toxicity. This study investigates the possibility that rice reacts to sulfide by producing impermeable barriers in roots. METHODS: Root systems of rice, Oryza sativa cv. Norin 36, were subjected to short-term exposure to 0.174 mm sulfide (5.6 ppm) in stagnant solution. Root growth was monitored; root permeability was investigated in terms of polarographic determinations of oxygen efflux from fine laterals and the apices of adventitious roots, water uptake, anatomy and permeability to Fe2+ using potassium ferricyanide. KEY RESULTS: Both types of root responded rapidly to the sulfide with immediate cessation of growth, decreased radial oxygen loss (ROL) to the rhizospheres and reduced water uptake. Profiles of ROL measured from apex to basal regions of adventitious roots indicated that more intense barriers to ROL than normal were formed around the apices. Absorption of Fe2+ appeared to be impeded in sulfide-treated roots. In adventitious roots, deposition of lipid material (suberisation) and thickenings of walls within the superficial cell layers were obvious within a week after lifting the treatment and could prevent the emergence of laterals and commonly result in their upward longitudinal growth within the cortex. Death of laterals sometimes occurred prior to emergence; emergent laterals eventually died. In adventitious roots, blockages formed within the vascular and aeration systems in response to the sulfide. CONCLUSIONS: In both adventitious and lateral roots, sulfide-induced cell wall suberization and thickening of the superficial layers were correlated with reduced permeability to O2, water and Fe2+. This study sheds light on some of the symptoms of diseases such as Akiochi. The results correlate with the authors' previous findings on the effects on roots of sulfide and lower organic acids in Phragmites and of acetic acid in rice.  相似文献   

5.
6.
The emergent macrophyte Glyceria maxima was subjected to different photoperiods and grown with ammonium or nitrate as nitrogen source in presterilized microcosms with spatially separated root and non-root compartments. The microcosms were inoculated with the denitrifying bacterium Pseudomonas chlororaphis. The effect of the plant and the photoperiod on growth and denitrification by P. chlororaphis was assessed. The plant had a strong positive effect on the growth of the bacteria. The bacterial numbers in the root compartment of the planted microcosms were 19-32 times higher than found in the non-root sediment of the unplanted systems. Lengthening the photoperiod resulted in elevated bacterial numbers due to the higher carbon exudation of the plant. This effect was greater still with the nitrate-fed plants, where additional P. chlororaphis growth could proceed via denitrification, indicating oxygen-limiting conditions in the microcosms. Higher porewater N2O concentrations in the root compartments as compared to the non-root compartments, which were highest for the long photoperiod, were also indicative of a plant-induced stimulation of denitrification. An effect of a diurnal oxygen release pattern of G. maxima on denitrification could not be detected. The gnotobiotic microcosm used in this study represents a potential system for the study of the behaviour and interactions of important bacterial groups, such as nitrifying and denitrifying bacteria where plant roots drive bacterial activity.  相似文献   

7.
三种不同泌氧能力的红树植物对铅、锌、铜的耐性研究   总被引:1,自引:0,他引:1  
红树林是分布于热带、亚热带潮间带的典型滨海生态系统。近年来,随着城市化和工业化的发展,滨海生态系统受重金属(例如铅、锌、铜等)的污染越来越严重,我国南方一些红树林底泥中的重金属浓度已达到甚或超过重度污染标准。由于沉积作用,红树林底泥被认为是一个能积累由潮水和河流淡水携带来的重金属的"库"。然而,红树植物具有很强的耐性生长于重度污染的底泥, 但其中的机理目前尚不清楚。由于长期被水淹没,红树林底泥是一个具氧化还原势低,还原性毒性物质(如Fe2+、Mn2+、H2S、CH4等)积累多,营养物质缺乏等特征的厌氧环境。为了适应这种生境,红树植物也进化出了一套与其他湿地植物类似的适应机制,植物能通过通气组织将地上部分的氧气输送到地下,一部分满足根的呼吸作用需要,一部分则通过根释放到根际,这被称为根的泌氧。根的泌氧可以氧化根际环境并且氧化还原性的毒性物质,以保证红树植物根免受毒害而延长生长。因此,根际泌氧是红树植物能适应生境的一个重要机理。本研究试图揭示红树植物在长期适应生境的过程中已经进化和发展出一系列形态解剖和生理生化特征是否在耐浸水的土壤条件,解除Fe2+、Mn2+等元素的毒性同时,是否也能解除其他重金属(铅、锌、铜)的毒性。通过对木榄、桐花和白骨壤三种不同泌氧能力的植物进行8周室内砂培试验发现:(1)三种植物的生长都被铅、锌、铜所抑制;(2)三种植物对铅、锌、铜都具有一定的耐性,然而,泌氧能力较弱的木榄比泌氧能力较强的桐花和白骨壤对铅、锌、铜的耐性高。  相似文献   

8.
湿地植物根系泌氧及其在自然基质中的扩散效应研究进展   总被引:3,自引:0,他引:3  
王文林  韩睿明  王国祥  唐晓燕  梁斌 《生态学报》2015,35(22):7286-7297
湿地植物根系径向泌氧(ROL)是构造根际氧化-还原异质微生态系统的核心要素,其扩散层为好氧、厌氧微生物提供了良好生境并促进其代谢活动,使湿地植物根际成为有机物降解、物质循环及生命活动最为强烈的场所,已有成果证明湿地植物根系ROL的强弱与污染物的去除效果密切相关。因此,开展湿地植物根系ROL及其在自然基质中的扩散效应研究,对于了解湿地植物根系ROL机理及其根际氧环境特征,进而发挥湿地植物的污染去除功能具有十分重要的意义。基于此,首先归纳了湿地植物根系ROL特征及其受影响机制的研究现状,而后从种属差异、时空分布及对微生物的影响等方面对根系ROL在自然基质中的扩散效应国内外研究成果进行了总结,最终根据研究现状与不足对今后的研究方向进行了简要展望。创新之处在于:1)提出影响根系氧供给及氧输送释放通道的环境、生物等因素,阐述了其对根系ROL的影响机制;2)着重阐述了目前研究较少提及的根系ROL扩散效应测定方法。  相似文献   

9.
Using 779 herbarium and modern specimens, we reconstructed the spread of the common reed ( Phragmites australis ) in Quebec, Canada, where large-scale invasion of this plant species has been reported since the 1960s. All specimens were genetically differentiated using molecular tools to identify the genotype (native or exotic). The exotic genotype (haplotype M) has been present in Quebec as early as 1916, but it was rare prior to the 1970s and was almost exclusively restricted to the shores of the St. Lawrence River. The exotic genotype spread inland only after the beginning of the 1970s. In less than 20 years, a complete shift occurred, from the dominance of native genotypes to the dominance of the exotic genotype. Today, more than 95% of common reed colonies found in Quebec are dominated by the haplotype M. It is especially abundant along roads, but colonies present in marshes are also dominated by the exotic genotype. This study provides evidence that, in Quebec, the development of the highway network in the 1960s and 1970s strongly contributed to the inland expansion of the exotic genotype. Moreover, it shows the usefulness of molecular techniques for reconstructing the spread of an invader. Without the use of molecular tools, the reconstruction of invasions of exotic taxa would be impossible because of the lack of clear phenotypic differences between genotypes.  相似文献   

10.
Aluminium, a potentially phytotoxic metal, is an important constituent of many mine water discharges but has largely been neglected in the literature. The behaviour of this element in the rhizosphere of the wetland plant Phragmites australis was investigated in the laboratory in the presence and absence of Mn and Fe root plaques. Electron microscopy and chemical extraction techniques were utilized to determine the physico-chemical properties of the plaques and any association of Al. Both Mn and Fe plaques occurred as amorphous coatings on root surfaces with uneven distributions. Al was not adsorbed onto the surface of either plaque type but formed a separate phosphate deposit closely resembling the Fe and Mn plaques. Phosphorus was also found to be adsorbed to the surface of the Fe plaques (but not the Mn plaques). Both mechanisms were found to immobilize P at the root surface but this did not significantly reduce the concentration of P in aerial plant tissues that was sufficient to ensure adequate growth.  相似文献   

11.
为了了解落羽杉(Taxodium distichum)、乌桕(Sapium sebiferum)和美国山核桃(Carya illinoensis)等树种的耐涝机制, 采用盆栽模拟涝渍环境的试验方法, 设置了淹水、渍水和对照3个处理, 测定了一年生落羽杉、乌桕和美国山核桃实生苗的生长、组织孔隙度、根氧消耗等指标。结果表明, 涝渍处理抑制了落羽杉、乌桕和美国山核桃的生物量和生物量增量(渍水处理下落羽杉的生长得到了促进), 增加了3树种的根冠比, 从生物量和生物量增量下降幅度来评价, 落羽杉的耐涝性最强, 其次为美国山核桃。淹水和渍水处理下, 落羽杉、乌桕和美国山核桃的根、茎和叶中的组织孔隙度显著增加, 且随着处理时间的延长, 各器官的组织孔隙度有增加的趋势, 3个树种中, 落羽杉的根、茎和叶中的组织孔隙度均较其他2个树种高。淹水和渍水处理下, 移除茎明显增加了落羽杉、美国山核桃和乌桕的根的氧消耗, 表明涝渍处理增强了O2在3个树种体内的运输并通过根系扩散到涝渍土壤中的能力, 并且随着处理时间的延长, 3个树种体内运输O2并扩散到土壤中的能力有逐渐增强的趋势。因此, 涝渍环境总体上抑制了落羽杉、乌桕和美国山核桃等树种的生长, 但各树种为了适应这种生长环境, 形成了大量的通气组织, 从而导致各器官组织孔隙度的增加, 增强了O2通过植物体运输到根系并扩散到土壤中的能力, 解决了根系及根际缺氧的矛盾。  相似文献   

12.
Growth in stagnant, oxygen‐deficient nutrient solution increased porosity in adventitious roots of two monocotyledonous (Carex acuta and Juncus effusus) and three dicotyledonous species (Caltha palustris, Ranunculus sceleratus and Rumex palustris) wetland species from 10 to 30% under aerated conditions to 20–45%. The spatial patterns of radial oxygen loss (ROL), determined with root‐sleeving oxygen electrodes, indicated a strong constitutive ‘barrier’ to ROL in the basal root zones of the two monocotyledonous species. In contrast, roots of the dicotyledonous species showed no significant ‘barrier’ to ROL when grown in aerated solution, and only a partial ‘barrier’ when grown in stagnant conditions. This partial ‘barrier’ was strongest in C. palustris, so that ROL from basal zones of roots of R. sceleratus and R. palustris was substantial when compared to the monocotyledonous species. ROL from the basal zones would decrease longitudinal diffusion of oxygen to the root apex, and therefore limit the maximum penetration depth of these roots into anaerobic soil. Further studies of a larger number of dicotyledonous wetland species from a range of substrates are required to elucidate the ecophysiological consequences of developing a partial, rather than a strong, ‘barrier’ to ROL.  相似文献   

13.
Internal transport of gases is crucial for vascular plants inhabiting aquatic, wetland or flood‐prone environments. Diffusivity of gases in water is approximately 10 000 times slower than in air; thus direct exchange of gases between submerged tissues and the environment is strongly impeded. Aerenchyma provides a low‐resistance internal pathway for gas transport between shoot and root extremities. By this pathway, O2 is supplied to the roots and rhizosphere, while CO2, ethylene, and methane move from the soil to the shoots and atmosphere. Diffusion is the mechanism by which gases move within roots of all plant species, but significant pressurized through‐flow occurs in stems and rhizomes of several emergent and floating‐leaved wetland plants. Through‐flows can raise O2 concentrations in the rhizomes close to ambient levels. In general, rates of flow are determined by plant characteristics such as capacity to generate positive pressures in shoot tissues, and resistance to flow in the aerenchyma, as well as environmental conditions affecting leaf‐to‐air gradients in humidity and temperature. O2 diffusion in roots is influenced by anatomical, morphological and physiological characteristics, and environmental conditions. Roots of many (but not all) wetland species contain large volumes of aerenchyma (e.g. root porosity can reach 55%), while a barrier impermeable to radial O2 loss (ROL) often occurs in basal zones. These traits act synergistically to enhance the amount of O2 diffusing to the root apex and enable the development of an aerobic rhizosphere around the root tip, which enhances root penetration into anaerobic substrates. The barrier to ROL in roots of some species is induced by growth in stagnant conditions, whereas it is constitutive in others. An inducible change in the resistance to O2 across the hypodermis/exodermis is hypothesized to be of adaptive significance to plants inhabiting transiently waterlogged soils. Knowledge on the anatomical basis of the barrier to ROL in various species is scant. Nevertheless, it has been suggested that the barrier may also impede influx of: (i) soil‐derived gases, such as CO2, methane, and ethylene; (ii) potentially toxic substances (e.g. reduced metal ions) often present in waterlogged soils; and (iii) nutrients and water. Lateral roots, that remain permeable to O2, may be the main surface for exchange of substances between the roots and rhizosphere in wetland species. Further work is required to determine whether diversity in structure and function in roots of wetland species can be related to various niche habitats.  相似文献   

14.
氮富集会影响到全球生态系统的植物生长繁殖和土壤理化性质.然而,目前关于氮富集对潮汐湿地生态系统植物生长和土壤理化性质的影响研究相对较少.通过氮添加野外控制实验,研究了4个氮添加水平(CK:0 g·m-2·a-1、N1:5 g·m-2·a-1、N2:20 g·m-2·a-1、N3:50 g·m-2·a-1)对黄河三角洲高...  相似文献   

15.
16.
Enhancement of oxygen transport from shoot to root tip by the formation of aerenchyma and also a barrier to radial oxygen loss (ROL) in roots is common in waterlogging‐tolerant plants. Zea nicaraguensis (teosinte), a wild relative of maize (Zea mays ssp. mays), grows in waterlogged soils. We investigated the formation of aerenchyma and ROL barrier induction in roots of Z. nicaraguensis, in comparison with roots of maize (inbred line Mi29), in a pot soil system and in hydroponics. Furthermore, depositions of suberin in the exodermis/hypodermis and lignin in the epidermis of adventitious roots of Z. nicaraguensis and maize grown in aerated or stagnant deoxygenated nutrient solution were studied. Growth of maize was more adversely affected by low oxygen in the root zone (waterlogged soil or stagnant deoxygenated nutrient solution) compared with Z. nicaraguensis. In stagnant deoxygenated solution, Z. nicaraguensis was superior to maize in transporting oxygen from shoot base to root tip due to formation of larger aerenchyma and a stronger barrier to ROL in adventitious roots. The relationships between the ROL barrier formation and suberin and lignin depositions in roots are discussed. The ROL barrier, in addition to aerenchyma, would contribute to the waterlogging tolerance of Z. nicaraguensis.  相似文献   

17.
Young Phragmites plants were grown in two cocktails of monocarboxylic acids (C(1)-C(5)) at pH 6, where the concentration of each acid was innocuous and the total undissociated (potentially toxic) concentrations were 0.35 mmol/L and 0.42 mmol/L. Rice plants were subjected to 1.5 mmol/L acetic acid at pH 4.5 (undissociated concentration = 1.05 mmol/L). In Phragmites, each cocktail curtailed root growth especially and induced premature shoot senescence. In both species, after 3-5 d of treatment, radial oxygen loss (ROL) from apical regions of adventitious roots, and from Phragmites laterals, was reduced to very low values and associated with cell wall lignification and suberization in the surface cell layers. At later stages of treatment, rice responded to acetic acid in similar ways to Phragmites, with the development of intercellular and callus type occlusions in the gas space system, vascular blockages, and the failure of laterals to emerge. The results are relevant to the supply of oxygen from Phragmites roots to sediments for the phytopurification of waste waters, to the efflux of methane and carbon dioxide from wetlands, and to rice cultivation.  相似文献   

18.
Seasonal fluxes of dissolved oxygen, inorganic carbon and methane were measured in microcosms containing vegetated (Vallisneria spiralis L.) and unvegetated sediments under controlled laboratory conditions. We tested if measured fluxes were affected by a moderate (6% as loss on ignition, LOI) and an elevated (10%) organic matter content (OM) in sediments. Microcosms were set up with plants and sediments collected from two riverine sites, upstream (moderate OM load) and downstream (elevated OM load) of a wastewater treatment plant. Light and dark fluxes were measured and V. spiralis net primary production and respiration rates were calculated. Unvegetated sediments were always net heterotrophic and behaved as methane sources to the water column, with significantly higher CH4 release during summer from sediment with elevated OM load. Vegetated sediments were always net autotrophic with attenuated or negative CH4 fluxes, suggesting the occurrence of processes within the rhizosphere that inhibit methane production or favor its oxidation. Vegetated sediments had an unbalanced O2 to DIC stoichiometry, with average photosynthetic quotients varying between 0.30 and 0.68, significantly below one. The missing oxygen amount varied seasonally, with a minimum in the summer coinciding with the highest water temperature, but was not dependent upon the two OM levels. Overall these results suggest that V. spiralis is likely to transport a significant proportion of photosynthetically produced oxygen to the rhizosphere.  相似文献   

19.
The winter dynamics of several chemical, physical, and biological variables of a shallow, polymictic lake (Opinicon) are compared to those of a deep, nearby dimictic lake (Upper Rock) during ice cover (January to early April) in 1990 and 1991. Both lakes were weakly inversely thermally stratified. Dissolved oxygen concentration was at saturation (11–15 mg l−1) in the top 3 m layer, but declined to near anoxic levels near the sediments. Dissolved oxygen concentrations in the deep lake were at saturation in most of the water column and approached anoxic levels near the sediments only. Nutrient concentrations in both lakes were fairly high, and similar in both lakes during ice cover. Total phosphorus concentrations generally ranged between 10–20 μg l−1, NH4-N between 16–100 μg l−1, and DSi between 0.9–1.9 mg l−1; these concentrations fell within summer ranges. NO3-N concentrations were between 51–135 μg l−1 during ice cover, but occurred at trace concentrations (<0.002 μg l−1) during the summer. The winter phytoplankton community of both lakes was dominated by flagellates (cryptophytes, chrysophytes) and occasionally diatoms. Dinoflagellates, Cyanobacteria and green algae were poorly represented. Cryptophytes often occurred in fairly high proportions (20–80%) throughout the water column, whereas chrysophytes were more abundant just beneath the ice. Zooplankton population densities were extremely low during ice cover (compared to maximum densities measured in spring or summer) in both lakes, and were comprised largely of copepods.  相似文献   

20.
Tumour hypoxia plays a role in chemoresistance in several human tumours. However, how hyperbaric oxygen leads to chemotherapeutic gain is unclear. This study investigates the relation of reactive oxygen species (ROS) generation with anti-tumoural effect of adriamycin (ADR) on CCRF-CEM cells under hypoxic (2% O2) and normoxic (21% O2) conditions. A new method was used to measure intracellular ROS variations through the fluorescence lifetime of 1-pyrenebutyric acid. At 24 h, ADR, probably via semiquinone radical, enhances ROS levels in normoxic cells compared to hypoxic cells. Long-term studies show that ROS are also generated by a second mechanism related to cell functions perturbation. ADR arrests the cell cycle progression both under hypoxia and normoxia, indicating that oxygen and ROS does not influence the DNA damaging activity of ADR. The findings reveal that moderate improvement of ADR cytotoxicity results from higher ROS formation in normoxic cells, leading to elevated induction of cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号