首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we describe the synthesis of a new family of indolizinone derivatives designed to fit an extrahydrophobic pocket within the active site of aromatase and to strongly inhibit human aromatase. This could help improve the specificity of the inhibitors. Equine aromatase, very well characterized biochemically, is used as a comparative model. Indeed, in a previous comparison between both human and equine aromatases, we described the importance of the interaction between the inhibitor and this pocket for the indane derivative MR 20814. MR 20492 and MR 20494 are more potent inhibitors of human aromatase (Ki/Km: 1.0+/-0.3 and 0.5+/-0.3, respectively). The Ki/Km for MR 20494 is slightly higher than that obtained for fadrozole (0.1+/-0.0) and Ki/Km for both indolizinone derivatives are lower than those obtained for 4-hydroxyandrostenedione (1.9+/-0.8) and MR 20814 (8.1+/-.7). These new compounds are not enzyme inactivators. Moreover, as indicated by the higher Ki/Km values obtained with equine enzyme (9.0+/-0.6 and 6.1+/-1.6 for MR 20492 and MR 20494, respectively), both human and equine aromatase active sites appear to be structurally different. Difference absorption spectra study (350-500 nm) revealed that MR20492 and MR20494 were characterized by a combination of type-I and -II spectra with both enzymes. This result could be due to the isomerization of the molecule in polar solvent (Z and E forms). The evaluation of these new molecules, as well as 4-hydroxyandrostenedione and fadrozole, on aromatase activity in transfected 293 cell cultures evidenced a strong inhibition (IC50: 0.20+/-0.03 microM, 0.20+/-0.02 microM and 0.50+/-0.40 microM for MR 20494, fadrozole and 4-OHA, respectively) except for MR 20492 (3.9+/-0.9 microM) and MR 20814 (10.5+/-0.6 microM). These results proved that these molecules formed part of a promising family of potent inhibitors and that they penetrate 293 cells, without evidencing any cytotoxicity in Hela cells with MTT assay. This is thus encouraging for the development of new drugs for the treatment of estrogen-dependent cancers, these molecules also constitute new tools for understanding the aromatase active site.  相似文献   

2.
We report a SAR of non-steroidal glucocorticoid mimetics that utilize indoles as A-ring mimetics. Detailed SAR is discussed with a focus on improving PR and MR selectivity, GR agonism, and in vitro dissociation profile. SAR analysis led to compound (R)-33 which showed high PR and MR selectivity, potent agonist activity, and reduced transactivation activity in the MMTV and aromatase assays. The compound is equipotent to prednisolone in the LPS-TNF model of inflammation. In mouse CIA, at 30 mg/kg compound (R)-33 inhibited disease progression with an efficacy similar to the 3 mg/kg dose of prednisolone.  相似文献   

3.
The utilization of computer modeling, site-directed mutagenesis, inhibition kinetic analysis and reaction metabolite analysis allows us to better understand the structure–function relationship between aromatase and its inhibitors. Our results have helped in determining how steroidal and nonsteriodal aromatase inhibitors bind to the active site of the enzyme. This information has also aided in the understanding of the reaction mechanism of aromatase. Furthermore, our structure–function studies of aromatase have generated important information for predicting how environmental chemicals interact with the enzyme. During the last 2 years, a new aromatase computer model based on the X-ray structure of rabbit cytochrome P450 2C5 has been generated and used to evaluate the results obtained from new aromatase mutants produced in this laboratory. In addition, we have succeeded in the expression and purification of functionally active aromatase using an Escherichia coli expression method. The catalytic properties of this recombinant aromatase are similar to those properties exhibited by the human placental aromatase preparation and the mammalian cell-expressed enzyme. The E. coli expressed aromatase will be very useful for further structure–function studies of aromatase. Our laboratory has also evaluated the growth-inhibiting activity of aromatase inhibitors in estrogen receptor-positive breast cancer using three-dimensional cell cultures of aromatase-over expressing MCF-7 and T-47D cell lines (i.e. MCF-7aro and T-47Daro). Our results demonstrate that these three-dimensional cultures are valuable approaches to assess the growth-inhibiting activity of aromatase inhibitors. Finally, we have identified several phytochemicals to be potent inhibitors of aromatase. To demonstrate the impact of the phytochemicals on estrogen formation in vivo, we showed that the intake of anti-aromatase chemicals from red wine was capable of suppressing MCF-7aro-mediated tumor formation in nude mice and aromatase-induced hyperplasia in a transgenic mouse model in which aromatase is over-expressed in the mammary tissue.  相似文献   

4.
Oestrogens organize and activate circuits within the vertebrate central nervous system. Oestrogen synthesis occurs via the expression of aromatase, a P450 enzyme detected in microsomes and more recently in pre-synaptic boutons. Synaptic aromatase has only been described in brain regions that express aromatase in many subcellular compartments, so its function remains poorly understood. To more thoroughly study the role of oestrogen synthesis at synaptic terminals, we examined the ultrastructural compartmentalization of aromatase in the zebra finch; a species in which high aromatase activity can be measured in brain areas that do not contain somal aromatase. Here, we report the presence of aromatase in pre-synaptic boutons in the hippocampus and the high vocal centre brain areas with low and undetectable somal aromatase, respectively, in addition to areas with abundant somal aromatase such as the preoptic area and caudomedial nidopallium. At these brain areas, males had more total synapses, more aromatase pre-synaptic boutons and importantly, the proportion of total synaptic profiles that expressed aromatase was significantly higher in males relative to females. Aromatase-positive pre-synaptic boutons were always observed innervating aromatase-negative post-synaptic elements. We conclude that oestrogen may be provided to discrete oestrogen-sensitive targets by synaptic aromatization. Further, some targets may be exposed to more oestrogen in males. The expression of aromatase in individual synapses of projection neurons represents a unique mechanism of neuroendocrine action. Neurons with steroidogenic capability may modulate distant targets with the specificity of axonal innervation.  相似文献   

5.
An important feature of the pharmacological profile of aromatase inhibitors is the ability of the various inhibitors to inhibit intracellular aromatase. It is now well documented that a large proportion of breast tumors express their own aromatase. This intratumoral aromatase produces estrogen in situ and therefore may contribute significantly to the amount of estrogen to which the cell is exposed. Thus it is not only important that aromatase inhibitors potently inhibit the peripheral production of estrogen and eliminate the external supply of estrogen to the tumor cell, but that they in addition potently inhibit intratumoral aromatase and prevent the tumor cell from making its own estrogen within the cell. To study the inhibition of intracellular aromatase we have compared the aromatase-inhibiting potency of the non-steroidal aromatase inhibitors, letrozole, anastrozole and fadrozole in a variety of model cellular endocrine and tumor systems which contain aromatase. We have used hamsters ovarian tissue fragments, adipose tissue fibroblasts from normal human breast, the MCF-7Ca human breast cancer cell line transfected with the human aromatase gene and the JEG-3 human choriocarcinoma cell line. Although letrozole and anastrozole are approximately equipotent in a cell-free aromatase system (human placental microsomes), letrozole is consistently 10–30 times more potent than anastrozole in inhibiting intracellular aromatase in intact rodent cells, normal human adipose fibroblasts and human cancer cell lines. Whether these differences between letrozole and anastrozole are seen in the clinical setting will have to await the results of clinical trials which are currently in progress.  相似文献   

6.
7.
Aromatase and COX-2 expression in human breast cancers   总被引:8,自引:0,他引:8  
We have investigated aromatase and the inducible cyclooxygenase COX-2 expression using immunocytochemistry in tumors of a series of patients with advanced breast cancer treated with aromatase inhibitors. Aromatase was expressed in 58/102 breast cancers. This is similar to the percentage previously reported for aromatase activity. Interestingly, aromatase was expressed in a variety of cell types, including tumor, stromal, adipose, and endothelial cells. Since prostaglandin E2 is known to regulate aromatase gene expression and is the product of COX-2, an enzyme frequently overexpressed in tumors, immunocytochemistry was performed on the tissue sections using a polyclonal antibody to COX-2. Aromatase was strongly correlated (P<0.001) with COX-2 expression. These results suggest that PGE2 produced by COX-2 in the tumor may be important in stimulating estrogen synthesis in the tumor and surrounding tissue. No correlation was observed between aromatase or COX-2 expression and the response of the patients to aromatase inhibitor treatment. However, only 13 patients responded. Nine of these patients were aromatase positive. Although similar to responses in other studies, this low response rate to second line treatment suggests that tumors of most patients were no longer sensitive to the effects of estrogen. Recent clinical studies suggest that greater responses occur when aromatase inhibitors are used as first line treatment. In the intratumoral aromatase mouse model, expression of aromatase in tumors is highly correlated with increased tumor growth. First line treatment with letrozole was effective in all animals treated and was more effective than tamoxifen in suppressing tumor growth. Letrozole was also effective in tumors failing to respond to tamoxifen, consistent with clinical findings. In addition, the duration of response was significantly longer with the aromatase inhibitor than with tamoxifen, suggesting that aromatase inhibitors may offer better control of tumor growth than this antiestrogen.  相似文献   

8.
In vitro studies show that estrogens acutely modulate synaptic function in both sexes. These acute effects may be mediated in vivo by estrogens synthesized within the brain, which could fluctuate more rapidly than circulating estrogens. For this to be the case, brain regions that respond acutely to estrogens should be capable of synthesizing them. To investigate this question, we used quantitative real-time PCR to measure expression of mRNA for the estrogen-synthesizing enzyme, aromatase, in different brain regions of male and female rats. Importantly, because brain aromatase exists in two forms, a long form with aromatase activity and a short form with unknown function, we targeted a sequence found exclusively in long-form aromatase. With this approach, we found highest expression of aromatase mRNA in the amygdala followed closely by the bed nucleus of the stria terminalis (BNST) and preoptic area (POA); we found moderate levels of aromatase mRNA in the dorsal hippocampus and cingulate cortex; and aromatase mRNA was detectable in brainstem and cerebellum, but levels were very low. In the amygdala, gonadal/hormonal status regulated aromatase expression in both sexes; in the BNST and POA, castration of males down-regulated aromatase, whereas there was no effect of estradiol in ovariectomized females. In the dorsal hippocampus and cingulate cortex, there were no differences in aromatase levels between males and females or effects of gonadal/hormonal status. These findings demonstrate that long-form aromatase is expressed in brain regions that respond acutely to estrogens, such as the dorsal hippocampus, and that gonadal/hormonal regulation of aromatase differs among different brain regions.  相似文献   

9.
As the result of a single gene mutation, Sebright and Campine chickens have increased activity of cytochrome P-450 aromatase and increased formation of estrogen in extragonadal tissues. Affected roosters develop a feminizing state characterized by a feathering pattern typical of hens. In this paper we demonstrate that the expression of extraglandular aromatase in these chickens is due to the accumulation of aromatase mRNA similar to that expressed in the ovary of Leghorn and Campine hens. Furthermore, in fibroblasts cultured from Sebright skin, but not in normal Leghorn fibroblasts, aromatase mRNA levels are enhanced in response to 5-azacytidine and sodium butyrate, and aromatase mRNA levels in these fibroblasts correlate with enzymatic activity. We conclude that the accumulation of aromatase mRNA is a critical step in the expression of this mutation.  相似文献   

10.
Synthesis of oestrone from androstenedione within tumours, by the aromatase enzyme complex, is an important source of oestrogen that is available to support the growth of hormone-dependent breast tumours. In view of the central role that the aromatase enzyme has in oestrogen synthesis there has been considerable interest in understanding its regulation and developing inhibitors to block its action. In the present study we have derived fibroblasts from breast tumours (TFs), tissue proximal to tumours (PFs) and reduction mammoplasty tissue (RMFs) and used them to investigate the regulation of aromatase activity by PGE(2), IL-6 plus its soluble receptor (SR) or TNFalpha. In addition we have examined the ability of 2-methoxyoestrone sulphamate (2-MeOEMATE), a compound which alters microtubule stability, to block the stimulation of aromatase activity by these factors. Basal aromatase activity in PFs was significantly higher (p<0.001) than in TFs or RMFs. The combination of IL-6 plus SR or TNFalpha produced the greatest stimulation of aromatase activity in TFs (up to 61-fold) while having a much lower stimulatory effects on aromatase activity in PFs (up to 60% increase) or RMFs (up to 192% increase). 2-MeOEMATE reduced basal aromatase activity in TFs by 87% and completely abrogated the ability of PGE(2), IL-6 plus SR or TNFalpha to stimulate aromatase activity in these fibroblasts. Results from these studies indicate that while PFs have the highest level of non-stimulated aromatase activity, aromatase activity in TFs shows the greatest response to cytokines. These findings suggest that intrinsic difference may exist for the different types of fibroblasts in the way in which they respond to regulatory factors. The ability of 2-MeOEMATE to block cytokine stimulated aromatase activity suggests that, in addition to its other anti-cancer properties, this compound may also act to inhibit cytokine-stimulated aromatase activity in breast tumours.  相似文献   

11.
Selective inhibition of estrogen production with aromatase inhibitors has been found to be an effective strategy for breast cancer treatment. Most studies have focused on inhibitor screening and in vitro kinetic analysis of aromatase inhibition using placental microsomes. In order to determine the effects of different inhibitors on aromatase in the whole cell, we have utilized the human choriocarcinoma cell line, JEG-3 in culture to compare and study three classes of aromatase inhibitors, 4-hydroxyandrostenedione, fadrozole (CGS 16949A), and aminoglutethimide. Fadrozole is the most potent competitive inhibitor and aminoglutethimide is the least potent among the three. However, stimulation of aromatase activity was found to occur when JEG-3 cells were preincubated with aminoglutethimide. In contrast, 4-OHA and fadrozole caused sustained inhibition of aromatase activity in both JEG-3 cells and placental microsomes, which was not reversed even after the removal of the inhibitors. 4-OHA bound irreversibly to the active site of aromatase and caused inactivation of the enzyme which followed pseudo-first order kinetics. However, 4-OHA appears to be metabolized rapidly in JEG-3 cells. Sustained inhibition of aromatase induced by fadrozole occurs by a different mechanism. Although fadrozole bound tightly to aromatase at a site distinct from the steroid binding site, the inhibition of aromatase activity by fadrozole does not involve a reactive process. None of the inhibitors stimulated aromatase mRNA synthesis in JEG-3 cells during 8 h treatment. The stimulation of aromatase activity by AG appeared to be due to stabilization of aromatase protein. According to these results, 4-OHA and fadrozole would be expected to be more beneficial in the treatment of breast cancer patients than AG. The increase in aromatase activity by AG may counteract its therapeutic effect and might be partially responsible for relapse of breast cancer patients from this treatment.  相似文献   

12.
Aromatase and its inhibitors   总被引:8,自引:0,他引:8  
Inhibitors of aromatase (estrogen synthetase) have been developed as treatment for postmenopausal breast cancer. Both steroidal substrate analogs, type I inhibitors, which inactivate the enzyme and non-steroidal competitive reversible, type II inhibitors, are now available. 4-hydroxyandrostenedione (4-OHA), the first selective aromatase inhibitor, has been shown to reduce serum estrogen concentrations and cause complete and partial responses in approximately 25% of patients with hormone responsive disease who have relapsed from previous endocrine treatment. Letrozole (CGS 20, 269) and anastrozole (ZN 1033) have been recently approved for treatment. Both suppress serum estrogen levels to the limit of assay detection. Letrozole has been shown to be significantly superior to megace in overall response rates and time to treatment failure, whereas anastrozole was found to improve survival in comparison to megace. Both were better tolerated than the latter. The potential of aromatase within the breast as a significant source of estrogen mediating tumor proliferation and which might determine the outcome of inhibitor treatment was explored. Using immunocytochemistry and in situ hybridization, aromatase and mRNAarom was detected mainly in the epithelial cells of the terminal ductal lobular units (TDLU) of the normal breast and also in breast tumor epithelial cells as well as some stromal cells. Increase in proliferation, measured by increased thymidine incorporation into DNA and by PCNA immunostaining in response to testosterone was observed in histocultures of breast cancer samples. This effect could be inhibited by 4-OHA and implies that intratumoral aromatase has functional significance. An intratumoral aromatase model in the ovariectomized nude mouse was developed which simulated the hormone responsive postmenopausal breast cancer patient. This model also allows evaluation of the efficacy of aromatase inhibitors and antiestrogens in tumors of estrogen receptor positive, human breast carcinoma cells transfected with the human aromatase gene. Thus, the cells synthesized estrogen which stimulated tumor formation. Both aromatase inhibitors and antiestrogens were effective in suppressing tumor growth in this model. However, letrozole was more effective than tamoxifen. When the aromatase inhibitors were combined with tamoxifen, tumor growth was suppressed to about the same extent as with the aromatase inhibitors alone. Thus, there was no additive or synergistic effects of combining tamoxifen with aromatase inhibitors. This suggests that sequential treatment with these agents is likely to be more beneficial to the patient in terms of longer response to treatment.  相似文献   

13.
14.
A brain aromatase gene was identified from the Nile tilapia Oreochromis niloticus. The cDNA sequence of this gene differed from that of the ovarian aromatase gene previously reported from this species. Tissue specific expression for both brain and ovarian aromatase genes was examined in the tissues of adult tilapia. Brain aromatase mRNA was expressed in the brain, kidney, eye, ovary, and testis, but not in the liver and spleen. Ovarian aromatase mRNA was expressed in the brain, spleen, ovary, and testis but not in the eye, kidney, and liver. Differential aromatase gene expression between the sexes was investigated in all-male (XY) and all-female (XX) groups of tilapia fry from fertilisation throughout the sexual differentiation period. Semi-quantitative RT-PCR analysis revealed that the initiation of expression of both aromatase genes lay between 3 and 4 dpf (days post fertilisation) in both sexes. The level of brain aromatase mRNA gradually increased throughout the period studied with little difference between the sexes. This contrasted with marked sexual dimorphism of ovarian aromatase mRNA expression. In females, the expression level was maintained or increased gradually throughout ontogeny, while the level in males was dramatically down-regulated between 15 and 27 dpf. Subsequently, the level of ovarian aromatase mRNA expression fluctuated slightly in both sexes, with the expression in females always being higher than in males. These findings clearly suggest that ovarian aromatase plays a decisive role in sexual differentiation in this species and that this is achieved by down-regulation of the expression of this gene in males. Mol. Reprod. Dev. 59: 359-370, 2001.  相似文献   

15.
16.
Aromatase is present in human breast tumors and in breast cancer cell lines suggesting the possibility of in-situ estrogen production via the androstenedione to estrone and estradiol pathway. However, proof of the biologic relevance of aromatase in breast cancer tissue requires the demonstration that this enzyme mediates biologic effects on cell proliferation. Accordingly, we studied the effects of the aromatase substrate, androstenedione, on the rate of proliferation of wild-type and aromatase-transfected MCF-7 breast cancer cells. Androstenedione did not increase cell growth in wild-type MCF-7 cells which contained relatively low aromatase activity and produced 4-fold more estrone than estradiol. In contrast, aromatase-transfected cell contained higher amounts of aromatase, produced predominantly estradiol, and responded to androstenedione with enhanced growth. An aromatase inhibitor fadrozole hydrochloride, blocked the proliferative effects of androstenedione providing evidence for the role of aromatase in this process. As further evidence of the requirement for aromatase, cells transfected with the neomycin resistance expression plasmid but lacking the aromatase cDNA did not respond to androstenedione. These studies provide evidence that aromatase may have a biologic role for in-situ synthesis of estrogens of breast cancer tissue.  相似文献   

17.
The objectives of the present study were to investigate the enzymatic characteristics of brain aromatase in Japanese eel, Anguilla japonica, as well as the correlations between aromatase activities in various tissues (brain regions, pituitary, and gonads) and ovarian development. Eel brain aromatase exhibited a K(m) of 75 nM and a V(max) of 1.14 fmol/min mg protein (91.5 fmol/h mg protein), indicating an enzymatic activity much lower than in other teleosts but similar to that in mammals. This supports the hypothesis of the occurrence of a single aromatase gene in eels (representative of an ancient group of teleosts, Elopomorphs), as in mammals, but unlike what is observed in more recent teleosts. Aromatase inhibitors could significantly suppress brain and pituitary aromatase activity. There was no significant sex difference in aromatase activity in the forebrain, midbrain, hindbrain, or pituitary, but there was in the gonads, where aromatase could be detected in the ovaries but not in the testes, in accordance with the role of this enzyme in ovarian differentiation. Comparison with another teleost, black porgy (Percomorph), under the same experimental conditions, further confirmed the low activity of aromatase in the eel. We investigated variations in brain, pituitary, and gonad aromatase activity in relation to ovarian development in control female eels (gonadosomatic index, GSI, 0.1-1.6%) as well as in eels treated with pituitary extract (experimental ovarian maturation; GSI up to 25%). Differential expression of neural and gonadal aromatase was observed in relation to the course of gonadal development. Pituitary aromatase activity increased with GSI at all stages. Brain (specially forebrain) aromatase activity significantly increased in early vitellogenic control eels (GSI>0.8%) and in treated eels. The low activity of eel aromatase may be related to the characteristic life cycle of the eel, in which there is a long delay of the onset of puberty before oceanic reproductive migration.  相似文献   

18.
Prior to the present conference on aromatase, reports in the literature on prostatic aromatase have been scattered over time, few in number, and the results have been widely divergent. Moreover, several participants at this conference have reported unpublished data that failed to detect the existence of androgen aromatase in the prostate of man and other species. While papers and posters presented at this conference have added new information to this field, there would still appear to be no consensus as to the biological significance, if any, of the putative androgen aromatase system or the practical importance of inhibitors of prostatic and/or peripheral aromatase as a treatment modality for benign prostatic hyperplasia (BPH). Thus, it would be difficult to predict at this time the ultimate impact which current prostatic aromatase investigations will eventually have on our understanding and treatment of prostatic disease. To summarize the status of our current understanding of aromatase as it relates to prostatic function and disease, it would be safe to note that this field is virtually wide open for researchers to explore, both in terms of the future role that aromatase inhibitors may have in clinical investigations and in terms of the functional significance of aromatase, if any, in the normal prostate as well as in the pathogenesis of BPH and prostate cancer. Clearly, the widely divergent results currently available in the literature must reflect, in part, differences in methodology, anatomy, tissue types, the relative amounts of stroma and epithelium in specimens analyzed, the cellular and tissular (normal, BPH, and carcinomatous) heterogeneity encountered in clinical specimens, and the pharmacologic features of aromatase inhibitors tested.  相似文献   

19.
20.
A direct approach to identify the cellular source of P450 aromatase in the bank vole testes (seasonally breeding rodents) is the use of immunohistochemistry with a specific antibody that recognizes this enzyme. To confirm the presence of functional aromatase, its activity was measured in microsomal preparations of whole testes and of seminiferous tubules by means of biochemical assay with tritiated androstenedione. The assay was validated using increasing concentrations of both microsomal preparations. Immunoreactive aromatase was found in Leydig cells, Sertoli cells, and germ cells, especially in spermatocytes and spermatids. The aromatase activity was present in microsomal fractions of whole testis and seminiferous tubules. The immunolocalization of P450 aromatase and aromatase activity have been found as photoperiod-dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号