首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Initiation factor IF-3 is required for the binding of fMet-tRNA to 70S ribosomes directed by AUG, poly (U,G), f2RNA and T4 late RNA as well as for the binding of acPhe-tRNA directed by poly (U). In contrast, IF-3 is not required for the binding of the initiator aminoacyl-tRNAs to isolated 30S subunits directed by the synthetic messengers, but is required for maximal formation of initiation complexes with natural messengers. These data indicate that with synthetic messengers the sole function of IF-3 is to dissociate the 70S ribosomes into subunits, whereas with natural messengers IF-3 is required not only for dissociation of the ribosomes but also for the binding of the messenger to the 30S subunit.  相似文献   

2.
3.
A method that permits the preparation of Euglena gracilis chloroplast 30 S ribosomal subunits that are largely free of endogenous initiation factors and that are active in the binding of fMet-tRNA in response to poly(A, U, G), has been developed. These 30 S subunits have been tested for activity in initiation complex formation with initiation factors from both procaryotes and eucaryotes. We have observed that Escherichia coli IF-2 binds fMet-tRNA nearly as well to Euglena chloroplast ribosomal subunits as it does to its homologous subunits. Neither wheat germ eIF-2 nor Euglena eIF-2A can bind fMet-tRNA efficiently to Euglena chloroplast or E. coli 30 S subunits although both are active with wheat germ 40 S ribosomal subunits. Euglena chloroplast 68 S ribosomes will also bind the initiator tRNA. Both E. coli IF-2 and E. coli IF-3 stimulate this reaction on chloroplast ribosomes with approximately the same efficiency as they do on their homologous ribosomes. E. coli IF-1 enhances the binding of fMet-tRNA to the chloroplast 68 S ribosomes when either IF-2 or IF-3 is limiting. The chloroplast ribosomes unlike E. coli ribosomes show considerable activity over a broad range of Mg2+ ion concentrations.  相似文献   

4.
Initiation factor IF-3 is required for the poly (U)-directed binding of N-acetyl-Phe-tRNA to 70S ribosomes as well as for the binding of fMet-tRNA directed by poly (U,G), AUG, and bacteriophage f2 RNA. The formation of the 70S initiation complex is dependent upon IF-2 and is stimulated by IF-1. The requirement for IF-3 is not alleviated by high concentrations of the synthetic templates.  相似文献   

5.
Initiation factor IF-3 is required in addition to IF-1 and IF-2 for maximal initial rate of poly(U)-directed binding of AcPhe-tRNA to 30S ribosomal subunits of E. coli. Incubation periods longer than 10 sec, by which time the reaction is virtually over, progressively obscure the requirement for IF-3 in AcPhe-tRNA binding. IF-3 also stimulates the poly(A, G, U)-directed binding of fMet-tRNA to the 30S ribosomal subunit, but in this case, significant stimulation can still be observed even with extended incubation. These results indicate that IF-3 functions similarly in the translation of synthetic mRNA, as it does with natural mRNA, participating in ribosome dissociation and in the formation of the initiation complex from the 30S ribosomal subunit.  相似文献   

6.
Initiation factor-free 30S subunits of E. coli ribosomes bind aminoacyl-tRNAs more efficiently than fMet-tRNA inff supMet . Elongator-tRNA binding was unaffected by IF-1 or IF-2 but was inhibited by IF-3. Their combination reduced this binding up to 40% and stimulated that of fMet-tRNA inff supMet . Unexpectedly, EF-T also prevented elongator-tRNA binding by complexing both to the 30S and to the aminoacyl-tRNAs. Using AUGU3 as mRNA, elongator-tRNAs competed with fMet-fRNA inff supMet and with tRNA inff supMet . fMet-tRNA inff supMet reacted with puromycin after addition of 50S subunits suggesting that it occupied the P site. EF-T directed binding of phe-tRNA to the 30S.AUGU3 complex at the A site only if fMet-tRNA inff supMet or tRNA inff supMet filled the P/E site. We propose that one function of EF-T may be to prevent the entry of aminoacyl-tRNAs into the 30S particle during initiation. The possibility that a special site for fMet-tRNA resides on 16S rRNA is also discussed.  相似文献   

7.
IF3 has a fidelity function in the initiation of translation, inducing the dissociation of fMet-tRNA(fMet) from the 30 S initiation complexes (30SIC) containing a non-canonical initiation triplet (e.g. AUU) in place of a canonical initiation triplet (e.g., AUG). IF2 has a complementary role, selectively promoting initiator tRNA binding to the ribosome. Here, we used parallel rapid kinetics measurements of GTP hydrolysis, Pi release, light-scattering, and changes in intensities of fluorophore-labeled IF2 and fMet-tRNA(fMet) to determine the effects on both 30SIC formation and 30SIC conversion to 70 S initiation complexes (70SIC) of (a) substituting AUG with AUU, and/or (b) omitting IF3, and/or (c) replacing GTP with the non-hydrolyzable analog GDPCP. We demonstrate that the presence or absence of IF3 has, at most, minor effects on the rate of 30SIC formation using either AUG or AUU as the initiation codon, and conclude that the high affinity of IF2 for both 30 S subunit and initiator tRNA overrides any perturbation of the codon-anticodon interaction resulting from AUU for AUG substitution. In contrast, replacement of AUG by AUU leads to a dramatic reduction in the rate of 70SIC formation from 30SIC upon addition of 50 S subunits. Interpreting our results in the framework of a quantitative kinetic scheme leads to the conclusion that, within the overall process of 70SIC formation, the step most affected by substituting AUU for AUG involves the conversion of an initially labile 70 S ribosome into a more stable complex. In the absence of IF3, the difference between AUG and AUU largely disappears, with each initiation codon affording rapid 70SIC formation, leading to the hypothesis that it is the rate of IF3 dissociation from the 70 S ribosome during IC70S formation that is critical to its fidelity function.  相似文献   

8.
The conformation of the Escherichia coli initiator tRNA has been investigated using enzymatic and chemical probes. This study was conducted on the naked tRNA and on the tRNA involved in the various steps leading to the formation of the 30 S.IF-2.GTP.fMet-tRNA.AUG complex. A three-dimensional model of the initiator tRNA is presented, which displays several differences with yeast tRNAPhe: (i) the anticodon arm is more rigid; (ii) the presence of an additional nucleotide in the D loop results in specific features in both T and D loops; (iii) C1 and A72 might form a noncanonical base pair. Aminoacylation and formylation induce subtle conformational adjustments near the 3' end, the T arm and the D loop. Initiation factor (IF) 2 interacts with a rather limited portion of the tRNA, covering the T loop and the minor groove of the T stem, and induces an increased flexibility in the anticodon arm. The specific structural features observed in the T loop are probably recognized by IF-2. In the 30 S.IF-2.GTP.fMet-tRNA.AUG complex, additional protections are observed in the acceptor stem and in the anticodon arm, resulting from a strong steric hindrance and from the codon-anticodon interaction within the subunit decoding site.  相似文献   

9.
The formation of 30-S initiation complexes depends strongly on initiation factor IF-3; at molar ratios of IF-3 to 30-S ribosomes up to one a stimulation is observed, whereas at ratios higher than one, initiation complex formation declines strongly. The target of the observed inhibition of fMet-tRNA binding at high concentrations of IF-3 is the 30-S initiation complex itself. On the one hand addition of IF-3 to preformed 30-S initiation complexes leads to a release of bound fMet-tRNA which is linear with the amount of factor added, whereas no effect on isolated 70-S initiation complexes is seen. The release of fMet-tRNA from preformed 30-S initiation complexes is accompanied by a release of IF-2 in a one-to-one molar ratio which is in agreement with our previous findings showing that binding of fMet-tRNA takes place via a binary complex: IF-2 . fMet-tRNA (Eur. J. Biochem. 66, 181--192 and 77, 69--75). On the other hand increasing amounts of both IF-2 and fMet-tRNA relieve the IF-3-induced inhibition of 30-S initiation complex formation. From these findings it is concluded that IF-3 and the IF-2 . fMet-tRNA complex are mutually exclusive on the 30-S ribosome. This implies that under our experimental conditions MS2 RNA binding precedes fMet-tRNA binding if one accepts that the presence of IF-3 on the 30-S subunit is obligatory for messenger binding.  相似文献   

10.
Association of the 30 S initiation complex (30SIC) and the 50 S ribosomal subunit, leading to formation of the 70 S initiation complex (70SIC), is a critical step of the translation initiation pathway. The 70SIC contains initiator tRNA, fMet-tRNA(fMet), bound in the P (peptidyl)-site in response to the AUG start codon. We have formulated a quantitative kinetic scheme for the formation of an active 70SIC from 30SIC and 50 S subunits on the basis of parallel rapid kinetics measurements of GTP hydrolysis, Pi release, light-scattering, and changes in fluorescence intensities of fluorophore-labeled IF2 and fMet-tRNA(f)(Met). According to this scheme, an initially formed labile 70 S complex, which promotes rapid IF2-dependent GTP hydrolysis, either dissociates reversibly into 30 S and 50 S subunits or is converted to a more stable form, leading to 70SIC formation. The latter process takes place with intervening conformational changes of ribosome-bound IF2 and fMet-tRNA(fMet), which are monitored by spectral changes of fluorescent derivatives of IF2 and fMet-tRNA(fMet). The availability of such a scheme provides a useful framework for precisely elucidating the mechanisms by which substituting the non-hydrolyzable analog GDPCP for GTP or adding thiostrepton inhibit formation of a productive 70SIC. GDPCP does not affect stable 70 S formation, but perturbs fMet-tRNA(fMet) positioning in the P-site. In contrast, thiostrepton severely retards stable 70 S formation, but allows normal binding of fMet-tRNA(fMet)(prf20) to the P-site.  相似文献   

11.
Euglena gracilis chloroplast translational initiation factor 2 (IF-2chl) occurs in several complex forms ranging in molecular mass from 200 to 800 kDa. Subunits of 97 to greater than 200 kDa have been observed in these preparations. Two monoclonal antibodies were prepared against the 97-kDa subunits of IF-2chl. Both of these antibodies recognize all of the higher molecular mass forms of this factor, suggesting that these subunits are closely related. Gel filtration chromatography indicates that the higher molecular mass subunits of IF-2chl are present in the higher molecular mass complexes, whereas the smaller subunits are present in the 200-400 kDa forms of IF-2chl. Probing extracts of light-induced and dark-grown cells with the antibodies indicates that the light induction of this chloroplast factor results from the synthesis of new polypeptide rather than from the activation of an inactive precursor form of the protein. Both the higher and lower molecular mass subunits of IF-2chl are present in 30 S initiation complexes as indicated by Western analysis. The binding of IF-2chl to chloroplast 30 S ribosomal subunits requires the presence of GTP, but does not require fMet-tRNA, messenger RNA, or other initiation factors. Neither polyclonal nor monoclonal antibodies against E. gracilis IF-2chl cross-react with Escherichia coli IF-2 or with animal mitochondrial IF-2.  相似文献   

12.
The mRNA encoding repressor cI of phage lambda is the only known E. coli message which starts directly with the initiation AUG codon. The ability of in vitro synthesized cI mRNA fragments (150 or 400 nts) to form ternary initiation complexes has been studied using the toeprint method. In the presence of tRNA(Met)f, these fragments are capable of forming the ternary complexes at the 5'-terminal AUG codon not only with 30S subunits but also with undissociated 70S ribosomes (70S tight couples). In the latter case, no binding at other positions of cI mRNA can be detected at all. The starting region of cI mRNA has a single stranded conformation and is highly enriched in A-residues. This feature of cI mRNA RBS is suggested to be the main factor which allows cI mRNA to form the initiation complex with the ribosome. Unlike 30S subunits, the binding to 70S tight couples is not affected by any of the initiation factors, although it is as efficient as that to 30S subunits supplemented with the factors. 30S subunits prefer to associate with the internal RBSs of the preformed mRNA molecules, provided that they are not sequestered by the secondary structure. In contrast, 70S tight couples tend to avoid extra sequences upstream of the codon directed to the P site and occupy a position as close as possible to the 5'-end of the message. This has been found to be the case both for tRNA(Met)f and for elongator tRNA(Glu)2. The structural features of mRNA RBSs which influence their different binding for 30S subunits and 70S ribosomes are discussed.  相似文献   

13.
The AUG- and MS2 RNA-dependent fMet-tRNA binding to 30S ribosomal subunits was stimulated by spermidine with any individual or combination of initiation factors capable of participating in the formation of an initiation complex. When 70S ribosomes were used instead of 30S ribosomal subunits, IF-3 was necessary for spermidine stimulation of the complex formation.  相似文献   

14.
Bovine mitochondrial translational initiation factor 2 (IF-2(mt)) is organized into four domains, an N-terminal domain, a central G-domain and two C-terminal domains. These domains correspond to domains III-VI in the six-domain model of Escherichia coli IF-2. Variants in IF-2(mt) were prepared and tested for their abilities to bind the small (28S) subunit of the mitochondrial ribosome. The binding of wild-type IF-2(mt) was strong (K(d) approximately 10-20 nM) and was not affected by fMet-tRNA. Deletion of the N-terminal domain substantially reduced the binding of IF-2(mt) to 28S subunits. However, the addition of fMet-tRNA stimulated the binding of this variant at least 2-fold demonstrating that contacts between fMet-tRNA and IF-2(mt) can stabilize the binding of this factor to 28S subunits. No binding was observed for IF-2(mt) variants lacking the G-domain which probably plays a critical role in organizing the structure of IF-2(mt). IF-2(mt) contains a 37-amino acid insertion region between domains V and VI that is not found in the prokaryotic factors. Mutations in this region caused a significant reduction in the ability of the factor to promote initiation complex formation and to bind 28S subunits.  相似文献   

15.
The bovine liver mitochondrial factor that promotes the binding of fMet-tRNA to mitochondrial ribosomes, initiation factor 2 (IF-2mt), has been identified in the postribosomal supernatant fraction of isolated liver mitochondria. This factor has been purified approximately 5,000-fold and present preparations are estimated to be about 10% pure. IF-2mt has an apparent molecular weight of about 140,000 as determined by gel filtration chromatography. IF-2mt is active in stimulating fMet-tRNA binding to Escherichia coli ribosomes but E. coli IF-2 is not active in promoting initiator tRNA binding to animal mitochondrial ribosomes. The IF-2mt-mediated binding of fMet-tRNAi(Met) to mitochondrial ribosomes is dependent on the presence of a message such as poly(A,U,G) and on GTP. Nonhydrolyzable analogs of GTP are 2-3-fold less effective in promoting initiation complex formation on mitochondrial ribosomes than is GTP suggesting that IF-2mt is capable of recycling to some extent under the current assay conditions.  相似文献   

16.
17.
We previously suggested that the degree of polyamine stimulation of oligopeptide-binding protein (OppA) synthesis is dependent on the secondary structure and position of the Shine-Dalgarno (SD) sequence of OppA mRNA. To study the structural change of OppA mRNA induced by polyamines and polyamine stimulation of initiation complex formation, four different 130-mer OppA mRNAs containing the initiation region were synthesized in vitro. The structural change of these mRNAs induced by polyamines was examined by measuring their sensitivity to RNase T(1), specific for single-stranded RNA, and RNase V(1), which recognizes double-stranded or stacked RNA. In parallel, the effect of spermidine on mRNA-dependent fMet-tRNA binding to ribosomes was examined. Our results indicate that the secondary structure of the SD sequence and initiation codon AUG is important for the efficiency of initiation complex formation and that spermidine relaxes the structure of the SD sequence and the initiation codon AUG. The existence of a GC-rich double-stranded region close to the SD sequence is important for spermidine stimulation of fMet-tRNA binding to ribosomes. Spermidine apparently binds to this GC-rich stem and causes a structural change of the SD sequence and the initiation codon, facilitating an interaction with 30 S ribosomal subunits.  相似文献   

18.
The interaction between Escherichia coli 30S ribosomal subunits and mRNAs, and the effect of the initiation factors on this process, have been studied using MS2 RNA, polyribonucleotides and model mRNAs encoded by synthetic genes. The interactions were analyzed by gel filtration, by sucrose gradient centrifugation and by competition for ribosome binding between the various mRNAs and a Shine-Dalgarno deoxyoctanucleotide. It was found that the initiation factors do not significantly affect the Shine-Dalgarno interaction nor the apparent Ka values of the 30S-subunit-mRNA binary complexes, but influence the positioning of the mRNAs on the 30S subunit with respect to the Shine-Dalgarno octanucleotide. The results suggest that, in the absence of initiation factors, the mRNA occupies a ribosomal "stand-by" site which is close to or includes the region where the Shine-Dalgarno interaction takes place; in the presence of the factors, the mRNA is shifted away from the stand-by site, towards another ribosomal site with similar affinity for the mRNA. This shift does not require the presence of fMet-tRNA and, depending upon the type of mRNA, is mediated by IF-2 and/or IF-3.  相似文献   

19.
Previous studies have shown that iodination of 30 S subunits causes inactivation for both enzymatic fMet-tRNA and non-enzymatic phe-tRNA binding activities. This inactivation was shown to be due to the modification of three to five ribosomal proteins [1]. In this report the role of these proteins in tRNA binding activity has been further studied. Purified ribosomal proteins, isolated from modified subunits, are re-assembled into otherwise unmodified 30 S ribosomes and assayed for tRNA binding capacity. The presence of modified S 3, S 14 and S 19 (S 15) in the reconstituted particle results in substantial reduction of both fMet-tRNA and phe-tRNA binding activities. This reduction in tRNA binding activity does not appear to be due to an assembly defect.  相似文献   

20.
Antibodies against ribosomal protein S1 (anti-S1) have been used to determine the function of S1 in the partial reactions involved in the translation of MS2 RNA in vitro. Vacant ribosomes are fully sensitive to the antibodies, whereas elongating ribosomes are resistant. We have determined at which stage of translation the resistance to anti-S1 is acquired. We find that insensitivity to anti-S1 already arises upon mixing 30-S subunits with MS2 RNA. Apparently the two particles form a complex in which S1 is functionally protected against its antibody. Complex formation depends on elevated temperature, a suitable ionic environment and it is stimulated by the initiation factor IF-3. It does not depend on IF-1, IF-2 or fMet-tRNA. Thus ribosomes have the potential to recognize the messenger in the absence of fMet-tRNA. Protein S1 appears directly involved in this primary recognition reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号