首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The basis of inhibition of photosynthesis by single acute O3 exposures was investigated in vivo using analyses based on leaf gas exchange measurements. The fully expanded second leaves of wheat plants (Triticum aestivum L. cv Avalon) were fumigated with either 200 or 400 nanomoles per mole O3 for between 4 and 16 hours. This reduced significantly the light-saturated rate of CO2 uptake and was accompanied by a parallel decrease in stomatal conductance. However, the stomatal limitation, estimated from the relationship between CO2 uptake and the internal CO2 concentration, only increased significantly during the first 8 hours of exposure to 400 nanomoles per mole O3; no significant increase occurred for any of the other treatments. Analysis of the response of CO2 uptake to the internal CO2 concentration implied that the predominant factor responsible for the reduction in light-saturated CO2 uptake was a decrease in the efficiency of carboxylation. This was 58 and 21% of the control value after 16 hours at 200 and 400 nanomoles per mole O3, respectively. At saturating concentrations of CO2, photosynthesis was inhibited by no more than 22% after 16 hours, indicating that the capacity for regeneration of ribulose bisphosphate was less susceptible to O3. Ozone fumigations also had a less pronounced effect on light-limited photosynthesis. The maximum quantum yield of CO2 uptake and the quantum yield of oxygen evolution showed no significant decline after 16 hours with 200 nanomoles per mole O3, requiring 8 hours at 400 nanomoles per mole O3 before a significant reduction occurred. The photochemical efficiency of photosystem II estimated from the ratio of variable to maximum chlorophyll fluorescence and the atrazine-binding capacity of isolated thylakoids demonstrated that photochemical reactions were not responsible for the initial inhibition of CO2 uptake. The results suggest that the apparent carboxylation efficiency appears to be the initial cause of decline in photosynthesis in vivo following acute O3 fumigation.  相似文献   

2.
Huber SC 《Plant physiology》1978,62(3):321-325
Magnesium was most inhibitory to photosynthetic reactions by intact chloroplasts when the magnesium was added in the dark before illumination. Two millimolar MgCl2, added in the dark, inhibited CO2-dependent O2 evolution by Hordeum vulgare L. and Spinacia oleracea L. (C3 plants) chloroplasts 70 to 100% and inhibited (pyruvate + oxaloacetate)-dependent O2 evolution by Digitaria sanguinalis L. (C4 plant) mesophyll chloroplasts from 80 to 100%. When Mg2+ was added in the light, O2 evolution was reduced only slightly. O2 evolution in the presence of phosphoglycerate was less sensitive to Mg2+ inhibition than was CO2-dependent O2 evolution.

Magnesium prevented the light activation of several photosynthetic enzymes. Two millimolar Mg2+ blocked the light activation of NADP-malate dehydrogenase in D. sanguinalis mesophyll chloroplasts, and the light activation of phosphoribulokinase, NADP-linked glyceraldehyde-3-phosphate dehydrogenase, and fructose 1,6-diphosphatase in barley chloroplasts. The results suggest that Mg2+ inhibits chloroplast photosynthesis by preventing the light activation of certain enzymes.

  相似文献   

3.
The net CO2 assimilation by leaves of maize (Zea mays L. cv. Adonis) plants subjected to slow or rapid dehydration decreased without changes in the total extractable activities of phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH) and malic enzyme (ME). The phosphorylation state of PEPC extracted from leaves after 2–3 h of exposure to light was not affected by water deficit, either. Moreover, when plants which had been slowly dehydrated to a leaf relative water content of about 60% were rehydrated, the net CO2 assimilation by leaves increased very rapidly without any changes in the activities of MDH, ME and PEPC or phosphorylation state of PEPC. The net CO2-dependent O2 evolution of a non-wilted leaf measured with an oxygen electrode decreased as CO2 concentration increased and was totally inhibited when the CO2 concentration was about 10%. Nevertheless, high CO2 concentrations (5–10%) counteracted most of the inhibitory effect of water deficit that developed during a slow dehydration but only counteracted a little of the inhibitory effect that developed during a rapid dehydration. In contrast to what could be observed during a rapidly developing water deficit, inhibition of leaf photosynthesis by cis-abscisic acid could be alleviated by high CO2 concentrations. These results indicate that the inhibition of leaf net CO2 uptake brought about by water deficit is mainly due to stomatal closure when a maize plant is dehydrated slowly while it is mainly due to inhibition of non-stomatal processes when a plant is rapidly dehydrated. The photosynthetic apparatus of maize leaves appears to be as resistant to drought as that of C3 plants. The non-stomatal inhibition observed in rapidly dehydrated leaves might be the result of either a down-regulation of the photosynthetic enzymes by changes in metabolite pool sizes or restricted plasmodesmatal transport between mesophyll and bundle-sheath cells.  相似文献   

4.
Gas exchange measurements and noninvasive leghemoglobin (Lb) spectrophotometry (nodule oximetry) were used to monitor nodule responses to shoot removal in alfalfa (Medicago sativa L. cv Weevlchek) and birdsfoot trefoil (Lotus corniculatus L. cv Fergus). In each species, total nitrogenase activity, measured as H2 evolution in Ar:O2 (80:20), decreased to <50% of the initial rate within 1 hour after detopping, and net CO2 production decreased to about 65% of the initial value. In a separate experiment in which nodule oximetry was used, nodule O2 permeability decreased 50% within 5 hours in each species. A similar decrease in the O2-saturated respiration rate (Vmax) for the nodule central zone occurred within 5 hours in birdsfoot trefoil, but only after 24 hours in alfalfa. Lb concentration, also measured by oximetry, decreased after 48 to 72 hours. The decrease in permeability preceded the decrease in Vmax in each species. Vmax may depend mainly on carbohydrate availability in the nodule. If so, then the decrease in permeability could not have been triggered by decreasing carbohydrate availability. Both oximetry and gas exchange data were consistent with the hypothesis that, for the cultivars tested, carbohydrate availability decreased more rapidly in birdsfoot trefoil than in alfalfa nodules. Fractional Lb oxygenation (initially about 0.15) decreased during the first 24 hours after detopping but subsequently increased to >0.65 for a majority of nodules of each species. This increase could lead to O2 inactivation of nitrogenase.  相似文献   

5.
Wong SC  Woo KC 《Plant physiology》1986,80(4):877-883
Rates of CO2 assimilation and steady state chlorophyll a fluorescence were measured simultaneously at different intercellular partial pressures of CO2 in attached cotton (Gossypium hirsutum L. cv Deltapine 16) leaves at 25°C. Electron transport activity for CO2 assimilation plus photorespiration was calculated for these experiments. Under light saturating (1750 microeinsteins per square meter per second) and light limiting (700 microeinsteins per square meter per second) conditions there was a good correlation between fluorescence and the calculated electron transport activity at 19 and 200 millibars O2, and between fluorescence and rates of CO2 assimilation at 19 millibars but not 200 millibars O2. The values of fluorescence measured at about 220 microbars intercellular CO2 were not greatly affected by increasing O2 from 19 to 800 millibars. Fluorescence increased with light intensity at any one intercellular CO2 partial pressure. But the values obtained for fluorescence, expressed as a ratio of the maximum fluorescence obtained in DCMU-treated tissue, over the same range of CO2 partial pressure at 500 microeinsteins per square meter per second were similar to those obtained at 1000 and 2000 microeinsteins per square meter per second. There were two phases in the observed correlation between fluorescence and calculated electron transport activity: an initial inverse relationship at low CO2 partial pressures which reversed to a positive correlation at higher values of CO2 partial pressures. Similar results were observed in the C3 species Helianthus annuus L., Phaseolus vulgaris L., and Brassica chinensis. In all C4 species (Zea mays L., Sorghum bicolor L., Panicum maximum Jacq., Amaranthus edulis Speg., and Echinochloa frumentacea [Roxb.] Link) examined changes in fluorescence were directly correlated with changes in CO2 assimilation rates. The nature and the extent to which Q (primary quencher) and high-energy state (qE) quenching function in determining the steady state fluorescence obtained during photosynthesis in leaves is discussed.  相似文献   

6.
The effect of leaf dehydration on photosynthetic O2 exchange of potato (Solanum tuberosum L., cv. Haig) leaf discs was examined using 18O2 as a tracer and mass spectrometry. In normal air (350 μl·l?1CO2) and under an irradiance of 390 μmol photons·m?2·s1, a relative water deficit (RWD) of about 30% severely decreased net O2 evolution and increased O2 uptake by about 50%, thus indicating an enhancement of photorespiration. Increasing CO2 concentrations diminished O2 uptake and stimulated net O2 evolution both in well-hydrated and in dehydrated (RWD of about 30%) leaves. Much higher CO2 concentrations (up to 4%) were required to observe a complete effect of CO2 in dehydrated leaves. The chloroplastic CO2 concentration at the ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) level (Cc) was calculated from O2-exchange data in both well-hydrated and dehydrated leaves, assuming that the specificity factor of Rubisco was unaffected by desiccation. When plotting net O2 photosynthesis as a function of Cc, a similar relationship was obtained for well-hydrated and waterstressed leaf discs, thus showing that the main effect of water deficit is a decrease of the chloroplastic CO2 concentration. At saturating CO2 levels, the non-cyclic electron-transport rate, measured either as gross O2 photosynthesis or as the chlorophyll fluorescence ratio (Fm -Fs)/Fm, was insensitive to water deficit, provided RWD was below 40%. In this range of RWD, the decrease in gross O2 photosynthesis observed in normal air was attributed to the inability of oxidative processes to sustain the maximal electron-flow rate at low chloroplastic CO2 concentration. The maximal efficiency of photosystem II, estimated as the chlorophyll fluorescence ratio (Fm -F0)/Fm measured in dark-adapted leaves, was not affected by water deficits up to 60%.  相似文献   

7.
The CO2 compensation point at 21% O221) and at 2% O22), and the rate of dark CO2 efflux at 21% O2 (Rn) were measured in adult wheat (Triticum aestivum L, cv Gabo) leaves at the end of the night and after a period of photosynthesis of 5 h at 800 μbar CO2. The values of Γ21 and Rn significantly increased after the light period, due to the stimulation of respiration by carbohydrates. In contrast, Γ2 did not increase after the same period of photosynthesis, suggesting that the respiratory component of Γ2 was not stimulated by carbohydrates. In a different experiment, Γ21, Γ2, and Rn were studied during the growth period of bean (Phaseolus vulgaris L, cv Hawkesbury Wonder) leaves. The values of Γ21 and Rn were high in young leaves, and decreased rapidly in parallel during maturation. However, Γ2 presented relatively low values in growing bean leaves, and a model predicted that the observed values of Γ2 should have been considerably higher if their respiratory component was considered to be as large as that of Γ21. The results suggest that the rate of respiration in the light contributing to the CO2 compensation point in wheat and bean leaves is smaller at low O2 levels than at ambient levels.  相似文献   

8.
Photoheterotrophic growth of cell suspensions of Nicotiana tabacum L. (cv. Xanthi) in organic culture medium enriched in sucrose (30 g per liter) showed a classical sigmoid growth curve. The cells developed functional chloroplast structures during the exponential growth phase, when their chlorophyll content increased steadily. A limited drop (30%) in the chlorophyll amount and structural changes of the plastids (starch accumulation) were observed during the lag phase. The measurements of photosynthetic capacities (O2 evolution and CO2 fixation) during the growth cycle revealed changes in the photosynthetic ratio (O2/CO2), which was near 1 during the lag and stationary phases and near 2 during exponential growth. During exponential growth there was also a rapid NO3? uptake. Analysis of label distribution among the products of 14CO2 fixation showed that both CO2 assimilation pathways, linked to the ribulose-biphosphate carboxylase (the autotrophic pathway) and to phosphoenolpyruvate carboxylase (the non-autotrophic pathway) were operative with an important increase of the capacity of the latter during the exponential growth phase. Maximum rate of oxygen evolution, either endogenous or with p-benzoquinone as Hill reagent, as well as the increased CO2 Fixation capacity via the non-autotrophic pathway during the exponential phase were concomitant with a high cyanide inhibited O2 uptake.  相似文献   

9.
Keck RW 《Plant physiology》1976,58(4):552-555
The carbon dioxide compensation concentration of Panicum milioides was less than that of soybean over the range of 15 to 35 C. In soybean (Glycine max [L.] Merr. cv. Wayne), the compensation concentration was directly proportional to O2 concentration. In P. milioides, the compensation concentration was near zero up to 10% O2 and then increased linearly with higher O2, although the slope of the response was less than that in soybean. Leaf extracts of P. milioides contained 3-fold higher phosphoenolpyruvate carboxylase activity than soybean leaf extracts. Oxygen inhibition of photosynthesis and carboxy-lation efficiency was less in P. milioides than that observed in soybean. The affinity of P. millioides ribulose-1,5-di-P carboxylase for CO2 appeared to be slightly greater than that of soybean. The affinity of both enzymes for O2 was similar. The reduced response of the compensation concentration and photosynthesis to O2 in P. milioides may be explained by photosynthetic phosphoenolpyruvate carboxylase fixation and by an apparent increased affinity of ribulose-1,5-di-P carboxylase for CO2.  相似文献   

10.
Vacuolated and nonvacuolated root tissues of Zea mays were exposed to low water potentials by addition of mannitol or glycerol. Temporary increases were observed for O2 uptake, but CO2 evolution remained steady. This increase in O2 uptake ceased after 15 minutes. Further treatment induced decreases in respiration, with similar reductions in O2 uptake and CO2 evolution.  相似文献   

11.
  • 1 The allocation of defensive compounds of transgenic Bt (cv. GK‐12) and nontransgenic cotton (cv. Simian‐3) grown in elevated CO2 in response to infestation by cotton bollworm Helicoverpa armigera (Hübner) was studied in closed‐dynamics CO2 chambers.
  • 2 A significant reduction in foliar nitrogen content and Bt toxin protein occurred when transgenic Bt cotton grew under elevated CO2. A significantly higher carbon/nitrogen ratio as well as condensed tannin and gossypol contents was observed for transgenic Bt (cv. GK‐12) and nontransgenic cotton in elevated CO2, in partial support of the carbon nutrient balance hypothesis as a result of limiting nitrogen and excess carbon in cotton plants in response to elevated CO2.
  • 3 The CO2 level and infestation time significantly affected the foliar nitrogen, condensed tannin, gossypol and Bt toxin protein contents of cotton plants after feeding by H. armigera. The interaction between CO2 levels × cotton variety had a significant effect on foliar nitrogen content after injury by H. armigera.
  相似文献   

12.
Photoreduction of O(2) Primes and Replaces CO(2) Assimilation   总被引:3,自引:28,他引:3       下载免费PDF全文
Radmer RJ  Kok B 《Plant physiology》1976,58(3):336-340
A mass spectrometer with a membrane inlet system was used to monitor directly gaseous components in a suspension of algae. Using labeled oxygen, we observed that during the first 20 seconds of illumination after a dark period, when no net O2 evolution or CO2 uptake was observed, O2 evolution was normal but completely compensated by O2 uptake. Similarly, when CO2 uptake was totally or partially inhibited, O2 evolution proceeded at a high (near maximal) rate. Under all conditions, O2 uptake balanced that fraction of the O2 evolution which could not be accounted for by CO2 uptake.  相似文献   

13.
Leaves of C3 plants which exhibit a normal O2 inhibition of CO2 fixation at less than saturating light intensity were found to exhibit O2-insensitive photosynthesis at high light. This behavior was observed in Phaseolus vulgaris L., Xanthium strumarium L., and Scrophularia desertorum (Shaw.) Munz. O2-insensitive photosynthesis has been reported in nine other C3 species and usually occurred when the intercellular CO2 pressure was about double the normal pressure. A lack of O2 inhibition of photosynthesis was always accompanied by a failure of increased CO2 pressure to stimulate photosynthesis to the expected degree. O2-insensitive photosynthesis also occurred after plants had been water stressed. Under such conditions, however, photosynthesis became O2 and CO2 insensitive at physiological CO2 pressures. Postillumination CO2 exchange kinetics showed that O2 and CO2 insensitivity was not the result of elimination of photorespiration.

It is proposed that O2 and CO2 insensitivity occurs when the concentration of phosphate in the chloroplast stroma cannot be both high enough to allow photophosphorylation and low enough to allow starch and sucrose synthesis at the rates required by the rest of the photosynthetic component processes. Under these conditions, the energy diverted to photorespiration does not adversely affect the potential for CO2 assimilation.

  相似文献   

14.
An open system associated with an infrared gas analyzer was employed to study transients in CO2 exchange generated upon darkening preilluminated leaf discs of tobacco (Nicotiana tabacum vars John Williams Broadleaf and Havana Seed). An empirical formula presented previously enabled prediction of the analyzer response under nonsteady state conditions as a function of time and of the leaf CO2 exchange rate. A computer was used to evaluate parameters of the leaf CO2 release rate to provide an estimate of the initial rate of postillumination CO2 evolution and to produce maximal agreement between predicted and observed analyzer responses. In 21% O2, the decline in rate of CO2 evolution upon darkening followed first order kinetics. Initial rates of CO2 evolution following darkening were relatively independent of the prior ambient CO2 concentrations. However, rates of photorespiration expressed as a fraction of net photosynthesis declined rapidly with increasing external CO2 concentration at 21% O2. Under normal atmospheric conditions, photorespiration was 45 to 50% of the net CO2 fixation rate at 32°C and high irradiance. The rapid initial CO2 evolution observed upon darkening at 21% O2 was absent in 3% O2. Rates of photorespiration under normal atmospheric concentrations of CO2 and O2 as measured by the postillumination burst were highly dependent upon temperature (observed activation energy = 30.1 kilocalories per mole). The results are discussed with respect to previously published estimates of photorespiration in C3 leaf tissue.  相似文献   

15.
A mass spectrometer with a membrane inlet was used to monitor light-driven O2 evolution, O2 uptake, and CO2 uptake in suspensions of algae (Scenedesmus obliquus). We observed the following. (a) The rate of O2 uptake, which, in the presence of iodoacetamide, replaces the uptake of CO2, showed a distinct plateau (Vmax) beyond ~30% O2 and was half-maximal at ~8% O2. We concluded that this light-driven O2 uptake process, which does not involve carbon compounds, is saturated at lower O2 concentrations than are photorespiration and glycolate formation. (b) In the absence of inhibitor, O2 evolution was relatively unaffected by the presence or absence of CO2. During the course of CO2 depletion, electron flow to CO2 was replaced by an equivalent flow to O2. (c) There was a distinct delay between the cessation of CO2 uptake and the increase in O2 uptake. We ascribe this delay to the transient utilization of another electron acceptor—possibly bicarbonate or another bound form of CO2.  相似文献   

16.
A mass spectrometric method combining 16O/18O and 12C/13C isotopes was used to quantify the unidirectional fluxes of O2 and CO2 during a dark to light transition for guard cell protoplasts and mesophyll cell protoplasts of Commelina communis L. In darkness, O2 uptake and CO2 evolution were similar on a protein basis. Under light, guard cell protoplasts evolved O2 (61 micromoles of O2 per milligram of chlorophyll per hour) almost at the same rate as mesophyll cell protoplasts (73 micromoles of O2 per milligram of chlorophyll per hour). However, carbon assimilation was totally different. In contrast with mesophyll cell protoplasts, guard cell protoplasts were able to fix CO2 in darkness at a rate of 27 micromoles of CO2 per milligram of chlorophyll per hour, which was increased by 50% in light. At the onset of light, a delay observed for guard cell protoplasts between O2 evolution and CO2 fixation and a time lag before the rate of saturation suggested a carbon metabolism based on phosphoenolpyruvate carboxylase activity. Under light, CO2 evolution by guard cell protoplasts was sharply decreased (37%), while O2 uptake was slowly inhibited (14%). A control of mitochondrial activity by guard cell chloroplasts under light via redox equivalents and ATP transfer in the cytosol is discussed. From this study on protoplasts, we conclude that the energy produced at the chloroplast level under light is not totally used for CO2 assimilation and may be dissipated for other purposes such as ion uptake.  相似文献   

17.
Kelly BM 《Plant physiology》1983,72(2):351-355
Light induced an alkalinization and stimulated a subsequent acidification of the medium surrounding oat (Avena sativa L. cv Garry) leaf protoplasts. Blue light was less effective than would be predicted from photosynthetic action spectra. Nonetheless, 3-(3,4-dichlorophenyl)-1,1-dimethylurea prevented alkalinization and reduced acidification to the dark rate for protoplast suspensions exposed to all light regimes tested.

Alkalinization increased in parallel with initial rates of O2 evolution as the quantum flux density of white light was raised to 75 microeinsteins per square meter per second. Alkalinization was accompanied by a decrease in the CO2 content of the medium; therefore, it was attributed to photosynthetically induced CO2 uptake. The effect of CO2 depletion on the acidity of the medium appeared to be mainly restricted to the first 15 minutes of exposure to light. Consequently, subsequent pH changes primarily reflected a constant net proton efflux. Acidification occurred in the dark, but rates of acidification increased in response to increased light approximately in parallel with changes in a concomitant net O2 efflux. The results indicated that protoplasts could acidify the medium in response to nonphotosynthetic activity, but that photosynthesis mediated light stimulation of acidification.

  相似文献   

18.
Oxygen inhibition of photosynthesis was studied with intact spinach (Spinacia oleracea L.) chloroplasts which exhibited very high rates of photosynthetic CO2 reduction and were insensitive to additions of photosynthetic intermediates when CO2 was available at saturating concentrations. Photosynthetic rates were measured polarographically as O2 evolution, and the extent of the reduction of substrate was estimated from the amount of O2 evolved. With CO2 as substrate, inhibition of photosynthesis by O2 was dependent on pH. At pH values above 8, rates of O2 evolution were strongly inhibited by O2 and only a fraction of the added bicarbonate was reduced before O2 evolution ceased. The extent of O2 evolution declined with increasing O2 concentration and decreasing initial bicarbonate concentration. At pH 7.2, the initial photosynthetic rate was inhibited about 30% at high O2 levels, but the extent of O2 evolution was unaffected and most of the added bicarbonate was reduced. Photosynthetic O2 evolution with 3-phosphoglycerate as substrate was similarly dependent on pH and O2 concentration. In contrast, there was little effect of O2 and pH on oxaloacetate-dependent oxygen evolution. Acid-base shift experiments with osmotically shocked chloroplasts showed that ATP formation was not affected by O2. The results are discussed in terms of a balance between photosynthetic O2 evolution and O2 consumption by the ribulose diphosphate oxygenase reaction.  相似文献   

19.
Energy expenditure (EE) can be estimated based on respiratory gas exchange measurements, traditionally done in respiration chambers by indirect calorimetry (IC). However, the 13C-bicarbonate technique (13C-BT) might be an alternative minimal invasive method for estimation of CO2 production and EE in the field. In this study, four Shetland ponies were used to explore the effect of feeding on CO2 production and EE measured simultaneously by IC and 13C-BT. The ponies were individually housed in respiration chambers and received either a single oral or intravenous (IV) bolus dose of 13C-labelled sodium bicarbonate (NaH13CO3). The ponies were fed haylage 3 h before (T−3), simultaneously with (T0) or 3 h after (T+3) administration of 13C-bicarbonate. The CO2 produced and O2 consumed by the ponies were measured for 6 h with both administration routes of 13C-bicarbonate at the three different feeding times. Feeding time affected the CO2 production (P<0.001) and O2 consumption (P<0.001), but not the respiratory quotient (RQ) measured by IC. The recovery factor (RF) of 13C in breath CO2 was affected by feeding time (P<0.01) and three different RF were used in the calculation of CO2 production measured by 13C-BT. An average RQ was used for the calculations of EE. There was no difference between IC and 13C-BT for estimation of CO2 production. An effect of feeding time (P<0.001) on the estimated EE was found, with higher EE when feed was offered (T0 and T+3) compared with when no feed was available (T−3) during measurements. In conclusion, this study showed that feeding time affects the RF and measurements of CO2 production and EE. This should be considered when the 13C-BT is used in the field. IV administration of 13C-bicarbonate is recommended in future studies with horses to avoid complex 13C enrichment-time curves with maxima and shoulders as observed in several experiments with oral administration of 13C-bicarbonate.  相似文献   

20.
Nodulated cowpea (Vigna unguiculata L. Walp. cv Vita 3:Bradyrhizobium CB 756) plants were cultured with their whole root system or crown root nodulation zone maintained for periods from 5 to 69 days after planting in atmospheres containing a range of pO2 (1-80%, v/v) while the rest of the plant grew in normal air. Growth (dry matter yield) and N2 fixation were largely unaffected by pO2 from 10 to 40%. Decrease in fixation at pO2 below 5% was due to lower nodulation and nodule mass and, at pO2 above 60%, to a fall in specific N2-fixing activity of nodules. Root:shoot ratios were significantly lower at pO2 below 2.5%. The effect of pO2 on nitrogenase activity (acetylene reduction), both of whole nodulated root systems and crown root nodulation zones, varied with plant age but was generally lower at supra- and subambient extremes of O2. H2 evolution showed a sharp optimum at 20% O2 but was at most 4% of total nitrogenase activity. The ratio of CO2 evolved to substrate (C2H2+H+) reduced by crown root nodulation zones was constant (6 moles CO2 per mole substrate reduced) from 2.5 to 60% O2 but at levels below 2.5 and above 80% O2 reached values between 20 and 30 moles CO2 per mole substrate reduced. Effects of long-term growth with nonambient pO2 on adaptation and efficiency of functioning of nodules are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号