首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lyophilized cells of the non-pathogenic yeast Saccharomyces boulardii are used in many countries for the treatment of several types of diarrhoea and other gastrointestinal diseases. Although the cells must be viable, their mechanism of action is unknown. The disaccharide trehalose is a protectant against several forms of environmental stress in yeast and is involved in maintaining cell viability. There is no information on the enzymes involved in degradation of trehalose in S. boulardii. The aim of the present study was to characterize trehalase activity in this yeast. Cells of S. boulardii grown in glucose exhibited neutral trehalase activity only in the exponential phase. Acidic trehalase was not detected in glucose medium. Cells grown in trehalose exhibited acid and neutral trehalase activities at all growth stages, particularly in the exponential phase. The optimum pH and temperature values for neutral trehalase activity were determined as 6.5 and 30 °C respectively, the half-life being approximately 3 min at 45 °C. The relative molecular mass of neutral trehalase is 80 kDa and the K m 6.4 mM (±0.6). Neutral trehalase activity at pH 6.5 was weakly inhibited by 5 mM EDTA and strongly inhibited by ATP, as well as the divalent ions Cu++, Fe++ and Zn++. Enzyme activity was stimulated by Mg++ and Ca++ only in the absence of cAMP. The presence of cAMP with no ion additions increased activity by 40%. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Summary Fermentation yields of Lactobacillus plantarum were measured at controlled pH between 4.0 and 8.0 and initial lactate concentrations of 0–90 g/l. Optimal growth conditions at pH 6.0 without addition of lactate gave a growth rate of 0.57 h–1 and 20 g dry biomass/mol ATP formed (Y ATP). The pH variations resulted in a decrease in growth rate but the effect on Y ATPwas insignificant. The addition of lactate to the medium at 0 h resulted in linear decrease in the growth rate of the culture, and all the metabolic activities were completely inhibited at 110 g/l. The Y ATPand biomass/ substrate yield (Y X/S) remained fairly steady up to 33 g lactate/l, beyond which both yields decreased considerably. Offsprint requests to: M. Raimbault  相似文献   

3.
Carbon transport across the plasma membrane, and carbon fixation were measured in perfused Chara internodal cells. These parameters were measured in external media of pH 5·5 and pH 8·5, where CO2 and HCO3- are, respectively, the predominant carbon species in both light and dark conditions. Cells perfused with medium containing ATP could utilize both CO2 and HCO3- from the external medium in the light. Photosynthetic carbon fixation activity was always higher at pH 5·5 than at pH 8·5. When cells were perfused either with medium containing hexokinase and 2-deoxyglucose to deplete ATP from the cytosol (HK medium) or with medium containing vanadate, a specific inhibitor of the plasma membrane H+-ATPase (V medium), photosynthetic carbon fixation was strongly inhibited at both pH 5·5 and 8·5. Perfusion of cells with medium containing pyruvate kinase and phosphoenolpyruvate (PEP) to maximally activate the H+-ATPase (PK medium), stimulated the photosynthetic carbon fixation activities. Oxygen evolution of isolated chloroplasts and the carbon fixation of cells supplied 14C intracellularly were not inhibited by perfusion media containing either hexokinase and 2-deoxyglucose or vanadate. The results indicate that Chara cells possess CO2 and HCO3- transport systems energized by ATP and sensitive to vanadate in the light. In the dark, intact cells also fix carbon. By contrast, in cells perfused with medium containing ATP, no carbon fixation was detected in 1 mol m -3 total dissolved inorganic carbon (TDIC) at pH 8·5. By increasing TDIC to 10 mol m-3, dark fixation became detectable, although it was still lower than that of intact cells at 1mol m-3 TDIC. Addition of PEP or PEP and PEP carboxylase to the perfusion media significantly increased the dark-carbon fixation. Perfusion with vanadate had no effect on the dark-carbon fixation.  相似文献   

4.
Crude membrane preparations of arho 0 mutant ofSaccharomyces cerevisiae exhibit Mg2+-dependent ATPase activity. Over the optimal pH range, 5.0–6.75, the apparentV max of the enzyme equals 590 nmoles of ATP hydrolyzed per minute per milligram protein, with an apparentK m for ATP of 1.3 mM. ATP hydrolysis is insensitive to ouabain, venturicidin, aurovertin, and the protein inhibitor described by Pullman and Monroy; inhibited by oligomycin (at high concentrations) and sodium orthovandate, and it is sensitive to dicyclohexylcarbodiimide,p-hydroxymercuribenzoate, hydroxylamine, sodium fluoride, and sodium iodoacetate. The pH optimum and the inhibitor pattern distinguish the plasma membrane enzyme from the mitochondrial F1 ATPase still present in these cells (this activity is sensitive to efrapeptin, aurovertin, and the protein inhibitor, but resistant to DCCD). In addition, the activity of the plasma membrane enzyme and its affinity for ATP are responsive to changes in the composition of the growth medium, with the highest activity observed in cells grown on methyl--d-glucoside, a sugar which results not only in partial release from catabolite repression but also requires the induction of an active transport system for growth.Author to whom correspondence should be addressed; recipient of a Research Career Award No. K06 05060 from the Institute of General Medical Sciences.  相似文献   

5.
Summary Stadtman, Holzer and their colleagues (reviewed in Stadtman and Ginsburg 1974) demonstrated that the enzyme glutamine synthetase (GS) [L-glutamate: ammonia ligase (ADP-forming), EC 6.3.1.2] is covalently modified by adenylylation in a variety of bacterial genera and that the modification is reversible. These studies further indicated that adenylylated GS is the less active form in vitro. To assess the physiological significance of adenylylation of GS we have determined the growth defects of mutant strains (glnE) of S. typhimurium that are unable to modify GS and we have determined the basis for these growth defects. The glnE strains, which lack GS adenylyl transferase activity (ATP: [L-glutamate: ammonia ligase (ADP-forming)] adenylyltransferase, EC 2.7.7.42), show a large growth defect specifically upon shift from a nitrogen-limited growth medium to medium containing excess ammonium (NH4 +). The growth defect appears to be due to very high catalytic activity of GS after shift, which lowers the intracellular glutamate pool to 10% that under preshift conditions. Consistent with this view, recovery of a rapid growth rate on NH4 + is accompanied by an increase in the glutamate pool. The glnE strains have normal ATP pools after shift. They synthesize very large amounts of glutamine and excrete glutamine into the medium, but excess glutamine does not seem to inhibit growth. We hypothesize that a major function for adenylylation of bacterial GS is to protect the cellular glutamate pool upon shift to NH4 +-excess conditions and thereby to allow rapid growth.  相似文献   

6.
DNA in intracellular Salmonella enterica serovar Typhimurium relaxes during growth in the acidified (pH 4–5) macrophage vacuole and DNA relaxation correlates with the upregulation of Salmonella genes involved in adaptation to the macrophage environment. Bacterial ATP levels did not increase during adaptation to acid pH unless the bacterium was deficient in MgtC, a cytoplasmic‐membrane‐located inhibitor of proton‐driven F1F0 ATP synthase activity. Inhibiting ATP binding by DNA gyrase and topo IV with novobiocin enhanced the effect of low pH on DNA relaxation. Bacteria expressing novobiocin‐resistant (NovR) derivatives of gyrase or topo IV also exhibited DNA relaxation at acid pH, although further relaxation with novobiocin was not seen in the strain with NovR gyrase. Thus, inhibition of the negative supercoiling activity of gyrase was the primary cause of enhanced DNA relaxation in drug‐treated bacteria. The Salmonella cytosol reaches pH 5–6 in response to an external pH of 4–5: the ATP‐dependent DNA supercoiling activity of purified gyrase was progressively inhibited by lowering the pH in this range, as was the ATP‐dependent DNA relaxation activity of topo IV. We propose that DNA relaxation in Salmonella within macrophage is due to acid‐mediated impairment of the negative supercoiling activity of gyrase.  相似文献   

7.
The effects of K+, Na+ and ATP on the gastric (H+ + K+)-ATPase were investigated at various pH. The enzyme was phosphorylated by ATP with a pseudo-first-order rate constant of 3650 min?1 at pH 7.4. This rate constant increased to a maximal value of about 7900 min?1 when pH was decreased to 6.0. Alkalinization decreased the rate constant. At pH 8.0 it was 1290 min?1. Additions of 5 mM K+ or Na+, did not change the rate constant at acidic pH, while at neutral or alkaline pH a decrease was observed. Dephosphorylation of phosphoenzyme in lyophilized vesicles was dependent on K+, but not on Na+. Alkaline pH increased the rate of dephosphorylation. K+ stimulated the ATPase and p-nitrophenylphosphatase activities. At high concentrations K+ was inhibitory. Below pH 7.0 Na+ had little or no effect on the ATPase and p-nitrophenylphosphatase, while at alkaline pH, Na+ inhibited both activities. The effect of extravesicular pH on transport of H+ was investigated. At pH 6.5 the apparent Km for ATP was 2.7 μM and increased little when K+ was added extravesicularly. At pH 7.5, millimolar concentrations of K+ increased the apparent Km for ATP. Extravesicular K+ and Na+ inhibited the transport of H+. The inhibition was strongest at alkaline pH and only slight at neutral or acidic pH, suggesting a competition between the alkali metal ions and hydrogen ions at a common binding site on the cytoplasmic side of the membrane. Two H+-producing reactions as possible candidates as physiological regulators of (H+ + K+)-ATPase were investigated. Firstly, the hydrolysis of ATP per se, and secondly, the hydration of CO2 and the subsequent formation of H+ and HCO3?. The amount of hydrogen ions formed in the ATPase reaction was highest at alkaline pH. The H+/ATP ratio was about 1 at pH 8.0. When CO2 was added to the reaction medium there was no change in the rate of hydrogen ion transport at pH 7.0, but at pH 8.0 the rate increased 4-times upon the addition of 0.4 mM CO2. The results indicate a possible co-operation in the production of acid between the H+ + K+-ATPase and a carbonic anhydrase associated with the vesicular membrane.  相似文献   

8.
pH affected significantly the growth and the glucose fermentation pattern of Propionibacterium microaerophilum. In neutral conditions (pH 6.5–7.5), growth and glucose fermentation rate (qs) were optimum producing propionate, acetate, CO2, and formate [which together represented 90% (wt/wt) of the end products], and lactate representing only 10% (wt/wt) of the end products. In acidic conditions, propionate, acetate, and CO2 represented nearly 100% (wt/wt) of the fermentation end products, whereas in alkaline conditions, a shift of glucose catabolism toward formate and lactate was observed, lactate representing 50% (wt/wt) of the fermentation end products. The energy cellular yields (Y X/ATP), calculated (i) by taking into account extra ATP synthesized through the reduction of fumarate into succinate, was 6.1–7.2 g mol−1. When this extra ATP was omitted, it was 11.9–13.1 g mol−1. The comparison of these values with those of Y X/ATP in P. acidipropionici and other anaerobic bacteria suggested that P. microaerophilum could not synthesize ATP through the reduction of fumarate into succinate and therefore differed metabolically from P. acidipropionici. Received: 8 April 2002 / Accepted: 8 May 2002  相似文献   

9.
C. Chaturvedi 《Mycopathologia》1965,27(3-4):265-272
Summary Colletotrichum gloeosporioides isolated from the diseased leaves ofPolyscias balfuriana could grow and sporulate on a wide range of pH (viz. from 3.0 to 9.0). Maximum growth was recorded at pH 5.5. Mannitol was the best carbon source for growth. Good growth as well as good or excellent sporulation was also recorded on glucose, fructose, maltose and starch. Organic acids (malic and tartaric) supported poor growth.Present organism could utilize a number of nitrogen sources. Nitrates in general were comparatively better sources than ammonium compounds. Aspartic acid was found to be the best nitrogen source for growth. Nitrites were toxic at lower pH values though they supported growth at alkaline medium. Best growth of the organism was obtained on MgSO4, 7H2O. The urea supported poor growth. ZnSO4 inhibited the growth completely. The present organism was incapable of growing in media lacking carbon, nitrogen or sulphur.  相似文献   

10.
When rat liver lysosomes are suspended in a medium containing acridine orange at neutral pH, accumulation of the dye may be observed within the vesicles. The uptake appears driven by a pH gradient between the external medium and the interior of the lysosomes since it is inhibited by NH4+, nigericin and other electroneutral proton-cation exchangers. FCCP is ineffective in inhibiting the uptake. In the presence of Mg++ and anions such as Cl?, ATP promoted a further and more extensive but slower oligomycin and ouabain-insensitive dye uptake, which was also inhibited by FCCP. Very similar results were obtained with neutral red and atebrin. When the rate of the ATP-induced acridine uptake in preparations of different purification grade was compared, it was observed that the uptake rate increased in parallel with lysosomal enzymatic activity. These results suggest that an electrogenic ATP-driven-Mg++ dependent “proton pump” is operating in the lysosomal membrane, as previously proposed.  相似文献   

11.
Neutral trehalase from Neurospora crassa was expressed in Escherichia coli as a polypeptide of 84 kDa in agreement with the theoretical size calculated from the corresponding cDNA. The recombinant neutral trehalase, purified by affinity chromatography exhibited a specific activity of 80–150 mU/mg protein. Optima of pH and temperature were 7.0 and 30 °C, respectively. The enzyme was absolutely specific for trehalose, and was quite sensitive to incubation at 40 °C. The recombinant enzyme was totally dependent on calcium, and was inhibited by ATP, copper, silver, aluminium and cobalt. KM was 42 mM, and Vmax was 30.6 nmol of glucose/min. The recombinant protein was phosphorylated by cAMP-dependent protein kinase, but not significantly activated. Immunoblotting with polyclonal antiserum prepared against the recombinant protein showed that neutral trehalase protein levels increased during exponential phase of N. crassa growth and dropped at the stationary phase. This is the first report of a neutral trehalase produced in E. coli with similar biochemical properties described for fungi native neutral trehalases, including calcium-dependence.  相似文献   

12.
A receptor for angiostatin was identified on the surface of endothelial cells as F1–F0 ATP synthase (Moser et al., 1999). Proc. Natl. Acad. Sci. U.S.A. 96, 2811–2816. This ectopic ATP synthase catalyzes ATP synthesis and is inhibited by angiostatin over a wide pH range. Endothelial cells grown at normal pH suffer no ill effects from this angiostatin-mediated inhibition of ATP synthase, whereas endothelial cells grown at low, tumor-like extracellular pH cannot maintain a normal intracellular pH and die. Angiostatin inhibits both ATP synthesis and ATP hydrolysis (Moser et al., 2001) and interferes with intracellular pH regulation (Wahl and Grant, 2002; Wahl et al., 2002). Although angiostatin administered intravenously is cleared from the circulation in a matter of minutes, angiostatin-mimetics that are more stable have potential for clinical application. An angiostatin-mimetic activity has recently been observed using a polyclonal antibody against the β catalytic subunit of ATP synthase. In order to explore the mechanism of action of angiostatin and its mimetics, further work needs to be done to evaluate clinical applicability, specificity, and contraindications for this class of therapeutics.  相似文献   

13.
The number of accessible SH groups was determined in membrane vesicles prepared from Enterococcus hirae grown under anaerobic conditions at alkaline pH (pH 8.0). Addition of ATP or nicotinamide adenine dinucleotides (NAD++NADH) to the vesicles caused a ∼4-fold or ∼1.9-fold increase in the number of SH-groups, respectively. This was inhibited by treatment with N-ethylmaleimide. The increase was significant when ATP and NAD++NADH both were added. The change was lacking in the presence of the F0F1-ATPase inhibitors N,N′-diclohexylcarbodiimide or sodium azide. This was also absent in atp mutant with defect in the F0F1-ATPase and, in addition, it was less in potassium ion–free medium. These results are correlated with data about K+-dependent F0F1-ATPase activity, suggesting a relationship between the F0F1-ATPase and K+ uptake Trk-like system. The latter may be regulated by NAD or NADH mediating conformational changes.  相似文献   

14.
Vibrio succinogenes which gains all the ATP by anaerobic electron transport phosphorylation, was grown in continuous culture on a defined medium with formate and fumarate as sole energy sources. The growth yield at infinite dilution rate (Y max) was obtained by extrapolation from the growth yields measured at various dilution rates. With formate as the growth limiting substrate, Y max was found as 14 g dry cells/mol formate. Under these conditions growth was limited by the rate of energy supply, because formate is used only as a catabolic substrate (Bronder et al. 1982). The Y ATP max calculated from the ATP requirement for cell synthesis was 18 g dry cells/mol ATP. This gives an ATP/2e ratio of 0.8. The ATP/2e ratio in vitro had been measured as 1 (Kröger and Winkler 1981). It is concluded that growing V. succinogenes gain at least 80% the stoichiometrically possible amount of ATP, when growth is limited by energy supply.  相似文献   

15.
To obtain information on the importance of membrane and zeta potentials as repelling or facilitating forces during the uptake of cationic trace elements, the heavy metal content and the growth resistance of the acidotolerant fungus Bispora. sp. to heavy metals were compared at pH 1.0 and pH 7.0. Cu, Co, Ni, Cd, Cr, and La contents of the fungus were significantly lower at pH 1.0 than at pH 7.0. A similar pH effect occurred with cationic macro elements such as Na, Mg, Ca, Fe, and Mn. Only K and Zn exhibited higher levels at pH 1.0 in the fungus than at pH 7.0. Macro and micro elements present in the medium in anionic form (sulfate, chloride) showed the opposite pattern to cations: Contents were higher at pH 1.0 than at pH 7.0. Minerals present at pH 1.0 predominantly in the electrical neutral, protonated form (phosphate, borate) exhibited a similar cell content at both acid and neutral pH (P) or a higher content at neutral pH than at acid pH (B). The resistance of fungal growth to the cations Cu, Zn, Ni, Co, Cr, and Cd was significantly higher at pH 1.0 than at pH 7.0. Such a difference was not observed with Hg, present in the medium at both pH values as electrically silent HgCl2. The anionic tungstate exhibited the opposite pattern to cationic heavy metals: The resistance of growth was higher at pH 7.0 than at pH 1.0. A greater growth resistance to heavy metals was correlated with a lower uptake of these elements, and vice versa; Uptake of heavy metals correlated with a lower resistance of fungal growth to these elements. The results are in agreement with the hypothesis that membrane and zeta potentials of the fungus are important factors controlling the uptake of heavy metals and thereby the resistance of growth to these elements: At pH 1.0 positive potentials of fungal hyphae impede the uptake of cationic heavy metals, but facilitate the uptake of anionic species. At neutral pH values the negative potentials facilitate the uptake of cations, but impede the uptake of anions.  相似文献   

16.
Summary The energetics, enzyme activities and end-product synthesis of Zymomonas mobilis 113 in continuous culture were studied after the shift from an anaerobic to an aerobic environment. Aeration diminished ethanol yield and lactic acid concentration, but increased glucose consumption rate and production of acetic acid. After the shift to aerobic conditions reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H]-oxidase activity was stimulated. Washed cell suspensions consumed oxygen with glucose, lactate and ethanol as substrates. The aerobic Z. mobilis 113 regulated their intracellular redox balance by production and reoxidation of the end products, coupled with the formation of NAD(P)H. An increase in transmembrane pH gradient (pH) and a decrease in intracellular ATP concentration were observed after the shift to aerobic conditions. At low medium redox potential (Eh) values the H+ balance was regulated in an energy-independent way via end-product excretion. Under aerobic conditions this was supplemented by ATP-dependent H+ excretion by the membrane H+-ATPase.Abbreviations D dilution rate (h-1) - S 0 initial glucose concentration (g/l) - Y x/s growth yield (g/mol) - Y p/s product yield (g/g) - q s specific rate of substrate utilization (g/g per hour) - q p specific rate of ethanol formation (g/g per hour) - qo 2 specific rate of CO2 production (mmol/g per hour) - specific growth rate (h-1) - X dry biomass concentration (g/l) - Eh redox potential of culture medium (mV) - pH transmembrane pH gradient (pH units) - pHin intracellular pH - SASE sum of activities of specific enmymes of Entner-Doudoroff pathway  相似文献   

17.
A recombinant form of the peptide N-terminally positioned from proSP-B (SP-BN) has been produced in Escherichia coli as fusion with the Maltose Binding Protein, separated from it by Factor Xa cleavage and purified thereafter. This protein module is thought to control assembly of mature SP-B, a protein essential for respiration, in pulmonary surfactant as it progress through the progressively acidified secretory pathway of pneumocytes. Self-aggregation studies of the recombinant propeptide have been carried out as the pH of the medium evolved from neutral to moderately acid, again to neutral and finally basic. The profile of aggregation versus subsequent changes in pH showed differences depending on the ionic strength of the medium, low or moderate, and the presence of additives such as L-arginine (a known aggregation suppressor) and Ficoll 70 (a macromolecular crowder). Circular dichroism studies of SP-BN samples along the aggregation process showed a decrease in α-helical content and a concomitant increase in β-sheet. Intrinsic fluorescence emission of SP-BN was dominated by the emission of Trp residues in neutral medium, being its emission maximum shifted to red at low pH, suggesting that the protein undergoes a pH-dependent conformational change that increases the exposure of their Trp to the environment. A marked increase in the fluorescence emission of the extrinsic probe bis-ANS indicated the exposure of hydrophobic regions of SP-BN at pH 5. The fluorescence of bis-ANS decreased slightly at low ionic strength, but to a great extent at moderate ionic strength when the pH was reversed to neutrality, suggesting that self-aggregation properties of the SP-BN module could be tightly modulated by the conditions of pH and the ionic environment encountered by pulmonary surfactant during assembly and secretion.  相似文献   

18.
Summary The ultrastructural localization of Ca2+, Mg2+-activated ATPase was studied in phytohaemagglutinin activated lymphocytes and in normal unstimulated lymphocytes. Cells, fixed in paraformaldehyde-glutaraldehyde, were incubated in a medium containing 3mm ATP, 5mm CaCl2 and 2.4mm Pb(NO3)2 in 0.1m tris buffer at pH 8.5, the optimum pH for histochemical demonstration of this enzyme. Reaction product was localized i the endoplasmic reticulum, nuclear membrane, Golgi apparatus and mitochondria and on the membrane surrounding large electron-dense bodies. Cytoplasmic vesicles and the plasma membrane were negative. Activity in unstimulated lymphocytes showed a similar localization but the amount of endoplasmic reticulum was much less than in activated lymphocytes.The pH of the medium was critical for the localization of the enzyme. At pH 7.5, the cytoplasmic reaction was almost completely inhibited but a dense precipitate was present on the outer surface of the plasma membrane. The reaction was stimulated by either Ca2+ or Mg2+ and was greatly decreased in the absence of these cations or in the presence ofp-chloromercuribenzoate orN-ethylmaleimide. Oligomycin inhibited selectively the reaction in mitochondria but not the reaction at other sites. While the reaction in mitochondria showed complete substrate specificity, a mild reaction was obtained at the other sites with uridine diphosphate or sodium -glycophosphate as substrate. ATP was, however, the preferential substate.  相似文献   

19.
The effect of trifluoperazine (TFP) on the ATPase activity of soluble and paniculate F1ATPase and on ATP synthesis driven by succinate oxidation in submitochondrial particles from bovine heart was studied at pH 7.4 and 8.8. At the two pH. TFP inhibited ATP hydrolysis. Inorganic phosphate protected against the inhibiting action of TFP. The results on the effect of various concentrations of phosphate in the reversal of the action of TFP on hydrolysis at pH 7.4 and 8.8 showed that H2PO 4 is the species that competes with TFP. The effect of TFP on oxidative phosphorylation was studied at concentrations that do not produce uncoupling or affect the aerobic oxidation of succinate (<15M). TFP inhibited oxidative phosphorylation to a higher extent at pH 8.8 than at pH 7.4; this was through a diminution in theV max, and an increase in theK m for phosphate. Data on phosphate uptake during oxidative phosphorylation at several pH showed that H2PO 4 is the true substrate for oxidative phosphorylation. Thus, in both synthesis and hydrolysis of ATP, TFP and H2PO 4 interact with a common site. However, there is a difference in the sensitivity to TFP of ATP synthesis and hydrolysis; this is more noticeable at pH 8.8, i.e. ATPase activity of soluble F1 remains at about 40% of the activity of the control in a concentration range of TFP of 40–100M, whereas in oxidative phosphorylation 14M TFP produces a 60% inhibition of phosphate uptake.  相似文献   

20.
Summary When a marine-isolate, Chaetomium globosum was cultivated in a medium with an increased MgCl2 content, a bacteriolytic enzyme was extracellularly produced. The enzyme was purified approximately 130-fold. It lyzed Staphylococcus aureus, Micrococcus lysodeikticus and several other Gram-positive bacteria. Optimal pH and temperature for the lysis were 8.0 and 37°C, respectively. The enzyme was heat-labile with maximum stability at neutral pH. Enzymatic activity was greatly stimulated by NaCl and CaCl2 with maximum activity obtained in the presence of 0.1 M NaCl and 0.003 M to 0.005 M CaCl2. The activity was stimulated by SH-compounds and was inhibited by SH-reactants.The enzyme is an N-acetylhexosaminidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号