首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Recent studies have demonstrated that an apparently homogeneous preparation of an α-1,4-d-endopolygalacturonic acid lyase (EC 4.2.2.2) isolated from the phytopathogenic bacterium Erwinia carotovora induced phytoalexin accumulation in cotyledons of soybean (Glycine max [L.] Merr. cv Wayne) and that this pectin-degrading enzyme released heat-stable elicitors of phytoalexins from soybean cell walls, citrus pectin, and sodium polypectate (KR Davis et al. 1984 Plant Physiol 74: 52-60). The present paper reports the purification, by anion-exchange chromatography on QAE-Sephadex columns followed by gel-permeation chromatography on a Bio-Gel P-6 column, of the two fractions with highest specific elicitor activity present in a crude elicitor-preparation obtained by lyase treatment of sodium polypectate. Structural analysis of the fraction with highest specific elicitor activity indicated that the major, if not only, component was a decasaccharide of α-1,4-d-galactosyluronic acid that contained the expected product of lyase cleavage, 4-deoxy-β-l-5-threohexopyranos-4-enyluronic acid (4,5-unsaturated galactosyluronic acid), at the nonreducing terminus. This modified decagalacturonide fraction exhibited half-maximum and maximum elicitor activity at 1 microgram/cotyledon (6 micromolar) and 5 micrograms/cotyledon (32 micromolar) galactosyluronic acid equivalents, respectively. Reducing 90 to 95% of the carboxyl groups of the galactosyluronic acid residues abolished the elicitor activity of the decagalacturonide fraction. The second most elicitor-active fraction contained mostly undeca-α-1,4-d-galactosyluronic acid that contained 4,5-unsaturated galactosyluronic acid at the nonreducing termini. This fraction exhibited half-maximum and maximum elicitor activity at approximately 3 micrograms/cotyledon (17 micromolar) and 6 micrograms/cotyledon (34 micromolar) galactosyluronic acid equivalents, respectively. These results confirm and extend previous observations that oligogalacturonides derived from the pectic polysaccharides of plant cell walls can serve as regulatory molecules that induce phytoalexin accumulation in soybean. These results are consistent with the hypothesis that oligogalacturonides play a role in disease resistance in plants.  相似文献   

2.
Heat-labile elicitors of phytoalexin accumulation in soybeans (Glycine max L. Merr. cv Wayne) were detected in culture filtrates of Erwinia carotovora grown on a defined medium containing citrus pectin as the sole carbon source. The heat-labile elicitors were highly purified by cation-exchange chromatography on a CM-Sephadex (C-50) column, followed by agarose-affinity chromatography on a Bio-Gel A-0.5m gel filtration column. The heat-labile elicitor activity co-purified with two α-1,4-endopolygalacturonic acid lyases (EC 4·2·2·2). Endopolygalacturonic acid lyase activity appeared to be necessary for elicitor activity because heat-inactivated enzyme preparations did not elicit phytoalexins. The purified endopolygalacturonic acid lyases elicited pterocarpan phytoalexins at microbial-inhibitory concentrations in the soybean-cotyledon bioassay when applied at a concentration of 55 nanograms per milliliter (1 × 10−9 molar). One of these lyases released heat-stable elicitors from soybean cell walls, citrus pectin, and sodium polypectate. The heat-stable elicitor-active material solubilized from soybean cell walls by the lyase was composed of at least 90% (w/v) uronosyl residues. These results demonstrate that endopolygalacturonic acid lyase elicits phytoalexin accumulation by releasing fragments from pectic polysaccharides in plant cell walls.  相似文献   

3.
Three unique classes of carbohydrates were isolated from the hyphal cell walls of Phytophthora megasperma f.sp. glycinea (Pmg) and compared with other substances for their activity as elicitors of the phytoalexin glyceollin in soybean tissues. Glucomannans extracted from cell walls with soybean β-1,3-endoglucanase were purified and proved to be the most active elicitors yet reported. They were approximately 10 times more active in soybean cotyledons than the heterogeneous β-glucan elicitor fraction extracted from Pmg walls. In addition, the glucomannan fraction gave race-specific elicitor activity in soybean hypocotyls. Pronase was found to be a suitable reagent for the mild extraction of glycopeptides from Pmg cell walls. All of the carbohydrates isolated from Pmg cell walls possessed significant elicitor activity, but other glucans, a glucomannan and mannan from other sources, were much less active. Chitin and chitosan, reported to function as elicitors in other plants, had low activity in soybean cotyledons. Arachidonic acid was inactive, despite its previously observed elicitor activity in potato tubers. The results indicated that, for Pmg, the carbohydrate elicitor most probably involved in the initiation of phytoalexinmediated defense during fungus infection of soybean plants is the glucomannan fraction liberated by endoglucanase.  相似文献   

4.
The ability of β-glucosylase I, a soybean cell wall β-glucosyl hydrolase, to degrade elicitors of phytoalexin accumulation was studied. Extensive β-glucosylase I treatment of the glucan elicitor isolated from the mycelial walls of Phytophthora megasperma var. sojae results in hydrolysis of 77% of the glucosidic bonds of the elicitor and destruction of 94% of its activity. Soybean cell walls contain some additional factor, probably one or more additional enzymes, which can assist β-glucosylase I in hydrolyzing the glucan elicitor. This was demonstrated by the more rapid hydrolysis of the glucan elicitor by a mixture of soybean cell wall enzymes (containing β-glucosylase I). In a single treatment, the mixture of cell wall enzymes hydrolyzed 91% of the glucosidic bonds and destroyed 85% of the activity of the elicitor. The enzymes from soybean cell walls will also hydrolyze elicitor-active oligoglucosides prepared from the mycelial walls of Phytophthora megasperma var. sojae. The active oligoglucosides are more susceptible than the glucan elicitor to hydrolysis by these enzymes. The mixture of cell wall enzymes or β-glucosylase I, by itself, hydrolyzes more than 96% of the glucosidic bonds and destroys more than 99% of the activity of the oligoglucoside elicitor. Two possible advantages for the existence of these enzymes in the walls of soybean cells are discussed.  相似文献   

5.
β-1,4-Galactans are abundant polysaccharides in plant cell walls, which are generally found as side chains of rhamnogalacturonan I. Rhamnogalacturonan I is a major component of pectin with a backbone of alternating rhamnose and galacturonic acid residues and side chains that include α-1,5-arabinans, β-1,4-galactans, and arabinogalactans. Many enzymes are required to synthesize pectin, but few have been identified. Pectin is most abundant in primary walls of expanding cells, but β-1,4-galactan is relatively abundant in secondary walls, especially in tension wood that forms in response to mechanical stress. We investigated enzymes in glycosyltransferase family GT92, which has three members in Arabidopsis thaliana, which we designated GALACTAN SYNTHASE1, (GALS1), GALS2 and GALS3. Loss-of-function mutants in the corresponding genes had a decreased β-1,4-galactan content, and overexpression of GALS1 resulted in plants with 50% higher β-1,4-galactan content. The plants did not have an obvious growth phenotype. Heterologously expressed and affinity-purified GALS1 could transfer Gal residues from UDP-Gal onto β-1,4-galactopentaose. GALS1 specifically formed β-1,4-galactosyl linkages and could add successive β-1,4-galactosyl residues to the acceptor. These observations confirm the identity of the GT92 enzyme as β-1,4-galactan synthase. The identification of this enzyme could provide an important tool for engineering plants with improved bioenergy properties.  相似文献   

6.
A survey of the pectic content of nonlignified monocot cell walls   总被引:3,自引:1,他引:2       下载免费PDF全文
The primary cell walls of graminaceous monocots were known to have a low content of pectin compared to those of dicots, but it was uncertain how widespread this feature was within the monocots as a whole. Nonlignified cell walls were therefore prepared from 33 monocot species for determination of their pectin content. It was not possible to solubilize intact pectins quantitatively from the cell walls, and the pectin content was assessed from three criteria: the total uronic acid content; the content of α-(1,4′)-D-galacturonan isolated by partial hydrolysis and characterized by electrophoresis and degradation by purified polygalacturonase; and the proportion of neutral residues in a representative pectic fraction solubilized by sequential β-elimination and N,N,NN′-cyclohexanediaminetetraacetic acid extraction. Low galacturonan contents were restricted to species from the Gramineae, Cyperaceae, Juncaceae, and Restionaceae. Other species related to these had intermediate galacturonan contents, and the remainder of the monocots examined had high galacturonan contents comparable with those of dicots. The other criteria of pectin content showed the same pattern.  相似文献   

7.
An extract of frozen and thawed soybean (Glycine max L. Merr. cv. Wayne) stems is active, in wounded soybean cotyledons, as a heat-labile elicitor of phytoalexins. The elicitor activity of the extract is destroyed by heating to 95°C for 10 minutes. The fraction that contains heat-labile elicitor activity releases heat-stable elicitor-active molecules from purified soybean cell walls. Heat-labile elicitor activity voids a Bio-Gel P-6 column and can be absorbed onto and eluted from a DEAE Sephadex ion exchange column. Using the cotyledon phytoalexin elicitor assay, maximum heatlabile elicitor activity was obtained when soybean stems were extracted with acetate buffer at pH 6.0. Addition of 1 millimolar CaCl2 increased apparent heat-labile elicitor activity. The heat-labile elicitor stimulated maximum phytoalexin accumulation when applied to cotyledons immediately after the cotyledons were cut. Partially purified stem extracts lost heat-labile elicitor activity during storage for several days at 3°C. The possible role of a heat-labile elicitor in stimulation of phytoalexin accumulation by both abiotic and biotic elicitors is discussed.  相似文献   

8.
Two enzymes from soybean (Glycine max L. Merr. cv Harosoy 63) cotyledons released elicitor-active carbohydrates from cell walls of the phytopathogenic fungus Phytophthora megasperma f.sp. glycinea. They were identified as isoenzymes of β-1,3-endoglucanase (EC 3.2.1.39) with isoelectric points of pH 8.7 and 10.5. The pI 10.5 enzyme was extracted in the greatest amount and was isolated as a homogeneous protein of about 33,000 daltons as determined by gel filtration and sodium dodecyl sulfategel electrophoresis. The purified enzymes hydrolyzed several β-1,3-glucans in a strictly random manner, but degraded neither β-1,6- nor β-1,4-glucans.  相似文献   

9.
The partial purification and characterization of cell wall polysaccharides isolated from suspension-cultured Douglas fir (Pseudotsuga menziesii) cells are described. Extraction of isolated cell walls with 1.0 m LiCl solubilized pectic polysaccharides with glycosyl-linkage compositions similar to those of rhamnogalacturonans I and II, pectic polysaccharides isolated from walls of suspension-cultured sycamore cells. Treatment of LiCl-extracted Douglas fir walls with an endo-α-1,4-polygalacturonase released only small, additional amounts of pectic polysaccharide, which had a glycosyl-linkage composition similar to that of rhamnogalacturonan I. Xyloglucan oligosaccharides were released from the endo-α-1,4-polygalacturonase-treated walls by treatment with an endo-β-1,4-glucanase. These oligosaccharides included hepta- and nonasaccharides similar or identical to those released from sycamore cell walls by the same enzyme, and structurally related octa- and decasaccharides similar to those isolated from various angiosperms. Finally, additional xyloglucan and small amounts of xylan were extracted from the endo-β-1,4-glucanase-treated walls by 0.5 n NaOH. The xylan resembled that extracted by NaOH from dicot cell walls in that it contained 2,4- but not 3,4-linked xylosyl residues. In this study, a total of 15% of the cell wall was isolated as pectic material, 10% as xyloglucan, and less than 1% as xylan. The noncellulosic polysaccharides accounted for 26% of the cell walls, cellulose for 23%, protein for 34%, and ash for 5%, for a total of 88% of the cell wall. The cell walls of Douglas fir were more similar to dicot (sycamore) cell walls than to those of graminaceous monocots, because they had a predominance of xyloglucan over xylan as the principle hemicellulose and because they possessed relatively large amounts of rhamnogalacturonan-like pectic polysaccharides.  相似文献   

10.
Basse CW  Boller T 《Plant physiology》1992,98(4):1239-1247
Induction of ethylene, an early symptom of the stress response in tomato (Lycopersicon esculentum [L.] Mill) cells, was used as a bioassay to purify elicitor activity from yeast extract. The purified elicitor preparation consisted of small glycopeptides (mean relative molecular weight of approximately 2500) and induced ethylene biosynthesis and phenylalanine ammonia-lyase activity half-maximally at 15 nanograms per milliliter. Elicitor activity was partially abolished by pronase and almost completely by endo-β-N-acetylglucosaminidase H, α-mannosidase, or periodate. The oligosaccharides released upon treatment with endo-β-N-acetylglucosaminidase H competitively inhibited the elicitor activity of the glycopeptides. This suppressor activity was abolished by periodate oxidation and α-mannosidase treatment. The suppressors were chromatographically separated into four active fractions with sizes corresponding to 7 to 10 monosaccharides. They consisted predominantly of mannose and contained also N-acetylglucosamine and glucose. The suppressors had no effect on the response of the tomato cells to a different elicitor, derived from cell walls of Phytophthora megasperma f. sp. glycinea. This strongly suggests that different recognition sites exist for different elicitors in tomato cells, and that the oligosaccharide suppressors act specifically on the perception of just one elicitor. The hypothesis is put forward that the suppressors bind to one of the elicitor recognition sites nonproductively, i.e. without producing a signal, thereby preventing induction of the stress responses by the corresponding elicitor.  相似文献   

11.
Cell suspension cultures of parsley (Petroselinum crispum) accumulated coumarin phytoalexins and exhibited increased β-1,3-glucanase activity when treated with either a purified α-1,4-d-endopolygalacturonic acid lyase from Erwinia carotovora or oligogalacturonides solubilized from parsley cell walls by endopolygalacturonic acid lyase. Coumarin accumulation induced by the plant cell wall elicitor was preceded by increases in the activities of phenylalanine ammonia lyase (PAL), 4-coumarate:CoA ligase (4CL) and S-adenosyl-l-methionine:xanthotoxol O-methyltransferase (XMT). The time courses for the changes in these three enzyme activities were similar to those observed in cell cultures treated with a fungal glucan elicitor. The plant cell wall elicitor was found to act synergistically with the fungal glucan elicitor in the induction of coumarin phytoalexins. As much as a 10-fold stimulation in coumarin accumulation above the calculated additive response was observed in cell cultures treated with combinations of plant and fungal elicitors. The synergistic effect was also observed for the induction of PAL, 4CL, and XMT activities. These results demonstrate that plant cell wall elicitors induce at least two distinct biochemical responses in parsley cells and further support the role of oligogalacturonides as important regulators of plant defense.  相似文献   

12.
13.
14.
Considerable information has been obtained about the primary structures of suspension-cultured sycamore (Acer pseudoplatanus) cell-wall pectic polysaccharides, i.e. rhamnogalacturonan I, rhamnogalacturonan II, and homogalacturonan. However, these polysaccharides, which are solubilized from the walls by endo-α-1,4-polygalacturonase, account for only about half of the pectic polysaccharides known to be present in sycamore cell walls. We now report that, after exhaustive treatment with endo-α-1,4-polygalacturonase, additional pectic polysaccharides were extracted from sycamore cell walls by treatment with Na2CO3 at 1 and 22°C. These previously uncharacterized polysaccharides accounted for ~4% of the cell wall. Based on the glycosyl and glycosyl-linkage compositions and the nature of the products obtained by treating the quantitatively predominant NaCO3-extracted polysaccharides with lithium metal dissolved in ethylenediamine, the polysaccharides were found to strongly resemble rhamnogalacturonan I. However, unlike rhamnogalacturonan I that characteristically had equal amounts of 2- and 2,4-linked rhamnosyl residues in its backbone, the polysaccharides extracted in Na2CO3 at 1°C had markedly disparate ratios of 2- to 2,4-linked rhamnosyl residues. We concluded that polysaccharides similar to rhamnogalacturonan I but with different degrees of branching are present in the walls of suspension-cultured sycamore cells.  相似文献   

15.
Driselase-digestion of cell walls from suspension-cultures of spinach (Spinacia oleracea L.), followed by anion-exchange chromatography, gel-permeation chromatography, preparative paper chromatography and preparative paper electrophoresis, yielded ten uronic acid-containing products in addition to free galacturonic acid (GalA). These included 4-O-methylglucuronic acid, alpha-L-rhamnopyranosyl-(1-->4)-D-glucuronic acid and several oligosaccharides containing GalA residues. The structures were unambiguously determined by a combination of 1- and 2-dimensional NMR spectroscopic techniques. Five of the six homogalacturonan-derived oligosaccharides purified contained 3-O-acetyl-GalA residues; however, methyl-esterified GalA residues occurred adjacent to both 2-O-acetyl-GalA and 3-O-acetyl-GalA residues. An acetylated, rhamnogalacturonan-I-derived oligosaccharide that was purified also contained 3-O-acetyl-GalA residues. Taken together with published data, our findings indicate considerable diversity in the patterns of pectin esterification. The implications for the action of pectin esterases are discussed.  相似文献   

16.
Pectins are a major dietary nutrient source for the human gut microbiota. The prominent gut microbe Bacteroides thetaiotaomicron was recently shown to encode the founding member (BT1017) of a new family of pectin methylesterases essential for the metabolism of the complex pectin rhamnogalacturonan-II (RG-II). However, biochemical and structural knowledge of this family is lacking. Here, we showed that BT1017 is critical for the metabolism of an RG-II–derived oligosaccharide ΔBT1017oligoB generated by a BT1017 deletion mutant (ΔBT1017) during growth on carbohydrate extract from apple juice. Structural analyses of ΔBT1017oligoB using a combination of enzymatic, mass spectrometric, and NMR approaches revealed that it is a bimethylated nonaoligosaccharide (GlcA-β1,4-(2-O-Me-Xyl-α1,3)-Fuc-α1,4-(GalA-β1,3)-Rha-α1,3-Api-β1,2-(Araf-α1,3)-(GalA-α1,4)-GalA) containing components of the RG-II backbone and its side chains. We showed that the catalytic module of BT1017 adopts an α/β-hydrolase fold, consisting of a central twisted 10-stranded β-sheet sandwiched by several α-helices. This constitutes a new fold for pectin methylesterases, which are predominantly right-handed β-helical proteins. Bioinformatic analyses revealed that the family is dominated by sequences from prominent genera of the human gut microbiota, including Bacteroides and Prevotella. Our re-sults not only highlight the critical role played by this family of enzymes in pectin metabolism but also provide new insights into the molecular basis of the adaptation of B. thetaiotaomicron to the human gut.  相似文献   

17.
An elicitor of phytoalexin production in soybean (Glycine max L.) tissues was isolated from purified Phytophthora megasperma var. sojae mycelial walls by a heat treatment similar to that used to solubilize the surface antigens from the cell walls of Saccharomyces cerevisiae. The wall-released elicitor is a discrete, minor portion of the P. megasperma var. sojae mycelial walls. The elicitor released from the mycelial walls was divided by diethylaminoethylcellulose and concanavalin A-Sepharose chromatography into four fractions, each having different chemical characteristics. The four fractions were obtained from each of the three races of P. megasperma var. sojae. The corresponding fractions from each of the three races are very similar in composition and elicitor activity. The results suggest that the elicitor activity of each fraction resides in the glucan component of the fraction. Evidence is presented to demonstrate that the elicitors are not race-specific and that the accumulation of glyceollin is not sufficient to account for race-specific resistance.  相似文献   

18.
An ultrastructural and cytochemical investigation of the development of Rigidoporus lignosus, a white-rot fungus inoculated into wood blocks, was carried out to gain better insight into the structure and role of the extracellular sheaths produced by this fungus during wood degradation. Fungal sheaths had a dense or loose fibrillar appearance and were differentiated from the fungal cell wall early after wood inoculation. Close association between extracellular fibrils and wood cell walls was observed at both early and advanced stages of wood alteration. Fungal sheaths were often seen deep in host cell walls, sometimes enclosing residual wood fragments. Specific gold probes were used to investigate the chemical nature of R. lignosus sheaths. While labeling of chitin, pectin, β-1,4- and β-1,3-glucans, β-glucosides, galactosamine, mannose, sialic acid, RNA, fucose, and fimbrial proteins over fungal sheaths did not succeed, galactose residues and laccase (a fungal phenoloxidase) were found to be present. The positive reaction of sheaths with the PATAg test indicates that polysaccharides such as β-1,6-glucans are important components. Our data suggest that extracellular sheaths produced by R. lignosus during host cell colonization play an important role in wood degradation. Transportation of lignin-degrading enzymes by extracellular fibrils indicates that alteration of plant polymers may occur within fungal sheaths. It is also proposed that R. lignosus sheaths may be involved in recognition mechanisms in fungal cell-wood surface interactions.  相似文献   

19.
The cell walls of barley (Hordeum vulgare var. Himalaya) aleurone layers undergo extensive degradation during the tissue's response to gibberellic acid. Previous work had shown that these cell walls consist almost entirely of arabinoxylan. In this study we show that gibberellic acid stimulates endo-β-1,4-xylanase activity in isolated aleurone layers. In addition, gibberellic acid enhances the activity of two glycosidases: β-xylopyranosidase and α-arabinofuranosidase. No gibberellic acid-stimulated cellulase activity was detected. Germination studies showed a similar pattern of enzyme development in intact seeds.  相似文献   

20.
This paper reports on the effects of both reducing and nonreducing transgalactooligosaccharides (TOS) comprising 2 to 8 residues on the growth of Bifidobacterium adolescentis DSM 20083 and on the production of a novel β-galactosidase (β-Gal II). In cells grown on TOS, in addition to the lactose-degrading β-Gal (β-Gal I), another β-Gal (β-Gal II) was detected and it showed activity towards TOS but not towards lactose. β-Gal II activity was at least 20-fold higher when cells were grown on TOS than when cells were grown on galactose, glucose, and lactose. Subsequently, the enzyme was purified from the cell extract of TOS-grown B. adolescentis by anion-exchange chromatography, adsorption chromatography, and size-exclusion chromatography. β-Gal II has apparent molecular masses of 350 and 89 kDa as judged by size-exclusion chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, respectively, indicating that the enzyme is active in vivo as a tetramer. β-Gal II had an optimal activity at pH 6 and was not active below pH 5. Its optimum temperature was 35°C. The enzyme showed highest Vmax values towards galactooligosaccharides with a low degree of polymerization. This result is in agreement with the observation that during fermentation of TOS, the di- and trisaccharides were fermented first. β-Gal II was active towards β-galactosyl residues that were 1→4, 1→6, 1→3, and 1↔1 linked, signifying its role in the metabolism of galactooligosaccharides by B. adolescentis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号