首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells respond to mitogenic or stress stimuli by the rapid induction of immediate-early (IE) genes, which occurs concomitantly with the phosphorylation of histone H3 and the high-mobility-group protein HMG-14. In mammalian cells this response is mediated via ERK and p38 MAP kinase pathways, but the identity of the downstream kinase that phosphorylates histone H3 has been contentious. One study, based on Coffin- Lowry cells defective in RSK2, reported that RSK2 was the histone H3 kinase, while a second study, based on the efficiency of RSKs and MSKs as in vitro histone H3 kinases, and their relative susceptibility to kinase inhibitors, suggested that MSKs were responsible. We show here that the histone H3 phosphorylation response is normal in Coffin-Lowry cells. Further more, we show that histone H3 and HMG-14 phosphorylation is severely reduced or abolished in mice lacking MSK1 and MSK2. We also show that, despite this, histone H3 acetylation is unimpaired in these cells and that IE genes can be induced, although at a reduced efficiency. We conclude that MSKs are the major kinases for histone H3 and HMG-14 in response to mitogenic and stress stimuli in fibroblasts.  相似文献   

2.
3.
We have studied the role of individual histone N-termini and the phosphorylation of histone H3 in chromosome condensation. Nucleosomes, reconstituted with histone octamers containing different combinations of recombinant full-length and tailless histones, were used as competitors for chromosome assembly in Xenopus egg extracts. Nucleosomes reconstituted with intact octamers inhibited chromosome condensation as efficiently as the native ones, while tailless nucleosomes were unable to affect this process. Importantly, the addition to the extract of particles containing only intact histone H2B strongly interfered with chromosome formation while such an effect was not observed with particles lacking the N-terminal tail of H2B. This demonstrates that the inhibition effect observed in the presence of competitor nucleosomes is mainly due to the N-terminus of this histone, which, therefore, is essential for chromosome condensation. Nucleosomes in which all histones but H3 were tailless did not impede chromosome formation. In addition, when competitor nucleosome particles were reconstituted with full-length H2A, H2B and H4 and histone H3 mutated at the phosphorylable serine 10 or serine 28, their inhibiting efficiency was identical to that of the native particles. Hence, the tail of H3, whether intact or phosphorylated, is not important for chromosome condensation. A novel hypothesis, termed 'the ready production label' was suggested to explain the role of histone H3 phosphorylation during cell division.  相似文献   

4.
Haspin‐mediated phosphorylation of histone H3 at threonine 3 (H3T3ph) promotes proper deposition of Aurora B at the inner centromere to ensure faithful chromosome segregation in metazoans. However, the function of H3T3ph remains relatively unexplored in plants. Here, we show that in maize (Zea mays L.) mitotic cells, H3T3ph is concentrated at pericentromeric and centromeric regions. Additional weak H3T3ph signals occur between cohered sister chromatids at prometaphase. Immunostaining on dicentric chromosomes reveals that an inactive centromere cannot maintain H3T3ph at metaphase, indicating that a functional centromere is required for H3T3 phosphorylation. H3T3ph locates at a newly formed centromeric region that lacks detectable CentC sequences and strongly reduced CRM and ZmBs repeat sequences at metaphase II. These results suggest that centromeric localization of H3T3ph is not dependent on centromeric sequences. In maize meiocytes, H3T3 phosphorylation occurs at the late diakinesis and extends to the entire chromosome at metaphase I, but is exclusively limited to the centromere at metaphase II. The H3T3ph signals are absent in the afd1 (absence of first division) and sgo1 (shugoshin) mutants during meiosis II when the sister chromatids exhibit random distribution. Further, we show that H3T3ph is mainly located at the pericentromere during meiotic prophase II but is restricted to the inner centromere at metaphase II. We propose that this relocation of H3T3ph depends on tension at the centromere and is required to promote bi‐orientation of sister chromatids.  相似文献   

5.
Epidermal growth factor induction of c-jun expression requires ATF1 and MEF2 sites in the c-jun promoter. We find that activation of the c-jun promoter through the ATF1 site requires phosphorylation of ATF1 at serine 63. A serine 63 to alanine mutation of ATF1 acts to block epidermal growth factor (EGF) induction of a transfected c-jun gene. ATF1 can be phosphorylated by mitogen- and stress-activated protein kinase 1 (MSK1), which is activated by EGF and ERK1/2. Kinase-dead MSK1 mutants blocked EGF induction of a transfected c-jun gene suggesting that MSK1 or a similar family member is required for induced c-jun expression. Use of the MEK1 inhibitor U0126 and dominant negative MEK1 further showed that MSK1 activation and c-jun induction require the ERK pathway. In contrast, a JNK inhibitor blocked EGF induction of c-jun expression but not ATF1 phosphorylation. These results show that the two MAPK pathways, ERK and JNK, are required for EGF-induced c-jun expression and that the ERK pathway acts through downstream phosphorylation of ATF1.  相似文献   

6.
Nerve growth factor (NGF) induces survival and differentiation of the neural crest-derived PC12 cell line. Caveolae are cholesterol-enriched, caveolin-containing plasma membrane microdomains involved in vesicular transport and signal transduction. Here we demonstrate the presence of caveolae in PC12 cells and their involvement in NGF signaling. Our results showed the expression of caveolin-1 by Western blot and confocal immuno-microscopy. The presence of plasma membrane caveolae was directly shown by rapid-freeze deep-etching electron microscopy. Moreover, combined deep-etching and immunogold techniques revealed the presence of the NGF receptor TrkA in the caveolae of PC12 cells. These data together with the cofractionation of Shc, Ras, caveolin, and TrkA in the caveolae fraction supported a role for these plasma membrane microdomains in NGF signaling. To approach this hypothesis, caveolae were disrupted by treatment of PC12 cells with cholesterol binding drugs. Either filipin or cyclodextrin treatment increased basal levels of MAPK phosphorylation. In contrast, pretreatment of PC12 cells with these drugs inhibited the NGF- but not the epidermal growth factor-induced MAPK phosphorylation without affecting the TrkA autophosphorylation. Taken together, our results demonstrate the presence of caveolae in PC12 cells, which contain the high affinity NGF receptor TrkA, and the specific involvement of these cholesterol-enriched plasma membrane microdomains in the propagation of the NGF-induced signal.  相似文献   

7.
Ceramide has been implicated as an intermediate in the signal transduction of several cytokines including tumor necrosis factor (TNF). Both ceramide and TNF activate a wide variety of cellular responses, including NF-kappaB, AP-1, JNK, and apoptosis. Whether ceramide transduces these signals through the same mechanism as TNF is not known. In the present study we investigated the role of the T cell-specific tyrosine kinase p56(lck) in ceramide- and TNF-mediated cellular responses by comparing the responses of Jurkat T cells with JCaM1 cells, isogeneic Lck-deficient T cells. Treatment with ceramide activated NF-kappaB, degraded IkappaBalpha, and induced NF-kappaB-dependent reporter gene expression in a time-dependent manner in Jurkat cells but not in JCaM1 cells, suggesting the critical role of p56(lck) kinase. These effects were specific to ceramide, as activation of NF-kappaB by phorbol 12-myristate 13-acetate, lipopolysaccharide, H(2)O(2), and TNF was minimally affected. p56(lck) was also found to be required for ceramide-induced but not TNF-induced AP-1 activation. Similarly, ceramide activated the protein kinases JNK and mitogen-activated protein kinase kinase in Jurkat cells but not in JCaM1 cells. Ceramide also induced cytotoxicity and activated caspases and reactive oxygen intermediates in Jurkat cells but not in JCaM1 cells. Ceramide activated p56(lck) activity in Jurkat cells. Moreover, the reconstitution of JCaM1 cells with p56(lck) tyrosine kinase reversed the ceramide-induced NF-kappaB activation and cytotoxicity. Overall our results demonstrate that p56(lck) plays a critical role in the activation of NF-kappaB, AP-1, JNK, and apoptosis by ceramide but has minimal or no role in activation of these responses by TNF.  相似文献   

8.
Src family kinases (SFKs) have been implicated as important regulators of ligand-induced cellular responses including proliferation, survival, adhesion and migration. Analysis of SFK function has been impeded by extensive redundancy between family members. We have generated mouse embryos harboring functional null mutations of the ubiquitously expressed SFKs Src, Yes and Fyn. This triple mutation leads to severe developmental defects and lethality by E9.5. To elucidate the molecular mechanisms underlying this phenotype, SYF cells (deficient for Src, Yes and Fyn) were derived and tested for their ability to respond to growth factors or plating on extracellular matrix. Our studies reveal that while Src, Yes and Fyn are largely dispensable for platelet-derived growth factor (PDGF)-induced signaling, they are absolutely required to mediate specific functions regulated by extracellular matrix proteins. Fibronectin-induced tyrosine phosphorylation of focal adhesion proteins, including the focal adhesion kinase FAK, was nearly eliminated in the absence of Src, Yes and Fyn. Furthermore, consistent with previous reports demonstrating the importance of FAK for cell migration, SYF cells displayed reduced motility in vitro. These results demonstrate that SFK activity is essential during embryogenesis and suggest that defects observed in SYF triple mutant embryos may be linked to deficiencies in signaling by extracellular matrix-coupled receptors.  相似文献   

9.
N-terminal tail phosphorylation of histone H3 plays an important role in gene expression, chromatin remodeling, and chromosome condensation. Phosphorylation of histone H3 at serine 10 was shown to be mediated by RSK2, mitogen- and stress-activated protein kinase-1 (MSK1), and mitogen-activated protein kinases depending on the specific stimulation or stress. Our previous study showed that mitogen-activated protein kinases MAP kinases are involved in ultraviolet B-induced phosphorylation of histone H3 at serine 28 (Zhong, S., Zhong, Z., Jansen, J., Goto, H., Inagaki, M., and Dong, Z., J. Biol. Chem. 276, 12932-12937). However, downstream effectors of MAP kinases remain to be identified. Here, we report that H89, a selective inhibitor of the nucleosomal response, totally inhibits ultraviolet B-induced phosphorylation of histone H3 at serine 28. H89 blocks MSK1 activity but does not inhibit ultraviolet B-induced activation of MAP kinases p70/85(S6K), p90(RSK), Akt, and protein kinase A. Furthermore, MSK1 markedly phosphorylated serine 28 of histone H3 and chromatin in vitro. Transfection experiments showed that an N-terminal mutant MSK1 or a C-terminal mutant MSK1 markedly blocked MSK1 activity. Compared with wild-type MSK1, cells transfected with N-terminal or C-terminal mutant MSK1 strongly blocked ultraviolet B-induced phosphorylation of histone H3 at serine 28 in vivo. These data illustrate that MSK1 mediates ultraviolet B-induced phosphorylation of histone H3 at serine 28.  相似文献   

10.
Although signaling by death receptors involves the recruitment of common components into their death-inducing signaling complexes (DISCs), apoptosis susceptibility of various tumor cells to each individual receptor differs quite dramatically. Recently it was shown that, besides caspase-8, caspase-10 is also recruited to the DISCs, but its function in death receptor signaling remains unknown. Here we show that expression of caspase-10 sensitizes MCF-7 breast carcinoma cells to TRAIL- but not tumor necrosis factor (TNF)-induced apoptosis. This sensitization is most obvious at low TRAIL concentrations or when apoptosis is assessed at early time points. Caspase-10-mediated sensitization for TRAIL-induced apoptosis appears to be dependent on caspase-3, as expression of caspase-10 in MCF-7/casp-3 cells but not in caspase-3-deficient MCF-7 cells overcomes TRAIL resistance. Interestingly, neutralization of TRAIL receptor 2 (TRAIL-R2), but not TRAIL-R1, impaired apoptosis in a caspase-10-dependent manner, indicating that caspase-10 enhances TRAIL-R2-induced cell death. Furthermore, whereas processing of caspase-10 was delayed in TNF-treated cells, TRAIL triggered a very rapid activation of caspase-10 and -3. Therefore, we propose a model in which caspase-10 is a crucial component during TRAIL-mediated apoptosis that in addition actively requires caspase-3. This might be especially important in systems where only low TRAIL concentrations are supplied that are not sufficient for the fast recruitment of caspase-8 to the DISC.  相似文献   

11.
12.
Histone H3 is the core protein of the nucleosome. Phosphorylation of H3 involves immediate early gene expression, chromatin remodeling, and chromosome condensation during mitosis. Very recently, Rsk2 or MSK1 kinase-mediated phosphorylation of H3 at serine 10 was reported. In the present study, we show that both ERKs and p38 kinase may mediate ultraviolet B-induced phosphorylation of H3 at serine 10. PD 98059, a MEK1 inhibitor, and SB 202190, a p38 kinase inhibitor, efficiently inhibited ultraviolet B-induced phosphorylation of H3. Phosphorylation of H3 was also inhibited in cells expressing dominant negative mutant (DNM) ERK2 and DNM p38 kinase. In contrast, no inhibition of H3 phosphorylation in Jnk1 or Jnk2 knockout cells (Jnk1(-/-) or Jnk2(-/-)) and cells expressing DNM JNK1 was observed. More importantly, incubation of active ERK2 or p38 kinase with H3 protein resulted in phosphorylation of H3 at serine 10 in vitro. These results suggest that ERK and p38 kinase are at least two important mediators of phosphorylation of H3 at serine 10.  相似文献   

13.
Chromosome condensation at mitosis correlates with the activation of p34cdc2 kinase, the hyperphosphorylation of histone H1 and the phosphorylation of histone H3. Chromosome condensation can also be induced by treating interphase cells with the protein phosphatase 1 and 2A inhibitors okadaic acid and fostriecin. Mouse mammary tumour FT210 cells grow normally at 32 degrees C, but at 39 degrees C they lose p34cdc2 kinase activity and arrest in G2 because of a temperature-sensitive lesion in the cdc2 gene. The treatment of these G2-arrested FT210 cells with fostriecin or okadaic acid resulted in full chromosome condensation in the absence of p34cdc2 kinase activity or histone H1 hyperphosphorylation. However, phosphorylation of histones H2A and H3 was strongly stimulated, partly through inhibition of histone H2A and H3 phosphatases, and cyclins A and B were degraded. The cells were unable to complete mitosis and divide. In the presence of the protein kinase inhibitor starosporine, the addition of fostriecin did not induce histone phosphorylation and chromosome condensation. The results show that chromosome condensation can take place without either the histone H1 hyperphosphorylation or the p34cdc2 kinase activity normally associated with mitosis, although it requires a staurosporine-sensitive protein kinase activity. The results further suggest that protein phosphatases 1 and 2A may be important in regulating chromosome condensation by restricting the level of histone phosphorylation during interphase, thereby preventing premature chromosome condensation.  相似文献   

14.
张冰  邱礽  阚云超 《昆虫学报》2021,64(3):302-308
【目的】探究组蛋白H3Ser10磷酸化(H3Ser10ph)在家蚕Bombyx mori精母细胞减数分裂中的功能。【方法】解剖并分离家蚕4龄幼虫至蛹期精巢组织,通过丙烯酰胺凝胶包埋制备处于减数分裂不同时期的精巢组织玻片,以免疫荧光标记检测H3Ser10ph抗体在精母细胞减数分裂不同时期的定位特点。【结果】在家蚕有核精子精母细胞减数分裂过程中,组蛋白H3Ser10的磷酸化发生在粗线期染色体的特定位置,双线期H3Ser10ph信号逐渐减弱,至终变期时在染色体上完全检测不到磷酸化信号。随着细胞周期的进行,磷酸化信号又开始逐渐增强,减数第一次分裂中期时达到最高水平。当细胞进入减数第二次分裂前中期时,染色体臂上的H3Ser10ph信号消失,在靠近纺锤体微管的分裂面处有弥散的H3Ser10ph抗体的信号,减数第二次分裂末期,仅剩余非常微弱的H3Ser10ph信号残留于染色体的特定位置。在无核精子精母细胞减数分裂过程中,在中期I至末期I一直在染色体上有较均一的3Ser10ph信号,后期I时纺锤丝微管与赤道面平行。【结论】组蛋白H3Ser10磷酸化与家蚕有核精子和无核精子精母细胞减数分裂中染色质的动态变化相关。  相似文献   

15.
Histone acetylation and phosphorylation have separately been suggested to affect chromatin structure and gene expression. Here we report that these two modifications are synergistic. Stimulation of mammalian cells by epidermal growth factor (EGF) results in rapid and sequential phosphorylation and acetylation of H3, and these dimodified H3 molecules are preferentially associated with the EGF-activated c-fos promoter in a MAP kinase-dependent manner. In addition, the prototypical histone acetyltransferase Gcn5 displays an up to 10-fold preference for phosphorylated (Ser-10) H3 over nonphosphorylated H3 as substrate in vitro, suggesting that H3 phosphorylation can affect the efficiency of subsequent acetylation reactions. Together, these results illustrate how the addition of multiple histone modifications may be coupled during the process of gene expression.  相似文献   

16.
We have previously shown that in a HEK-293 cell line that overexpresses the C1a isoform of the calcitonin receptor (C1a-HEK), calcitonin induces the tyrosine phosphorylation of the focal adhesion-associated proteins HEF1 (a p130(Cas)-like docking protein), paxillin, and focal adhesion kinase and that it also stimulates the phosphorylation and activation of Erk1 and Erk2. We report here that cell attachment to the extracellular matrix, an intact actin cytoskeleton, and c-Src are absolutely required for the calcitonin-induced phosphorylation of focal adhesion-associated proteins. In contrast to the phosphorylation of paxillin and HEF1 in cells attached to fibronectin-coated dishes, calcitonin failed to stimulate the phosphorylation of paxillin and HEF1 in suspended cells, in cells attached to poly-d-lysine-coated dishes, and in attached cells pretreated with the RGD-containing peptide GRGDS. Overexpression of wild-type c-Src increased calcitonin-induced paxillin and HEF1 phosphorylation, whereas overexpression of kinase-dead Src or Src lacking a functional SH2 domain inhibited the calcitonin-stimulated tyrosine phosphorylation of these proteins. Overexpression of Src lacking the SH3 domain did not affect the calcitonin-induced phosphorylation of paxillin and HEF1. In contrast to the regulation of paxillin and HEF1 phosphorylation, the calcitonin-induced phosphorylation of Erk1 and Erk2 did not appear to involve c-Src and was only partially dependent on cell adhesion to the extracellular matrix and an intact actin cytoskeleton. Furthermore, inhibition of Erk1 and Erk2 phosphorylation had no effect on the calcitonin-induced phosphorylation of paxillin and HEF1. Thus, in C1a-HEK cells, the calcitonin receptor is coupled to the tyrosine phosphorylation of focal adhesion-associated proteins and to Erk1/2 phosphorylation by mechanisms that are in large part independent.  相似文献   

17.
Arsenite is known to be an environmental human carcinogen. However, the mechanism of action of this compound in skin carcinogenesis is not completely clear. Here, we provide evidence that arsenite can induce phosphorylation of histone H3 at serine 10 in a time- and dose-dependent manner in JB6 Cl 41 cells. Arsenite induces phosphorylation of Akt1 at serine 473 and increases Akt1 activity. A dominant-negative mutant of Akt1 inhibits the arsenite-induced phosphorylation of histone H3 at serine 10. Additionally, active Akt1 kinase strongly phosphorylates histone H3 at serine 10 in vitro. The arsenite-induced phosphorylation of histone H3 at serine 10 was almost completely blocked by a dominant-negative mutant of extracellular signal-regulated kinase 2 and the mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor PD98059. N- or C-terminal mutant mitogen- and stress-activated protein kinase 1 or its inhibitor H89 had no effect on arsenite-induced phosphorylation of histone H3 at serine 10 in JB6 Cl 41 cells. However, cells deficient in p90 ribosomal S6 kinase 2 (Rsk2(-/-)) totally block this phosphorylation in a dose- and time-dependent manner. Taken together, these results suggested that arsenite-induced phosphorylation of histone H3 at serine 10 is mediated by Akt1, extracellular signal-regulated kinase 2 and p90 ribosomal S6 kinase 2 but not mitogen- and stress-activated protein kinase 1.  相似文献   

18.
Mitogen-activated protein kinase kinase kinase 3 (MEKK3) plays an essential role in embryonic angiogenesis, but its role in tumor growth and angiogenesis is unknown. In this study, we further investigated the role of MEKK3 in embryonic angiogenesis, tumor angiogenesis, and angiogenic factor production. We found that endothelial cells from Mekk3-deficient embryos showed defects in cell proliferation, apoptosis, and interactions with myocardium in the heart. We also found that MEKK3 is required for angiopoietin-1 (Ang1)-induced p38 and ERK5 activation. To study the role of MEKK3 in tumor growth and angiogenesis, we established both wild-type and Mekk3-deficient tumor-like embryonic stem cell lines and transplanted them subcutaneously into nude mice to assess their ability to grow and induce tumor angiogenesis. Mekk3-deficient tumors developed and grew similarly as control Mekk3 wild-type tumors and were also capable of inducing tumor angiogenesis. In addition, we found no differences in the production of VEGF in Mekk3-deficient tumors or embryos. Taken together, our results suggest that MEKK3 plays a critical role in Ang1/Tie2 signaling to control endothelial cell proliferation and survival and is required for endothelial cells to interact with the myocardium during early embryonic development. However, MEKK3 is not essential for tumor growth and angiogenesis. cardiovascular; mitogen-activated protein kinase; embryonic development  相似文献   

19.
The JIL-1 histone H3S10 kinase in Drosophila localizes specifically to euchromatic interband regions of polytene chromosomes and is enriched 2-fold on the male X chromosome. JIL-1 can be divided into four main domains including an NH(2)-terminal domain, two separate kinase domains, and a COOH-terminal domain. Our results demonstrate that the COOH-terminal domain of JIL-1 is necessary and sufficient for correct chromosome targeting to autosomes but that both COOH- and NH(2)-terminal sequences are necessary for enrichment on the male X chromosome. We furthermore show that a small 53-amino acid region within the COOH-terminal domain can interact with the tail region of histone H3, suggesting that this interaction is necessary for the correct chromatin targeting of the JIL-1 kinase. Interestingly, our data indicate that the COOH-terminal domain alone is sufficient to rescue JIL-1 null mutant polytene chromosome defects including those of the male X chromosome. Nonetheless, we also found that a truncated JIL-1 protein which was without the COOH-terminal domain but retained histone H3S10 kinase activity was able to rescue autosome as well as partially rescue male X polytene chromosome morphology. Taken together these findings indicate that JIL-1 may participate in regulating chromatin structure by multiple and partially redundant mechanisms.  相似文献   

20.
The alkylating DNA-damage agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) induces a form of caspase-independent necroptosis implicating the mitochondrial flavoprotein apoptosis-inducing factor (AIF). Following the activation of PARP-1 (poly(ADP-ribose) polymerase-1), calpains, BID (BH3 interacting domain death agonist), and BAX (Bcl-2-associated X protein), the apoptogenic form of AIF (tAIF) is translocated to the nucleus where, associated with Ser139-phosphorylated histone H2AX (γH2AX), it creates a DNA-degrading complex that provokes chromatinolysis and cell death by necroptosis. The generation of γH2AX is crucial for this form of cell death, as mutation of H2AX Ser139 to Ala or genetic ablation of H2AX abolish both chromatinolysis and necroptosis. On the contrary, reintroduction of H2AX-wt or the phosphomimetic H2AX mutant (H2AX-S139E) into H2AX−/− cells resensitizes to MNNG-triggered necroptosis. Employing a pharmacological approach and gene knockout cells, we also demonstrate in this paper that the phosphatidylinositol-3-OH kinase-related kinases (PIKKs) ATM (ataxia telangiectasia mutated) and DNA-dependent protein kinase (DNA-PK) mediate γH2AX generation and, consequently, MNNG-induced necroptosis. By contrast, H2AX phosphorylation is not regulated by ATR or other H2AX-related kinases, such as JNK. Interestingly, ATM and DNA-PK phosphorylate H2AX at Ser139 in a synergistic manner with different kinetics of activation. Early after MNNG treatment, ATM generates γH2AX. Further, DNA-PK contributes to H2AX Ser139 phosphorylation. In revealing the pivotal role of PIKKs in MNNG-induced cell death, our data uncover a milestone in the mechanisms regulating AIF-mediated caspase-independent necroptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号