首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Activation-induced cell death (AICD) plays a critical role in the maintenance of homeostasis and peripheral tolerance in the immune system, and is mediated by Fas ligand (FasL) expression and the interaction between Fas and FasL. In the present study, we examined the role of the ubiquitin-proteasome system in AICD using T cell hybridoma N3-6-71 cells. The peptidyl aldehyde proteasome inhibitor carbobenzoxyl-Ile-Glu(O-t-butyl)-Ala-leucinal (PSI) blocked T cell receptor (TCR) stimulation-induced apoptosis in the T cell hybridoma. Fas and FasL gene expression and mouse FasL promoter activity following TCR stimulation were suppressed by PSI pretreatment. Deletion or point mutation of the kappaB site in the FasL promoter region did not suppress inducible FasL promoter activity effectively. PSI blocked extracellular signal-regulated kinase (ERK) activity induced by TCR stimulation, but had no effect on c-jun N-terminal kinase activation. ERK activation was essential for FasL expression and AICD. The initial tyrosine phosphorylation steps following TCR stimulation, i.e., phosphorylation of CD3zeta and Vav, were not altered by PSI. These data suggest that the ubiquitin-proteasome system has some regulatory function at an intermediate step between the initial tyrosine phosphorylation steps and ERK activation in AICD.  相似文献   

2.
J Bajorath 《Proteins》1999,35(4):475-482
Fas (CD95), a member of the tumor necrosis factor receptor superfamily, and its ligand (FasL), a tumor necrosis factor-like protein, are intensely studied because their interaction on the cell surface is critical for the induction of programmed cell death (apoptosis) and the regulation of immune responses. The structure and specificity of the extracellular binding domains of Fas and its ligand were studied, in different laboratories, by combining molecular modeling, mutagenesis, and a variety of binding and functional experiments. Residues critical for the receptor-ligand interaction were identified and, in the absence of experimentally determined structures, binding sites and details of the Fas-ligand interactions were predicted. These studies provide an instructive example for the close combination of prediction and experiment and illustrate how insights into the structure and binding characteristics of Fas and its ligand were gradually refined. Discussed methodological aspects are representative of structure-function studies on extracellular domains of other single-path transmembrane proteins.  相似文献   

3.
4.
Activation-induced cell death (AICD) is a well-known mechanism of peripheral T cell tolerance that depends upon an interaction between Fas and Fas ligand (FasL). In this study, we demonstrate that the administration of a soluble form of anti-FasL Ab, FLIM58, results in severe destructive autoimmune exocrinopathy in the murine model of human Sj?gren's syndrome (SS), and we found that an organ-specific autoantigen may play an important role on down-modulation of AICD. A high titer of serum autoantibodies against 120-kDa alpha-fodrin autoantigen was detected in the FLIM58-treated mice, and splenic T cell culture supernatants contained high levels of IFN-gamma. In vitro T cell apoptosis assay indicated that FasL-mediated AICD is down-regulated by autoantigen stimulation in spleen cells from the murine SS model, but not from Fas-deficient MRL/lpr mice and FasL-deficient MRL/gld mice. FasL undergo metalloproteinase-mediated proteolytic processing in their extracellular domains, resulting in the release of soluble trimeric ligands (soluble FasL). We showed that the processing of soluble FasL occurs in autoantigen-specific CD4(+) T cells, and that a significant increase in expressions of metalloproteinase-9 mRNA was observed in spleen cells from SS model mice. These findings indicate that the increased generation of soluble FasL inhibits the normal AICD process, leading to the proliferation of effector CD4(+) T cells in the murine SS model.  相似文献   

5.
Cell death induced by the Fas/Fas ligand pathway and its role in pathology.   总被引:12,自引:0,他引:12  
Engagement of the cell death surface receptor Fas by Fas ligand (FasL) results in apoptotic cell death, mediated by caspase activation. Cell death mediated via Fas/FasL interaction is important for homeostasis of cells in the immune system and for maintaining immune-privileged sites in the body. Killing via the Fas/FasL pathway also constitutes an important pathway of killing for cytotoxic T cells. Fas ligand is induced in activated T cells, resulting in activation-induced cell death by the Fas/FasL pathway. Recently it has been shown that the Fas receptor can also be up-regulated following a lesion to the cell, particularly that induced by DNA-damaging agents. This can then result in killing of the cell by a Fas/FasL-dependent pathway. Up-regulation of Fas receptor following DNA damage appears to be p53 dependent.  相似文献   

6.
One proposed mechanism of tumour escape from immune surveillance is tumour up-regulation of the cell surface ligand FasL, which can lead to apoptosis of Fas receptor (Fas) positive lymphocytes. Based upon this 'counterattack', we have developed a mathematical model involving tumour cell-lymphocyte interaction, cell surface expression of Fas/FasL, and their secreted soluble forms. The model predicts that (a) the production of soluble forms of Fas and FasL will lead to the down-regulation of the immune response; (b) matrix metalloproteinase (MMP) inactivation should lead to increased membrane FasL and result in a higher rate of Fas-mediated apoptosis for lymphocytes than for tumour cells. Recent studies on cancer patients lend support for these predictions. The clinical implications are two-fold. Firstly, the use of broad spectrum MMP inhibitors as anti-angiogenic agents may be compromised by their adverse effect on tumour FasL up-regulation. Also, Fas/FasL interactions may have an impact on the outcome of numerous ongoing immunotherapeutic trials since the final common pathway of all these approaches is the transduction of death signals within the tumour cell.  相似文献   

7.
Improper homeostasis of Th1 and Th2 cell differentiation can promote pathological immune responses such as autoimmunity and asthma. A number of factors govern the development of these cells including TCR ligation, costimulation, death effector expression, and activation-induced cell death (AICD). Although chronic morphine administration has been shown to selectively promote Th2 development in unpurified T cell populations, the direct effects of chronic morphine on Th cell skewing and cytokine production by CD4(+) T cells have not been elucidated. We previously showed that morphine enhances Fas death receptor expression in a T cell hybridoma and human PBL. In addition, we have demonstrated a role for Fas, Fas ligand (FasL), and TRAIL in promoting Th2 development via killing of Th1 cells. Therefore, we analyzed whether the ability of morphine to affect Th2 cytokine production was mediated by regulation of Fas, FasL, and TRAIL expression and AICD directly in purified Th cells. We found that morphine significantly promoted IL-4 and IL-13 production but did not alter IL-5 or IFN-gamma. Furthermore, morphine enhanced the mRNA expression of Fas, FasL and TRAIL and promoted Fas-mediated AICD of CD4(+) T cells. Additionally, blockade of Fas/FasL interaction by anti-FasL inhibited the morphine-induced production of IL-4 and IL-13 and AICD of CD4(+) T cells. These results suggest that morphine preferentially enhances Th2 cell differentiation via killing of Th1 cells in a Fas/FasL-dependent manner.  相似文献   

8.
A Kaser  S Nagata  H Tilg 《Cytokine》1999,11(10):736-743
Interferon alpha (IFN-alpha) plays a prominent role in the therapy of a variety of diseases. The Fas/FasL system is crucial for the cytotoxic function and the peripheral elimination of activated T lymphocytes (ATC) by a mechanism referred to as activation-induced cell death (AICD). Recent studies suggest a link between IFN-alpha, the 2', 5'- oligoadenylate system and apoptosis. We therefore asked whether IFN-alpha is able to regulate the Fas/FasL pathway and thereby affects AICD. Peripheral blood mononuclear cells (PBMC), purified T cells and ATC of healthy volunteers were stimulated with various agents and the influence of IFN-alpha on Fas/FasL was assessed by mRNA and protein studies. The proportion of ATC undergoing AICD or anti-Fas-induced apoptosis was determined by FITC-annexin V staining and propidium iodide uptake. IFN-alpha upregulated mRNA expression of Fas and FasL in activated PBMC. Furthermore the concentration of the soluble form of FasL (sFasL) was increased in PBMC and T cells co-stimulated with IFN-alpha and various agents, whereas Fas surface expression was enhanced by IFN-alpha alone. IFN-alpha enhanced apoptosis induced by anti-Fas antibody and augmented AICD via the Fas/FasL pathway. IFN-alpha-regulated AICD may contribute to lymphopenia observed during IFN-alpha therapy. Our data further support that IFN-alpha is a multifunctional cytokine with profound effects on the immune cascades.  相似文献   

9.
10.
The TNF superfamily member Fas ligand acts as a prototypic death factor. Due to its ability to induce apoptosis in Fas (APO-1, CD95) expressing cells, Fas ligand participates in essential effector functions of the immune system. It is involved in natural killer cell- and T cell-mediated cytotoxicity, the establishment of immune privilege, and in termination of immune responses by induction of activation-induced cell death. In addition, Fas ligand-positive tumours may evade immune surveillance by killing Fas-positive tumour-infiltrating cells. Given these strong cytotoxic capabilities of Fas ligand, it is obvious that its function has to be strictly regulated to avoid uncontrolled damage. In hematopoietic cells, the death factor is stored in secretory lysosomes and is mobilised to the immunological synapse only upon activation. The selective sorting to and the release from this specific lysosomal compartment requires interactions of the Fas ligand cytosolic moiety, which mediates binding to various adapter proteins involved in trafficking and cytoskeletal reorganisation. In addition, Fas ligand surface expression is further regulated by posttranslational ectodomain shedding and subsequent regulated intramembrane proteolysis, releasing a soluble ectodomain cytokine into the extracellular space and an N-terminal fragment with a potential role in intracellular signalling processes. Moreover, other posttranslational modifications of the cytosolic domain, including phosphorylation and ubiquitylation, have been described to affect various aspects of Fas ligand biology. Since FasL is regarded as a potential target for immunotherapy, the further characterisation of its biological regulation and function will be of great importance for the development and evaluation of future therapeutic strategies.  相似文献   

11.
Lawrence CP  Chow SC 《FEBS letters》2005,579(28):6465-6472
Activation-induced cell death (AICD) in activated T lymphocytes is largely mediated by Fas/Fas ligand (FasL) interaction. The cytoplasmic adaptor molecule Fas-associated death domain protein (FADD) plays an essential role in the apoptotic signalling of the Fas death pathway. In the present study, we observed that FADD deficient (FADD(-/-)) Jurkat T cells undergo AICD to a similar extent as wild-type cells. AICD in wild-type Jurkat T cells is via apoptosis, whereas it is non-apoptotic in FADD(-/-) cells. The latter took up propidium iodide, exhibit a loss in mitochondrial membrane potential and have no detectable cleavage products of caspase-8 or -3 activation, suggesting that these cells die by necrosis. Wild-type Jurkat T cells undergo apoptosis when incubated with recombinant FasL and Trail but not with TNF-alpha. In contrast, FADD(-/-) Jurkat T cells are resistant to FasL and Trail but die of necrosis when incubated with TNF-alpha. We showed that neutralising anti-TNF-alpha blocked AICD as well as TNF-alpha-induced necrosis in FADD(-/-) Jurkat T cells. Furthermore, down regulating the receptor interacting protein, RIP, with geldanamycin treatment, which is essential for TNF-alpha signalling, markedly inhibited AICD in FADD(-/-) Jurkat T cells. In addition, caspase-8-deficient Jurkat T cells are resistant to Fas- and TNF-alpha-induced cell death. Taken together, our results suggest that a deficiency in FADD and not caspase-8 or the inhibition of the Fas signalling pathway sensitises Jurkat T cells to TNF-alpha-dependent necrosis during AICD.  相似文献   

12.
Apoptosis (programmed cell death) has been shown to play a major role in development and in the pathogenesis of numerous diseases. A principal mechanism of apoptosis is molecular interaction between surface molecules known as the "death receptors" and their ligands. Perhaps the best-studied death receptor and ligand system is the Fas/Fas ligand (FasL) system, in which FasL, a member of the tumor necrosis factor (TNF) family of death-inducing ligands, signals death through the death receptor Fas, thereby resulting in the apoptotic death of the cell. Numerous cells in the liver and gastrointestinal tract have been shown to express Fas/FasL, and there is a growing body of evidence that the Fas/FasL system plays a major role in the pathogenesis of many liver and gastrointestinal diseases, such as inflammatory bowel disease, graft vs. host disease, and hepatitis. Here we review the Fas/FasL system and the evidence that it is involved in the pathogenesis of liver and gastrointestinal diseases.  相似文献   

13.
IL-17-secreting CD4+ T cells (Th17 cells) play a critical role in immune responses to certain infections and in the development of many autoimmune disorders. The mechanisms controlling homeostasis in this cell population are largely unknown. In this study, we show that murine Th17 cells undergo rapid apoptosis in vitro upon restimulation through the TCR. This activation-induced cell death (AICD), a common mechanism for elimination of activated T cells, required the Fas and FasL interaction: Fas was stably expressed, while FasL was up-regulated upon TCR reactivation of Th17 cells; Ab ligation of Fas induced Th17 cell death; and AICD was completely absent in Th17 cells differentiated from gld/gld CD4+ T cells. Thus, the Fas/FasL pathway is essential in regulating the AICD of Th17 cells. Interestingly, IFN-gamma, a cytokine previously found to be important for the AICD of T cells, did not affect Th17 cell apoptosis. Furthermore, Th17 cells derived from mice deficient in IFN-gamma receptor 1 (IFN-gammaR1-/-) underwent AICD similar to wild-type cells. Thus, AICD of Th17 cells occurs via the Fas pathway, but is independent of IFN-gamma.  相似文献   

14.
Activation-induced cell death (AICD) plays a pivotal role in self-tolerance by deleting autoreactive T cells, but a defect of AICD results in expansion of autoreactive T cells and is deeply involved in the pathogenesis of rheumatoid arthritis. Although the process of AICD is mainly mediated by Fas Ligand (FasL)/Fas signaling, it remains unclear what induces FasL expression on T cells. In the present study, we found that CD44 was the most potent stimulator of FasL expression on human peripheral T cells. CD44 cross-linking rapidly up-regulated FasL expression on the T cell surface by delivery from the cytoplasm without new FasL protein synthesis. This up-regulation of FasL was mediated by activation of a tyrosine kinase, IP3 receptor-dependent Ca2+ mobilization and actin cytoskeletal rearrangements. Furthermore, AICD induced by CD3 restimulation was inhibited by hyaluronidase as well as by soluble Fas, indicating an interaction between membrane-bound hyaluronan and the cell surface CD44 was involved in the up-regulation of FasL expression on T cells and subsequent AICD. We therefore propose that the engagement of CD44 on T cells can eliminate autoreactive T cells by expression of FasL and FasL-mediated AICD. Grant support: Scientific Research by the Ministry of Health, Labor and Welfare of Japan, the Ministry of Education, Culture, Sports, Science and Technology of Japan and University of Occupational and Environmental Health, Japan.  相似文献   

15.
A functional immune system not only requires rapid expansion of antigenic specific T cells, but also requires efficient deletion of clonally expanded T cells to avoid accumulation of T cells. Fas/Fas ligand (FasL)-mediated apoptosis plays a critical role in the deletion of activated peripheral T cells, which is clearly demonstrated by superantigen-induced expansion and subsequent deletion of T cells. In this study, we show that in the absence of protein kinase C-theta (PKC-theta), superantigen (staphylococcal enterotoxin B)-induced deletion of Vbeta8(+) CD4(+) T cells was defective in PKC-theta(-/-) mice. In response to staphylococcal enterotoxin B challenge, up-regulation of FasL, but not Fas, was significantly reduced in PKC-theta(-/-) mice. PKC-theta is thus required for maximum up-regulation of FasL in vivo. We further show that stimulation of FasL expression depends on PKC-theta-mediated activation of NF-AT pathway. In addition, PKC-theta(-/-) T cells displayed resistance to Fas-mediated apoptosis as well as activation-induced cell death (AICD). In the absence of PKC-theta, Fas-induced activation of apoptotic molecules such as caspase-8, caspase-3, and Bid was not efficient. However, AICD as well as Fas-mediated apoptosis of PKC-theta(-/-) T cells were restored in the presence of high concentration of IL-2, a critical factor required for potentiating T cells for AICD. PKC-theta is thus required for promoting FasL expression and for potentiating Fas-mediated apoptosis.  相似文献   

16.
17.
Fas (Apo-1, CD95) and Fas-Ligand (FasL, CD95L) are typical members of the TNF receptor and TNF ligand family, respectively, with a pivotal role in the regulation of apoptotic processes, including activation-induced cell death, T-cell-induced cytotoxicity, immune privilege and tumor surveillance. Impairment of the FasL/Fas system has been implicated in liver failure, autoimmune diseases and immune deficiency. Thus, the FasL/Fas system was mainly appreciated with respect to its death-inducing capabilities. However, there is increasing evidence that activation of Fas can also result in non-apoptotic responses like cell proliferation or NF-kappaB activation. While the apoptotic features of the FasL/Fas system and the pathways involved are comparably well investigated, the pathways that are utilized by Fas to transduce proliferative and activating signals are poorly understood. This review is focused on the non-apoptotic functions of the FasL/Fas system. In particular, the similarities and differences of the molecular mechanisms of apoptotic and non-apoptotic Fas signaling are addressed.  相似文献   

18.
Activation-induced cell death is a process by which overactivated T cells are eliminated, thus preventing potential autoimmune attacks. Two known mediators of activation-induced cell death are Fas(CD95) ligand (FasL) and APO2 ligand (APO2L)/TNF-related apoptosis-inducing ligand (TRAIL). We show here that upon mitogenic stimulation, bioactive FasL and APO2L are released from the T cell leukemia Jurkat and from normal human T cell blasts as intact, nonproteolyzed proteins associated with a particulate, ultracentrifugable fraction. We have characterized this fraction as microvesicles of 100-200 nm in diameter. These microvesicles are released from Jurkat and T cell blasts shortly (相似文献   

19.
The caspase-8 inhibitor c-FLIP blocks death receptor-mediated cell death and plays an essential role in the regulation of lymphocyte homeostasis and the immune escape of tumors. The murine thymoma cell line EL-4 was resistant to Fas ligand (FasL)-induced apoptosis by constitutive expression of FLIP (L). Cycloheximide downregulated the expression of FLIP (L) and markedly sensitized EL-4 cells to FasL-induced apoptosis. In contrast, DNA-damaging agents sensitized EL-4 cells to FasL-induced cell death via an increase of cell-surface Fas without any influence on FLIP (L) expression. Enforced expression of transfected Fas rendered EL-4 cells highly susceptible to FasL-induced cell death. These findings demonstrate that susceptibility to FasL-induced cell death mainly depends on the expression level of c-FLIP versus cell-surface Fas.  相似文献   

20.
FasL and TRAIL are apoptotic ligands of the TNF-like cytokines family, acting via activation of the transmembrane death domain containing receptors Fas for FasL, and DR4 or DR5 for TRAIL. A glycosylphosphatidylinositol-linked TRAIL receptor called DcR1 behaves as a decoy receptor inhibiting TRAIL-mediated cell death in several cellular systems. We engineered and stably expressed a chimeric GPI-linked Fas receptor (Fas-GPI) in T-lymphocyte cell lines constitutively expressing functional transmembrane Fas. Surprisingly, despite lacking the death domain region of functional Fas, Fas-GPI was able to significantly increase Fas-mediated cell death triggered by membrane bound or soluble FasL, whereas engagement of Fas-GPI alone did not trigger apoptosis. This potentiating effect, but not transmembrane Fas activation, was selectively inhibited by protein kinase C activation with phorbol esters, demonstrating that Fas-GPI activated a specific synergistic signal transduction pathway. Fas-GPI and transmembrane Fas were localized in distinct membrane compartments, since Fas-GPI, but not transmembrane Fas, was found in the glycolipid-rich membrane microdomains. These results suggest that apoptosis induced by members of this ligand/receptors family may be differentially modulated through other and parallel signalling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号