首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polarized Raman spectra have been obtained from single microcrystals of the duplex of the decamer d(A5T5)2 using a Raman microscope. This is the first report of Raman spectra from a crystal of a deoxyoligomer that contains only long, nonalternating sequences of adenine and thymine. Sequences containing d(A)n and d(T)n are of interest in view of recent suggestions that they induce bends in DNA and that they might exist in a nonstandard B-conformation. Polarized Raman spectra of a crystal of d(pTpT) have also been obtained. Both crystals display Raman bands whose intensities are very sensitive to the orientation of the crystal with respect to the direction of polarization of the incident laser beam. These spectra indicate that the helical axes of the oligonucleotides are parallel to the long axes of the crystals and that the d(A5T5)2 is not appreciably bent in the crystal. The Raman spectrum from the d(pTpT) crystal indicates that all of the furanose ring puckers are in a C2′-endo configuration since only the C2′-endo marker band at 835 ± 5 cm?1 is present. Crystals of d(A5T5)2 show measurable Raman intensities in both the 838- and 816-cm?1 bands. This indicates the presence of both the C2′-endo and C3′-endo, or possibly other non-C2′-endo, furanose conformations. The 816-cm?1 band is weak so that only a small fraction of the residues are estimated to be in the non-C2′-endo conformation. In both the d(pTpT) and d(A5T5)2 crystals the intensity of the bands due to vibrations of the backbone show only a small dependence on orientation of the crystals. This result is explained by the low symmetry of the puckered sugar rings. It is concluded that Raman spectra obtained from oligonucleotide crystals in which the orientation of the crystal axes to the laser polarization is not carefully controlled may contain intensity artifacts that are due to polarization effects.  相似文献   

2.
Hatanaka  Shin-Ichi  Furukawa  Jun  Aoki  Toshio  Akatsuka  Hirokazu  Nagasawa  Eiji 《Mycoscience》1994,35(4):391-394
Combining different chromatography systems, unusual nonprotein amino acids were isolated and unequivocally identified from a small amount (less than 100 g fresh weight) ofAmanita gymnopus fruit body. Without obtaining crystals of these amino acids, on the basis of1H-NMR determination, high resolution mass spectrometry, chlorine analysis and oxidation with L-amino acid oxidase, one of them proved to be a new chloroamino acid, (2S)-2-amino-5-chloro-4-hydroxy-5-hexenoic acid (G2). The other three were (2S)-2-amino-5-hexenoic acid (G1), (2S)-2-amino-4,5-hexadienoic acid (G3) and (2S)-2-amino-5-hexynoic acid (G4). Amino acid (G1) was also encountered for the first time in natural products. Amino acid (G3) has been reported from several kinds of fungi belonging toAmanita, subgenusLepidella. The occurrence of amino acid (G4) was already reported fromCortinarius claricolor.Part 23 in the series Biochemical studies of nitrogen compounds in fungi. Part 22, Hatanaka, S. I. et al. 1985. Trans. Mycol. Soc. Japan26: 61–68.  相似文献   

3.
Accelerated tree growth under elevatedatmospheric CO2 concentrations may influencenutrient cycling in forests by (i) increasingthe total leaf area, (ii) increasing the supplyof soluble carbohydrate in leaf tissue, and (iii) increasing nutrient-use efficiency. Here wereport the results of intensive sampling andlaboratory analyses of NH 4 + , NO 3 , PO 4 3– , H+, K+, Na+,Ca2+, Mg2+, Cl, SO 4 2– , and dissolved organic carbon (DOC) in throughfallprecipitation during the first 2.5+ years of the DukeUniversity Free-Air CO2 Enrichment (FACE)experiment. After two growing seasons, a largeincrease (i.e., 48%) in throughfall deposition of DOCand significant trends in throughfall volume and inthe deposition of NH 4 + , NO 3 , H+, and K+ can be attributed to the elevatedCO2 treatment. The substantial increase indeposition of DOC is most likely associated withincreased availability of soluble C in plant foliage,whereas accelerated canopy growth may account forsignificant trends toward decreasing throughfallvolume, decreasing deposition of NH 4 + ,NO 3 , and H+, and increasing deposition of K+ under elevated CO2. Despiteconsiderable year-to-year variability, there wereseasonal trends in net deposition of NO 3 ,H+, cations, and DOC associated with plant growthand leaf senescence. The altered chemical fluxes inthroughfall suggest that soil solution chemistry mayalso be substantially altered with continued increasesin atmospheric CO2 concentrations in the future.  相似文献   

4.
Conversion of CO2 to organic compounds in hydrothermal systems is important in understanding prebiotic chemical evolution leading to the origin of life. However, organic compounds with carbon number of more than 3 have never been produced from dissolved CO2 in simulated hydrothermal experiments. In this paper, we report that not only CH4, C2H6 and C3H8, but also n-C4H10 and n-C5H12 could be produced from dissolved CO2 and H2 in the presence of cobalt-bearing magnetite at 300°C and 30 MPa. It is shown that unbranched alkanes in Anderson–Schulz–Flory distribution were the dominant hydrocarbon products produced from dissolved CO2 catalyzed by cobalt-bearing magnetite under certain hydrothermal conditions. It is proposed that magnetite with other transition metals may act potentially as effective mineral catalysts for abiotic formation of organic compounds from dissolved CO2 in hydrothermal systems.  相似文献   

5.
The transport of 2-methyl-4-amino-5-hydroxymethylpyrimidine (MAHMP) by Salmonella typhimurium was studied using synthetic [methyl-3H3]MAHMP. It was found that an active transport system existed for MAHMP, having Km of 0.07 μM and Vmax 45 nmol·min?1·(g dry wt. cells)?1, that required glucose as a source of energy and was pH and temperature dependent. Uptake was inhibited by cyanide, azide, N-ethylmaleimide, 2,4-dinitrophenol and carbonyl cyanide m-chlorophenylhydrazone. Uptake was also weakly inhibited by oxythiamine, but not by thiamine, 2-methyl-4-amino-5-aminomethylpyrimidine, or 4-amino-5-hydroxymethylpyrimidine, indicating that the transport system is specific for MAHMP.  相似文献   

6.
The reaction of α-MgCl2 with boiling ethyl acetate affords MgCI2(CH3COOC2H5)2· (CH3COOC2H5), which is obtained as crystals suitable for X-ray analysis only from the mother liquor. M=315.5, orthorhombic, space group P21221 (No. 18), a=25.077(3), b=8.616(1), c=7.345(1) Å, V=1587.0(3) Å3, Z=4, Dx=1.32 g cm−3,λ A(Mo Kα)=0.71069 Å, μ=4.17 cm−1, F(000)=664, T=298 K, observed reflections: 1667, R=0.059 and Rw=0.069. The structure is composed of polymeric chains of MgCl2(CH3COOC2H5)2 and the ethyl acetate molecules occupy a mutually trans position.  相似文献   

7.
In the small intestine of the rabbit the process of Na+-dependent uptake of phosphate occurs only at the brush-border of duodenal enterocytes. Li+ can replace Na+. The process is activated when either K+, Cs+, Rb+, or choline is present in the intravesicular space. The presence of membrane-permeable anions is essential for maximum rates of phosphate transport. We conclude that the mechanism of the phosphate carrier is electrogenic at pH 6–8, probably two Na+ moving with each H2PO 4 . This. will lead to the development of a positive charge within the vesicle. The variation of theK m for H2PO 4 with pH is thought to be the consequence of the affinity of the carrier protein for H2PO 4 increasing as the pH increases. Polyclonal antibodies against membrane vesicles isolated from rabbit duodenum, jejunum, and ileum were prepared. The antibodies raised against the ileum and jejunum both activated the phosphate transport process, while the anti-duodenum antibody preparation inhibited phosphate transport.  相似文献   

8.
We measured F420-dependent N5,N10-methylenetetrahydro-methanopterin dehydrogenase, N5, N10-methenyltetrahydro-methanopterin cyclohydrolase, and F420-reducing hydrogenase levels in Methanosarcina barkeri grown on various substrates. Variation in dehydrogenase levels during growth on a specific substrate was usually <3-fold, and much less for cyclohydrolase. H2–CO2-, methanol-, and H2–CO2+ methanol-grown cells had roughly equivalent levels of dehydrogenase and cyclohydrolase. In acetate-grown cells cyclohydrolase level was lowered 2 to 3-fold and dehydrogenase 10 to 80-fold; this was not due to repression by acetate, since, if cultures growing on acetate were supplemented with methanol or H2–CO2, dehydrogenase levels increased 14 to 19-fold, and cyclohydrolase levels by 3 to 4-fold. Compared to H2–CO2- or methanol-grown cells, acetate-or H2–CO2 + methanol-grown cells had lower levels of and less growth phase-dependent variation in hydrogenase activity. Our data are consistent with the following hypotheses: 1. M. barkeri oxidizes methanol via a portion of the CO2-reduction pathway operated in the reverse direction. 2. When steps from CO2 to CH3-S-CoM in the CO2-reduction pathway (in either direction) are not used for methanogenesis, hydrogenase activity is lowered.Abbreviations MF methanofuran - H4MPT 5,6,7,8-tetrahydromethanopterin - HS-HTP 7-mercaptoheptanoylthreonine phosphate - CoM-S-S-HTP heterodisulfide of HS-CoM and HS-HTP - F420 coenzyme F420 (a 7,8-didemethyl-8-hydroxy-5-deaza-riboflavin derivative) - H2F420 reduced coenzyme F420 - HC+=H4MPT N5,N10-methenyl-H4MPT - H2C=H4MPT N5,N10-methylene-H4MPT - H3C=H4MPT N5-methyl-H4MPT - BES 2-bromoethanesulfonic acid  相似文献   

9.
The thermodynamic parameters, ΔH′, ΔG′, and ΔS′, and the stoichiometry for the binding of the substrate 2′-deoxyuridine-5′-phosphate (dUMP) and the inhibitor 5-fluoro-2′-deoxyuridine-5′-phosphate (FdUMP) to Lactobacillus casei thymidylate synthetase (TSase) have been investigated using both direct calorimetric methods and gel filtration methods. The data obtained show that two ligand binding sites are available but that the binding of the second mole of dUMP is extremely weak. Binding of the first mole of dUMP can best be illustrated by dUMP + TSase + H+?(dUMP-TSase-H+). [1] The enthalpy, ΔH1′, for reaction [1] was measured directly on a flow modification of a Beckman Model 190B microcalorimeter. Experiments in two different buffers (I = 0.10 m) show that ΔH1′ = ?28 kJ mol?1 and that 0.87 mol of protons enters into the reaction. Analysis of thermal titrations for reaction [1] indicates a free energy change of ΔG1′ = ?30 kJ mol?1 (K1 = 1.7 × 105 m?1). From these parameters, ΔS1′ was calculated to be +5 J mol?1 degree?1, showing that the reaction is almost totally driven by enthalpy changes. Gel filtration experiments show that at very high substrate concentrations, binding to a second site can be observed. Gel filtration experiments performed at low ionic strength (I = 0.05 m) reveal a stronger binding, with ΔG1′ = ?35 kJ mol?1 (K1 = 1.2 × 106 m?1), suggesting that the forces driving the interaction are, in part, electrostatic. Addition of 2-mercaptoethanol (0.10 m) had the effect of slightly increasing the dUMP binding constant. Binding of FdUMP to TSase is best illustrated by 2FdUMP + TSase + nHH+?FdUMP2 ? TSase ? (H+)nH. [2] The enthalpy for this reaction, ΔH2, was also measured calorimetrically and found to be ?30 kJ mol?1 with nH = 1.24 at pH 7.4 Assuming two FdUMP binding sites per dimer as established by Galivan et al. [Biochemistry15, 356–362 (1976)] our calorimetric results indicate different binding energies for each site. Based on the binding data, a thermodynamic model is presented which serves to rationalize much of the confusing physical and chemical data characterizing thymidylate synthetase.  相似文献   

10.
Platinum(II) and platinum(IV) complexes with 3-amino-5-methyl-5-(4-pyridyl)-2,4-imidazolidenedione (L) with general formulaе cis-[PtL2X2nH2O and [PtL2Cl4], where X = Cl, Br, I and n = 2-4) were synthesized. The novel compounds were fully characterized by elemental analysis, IR, 1H, 13C, 195Pt NMR spectra, thermal analysis and molar conductivity. The geometry of Pt(II) complexes and of the organic ligand in the gas phase were optimized using the hybrid DFT method B3LYP with LANL2DZ and 6-31G** basis sets. Some physicochemical parameters as dipole moment, HOMO, LUMO energies and ESP charges were calculated. The comparison of the bond length and angles, obtained from the X-ray analysis and DFT calculations is realized. The cytotoxic effects of these complexes in human T-cell leukemia KE-37 (SKW-3) are reported.  相似文献   

11.
Archaeoglobus lithotrophicus is a hyperthermophilic Archaeon that grows on H2 and sulfate as energy sources and CO2 as sole carbon source. The autotrophic sulfate reducer was shown to contain all the enzyme activities and coenzymes of the reductive carbon monoxide dehydrogenase pathway for autotrophic CO2 fixation as operative in methanogenic Archaea. With the exception of carbon monoxide dehydrogenase these enzymes and coenzymes were also found in A. profundus. This organism grows lithotrophically on H2 and sulfate, but differs from A. lithotrophicus in that it cannot grow autotrophically: A. profundus requires acetate and CO2 for biosynthesis. The absence of carbon monoxide dehydrogenase in A. profundus is substantiated by the observation that this organism, in contrast to A. lithotrophicus, is not mini-methanogenic and contains only relatively low concentrations of corrinoids.Abbreviations F 420 coenzyme F420 - MFR methanofuran - CHO-MFR formylmethanofuran - H 4MPT 5,6,7,8-tetrahydromethanopterin - CHO–H 4MPT N5 formyl-H4MPT - CHH4MPT+N5 methenyl-H4MPT - CH 2=H4MPT N5, N10 methylene-H4MPT - CH 3–H4MPT N5 methyl-H4MPT - H 4F tetrahydrofolate - I U 1 mol/min - t d doubling time  相似文献   

12.

Although GR2(SO4 2-) can be easily formed by abiotic synthesis, the biotic formation of hydroxysulphate as a single iron(II-III) mineral in microbial culture and its characterization was not achieved. This study was carried out to investigate the sole formation of GR2(SO4 2-) during the reduction of γ-FeOOH by a dissimilatory iron-respiring bacterium, Shewanella putrefaciens CIP 8040T. Reduction experiments were performed in a non-buffered medium devoid of organic compounds, with 25 mM of sulphate and with a range of lepidocrocite concentrations with H2 as the electron donor under nongrowth conditions. The resulting biogenic solids, after iron-respiring activity, were characterized by X-ray diffraction (XRD), transmission Mössbauer spectroscopy (TMS) and electron microscopy (SEM and TEM). The sulphate has been identified as the intercalated anion by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). In addition, the structure of this sulphate anion was discussed. Our experimental study demonstrated that, under H2 atmosphere, the biogenic solid was a GR2(SO4 2-), as the sole iron(II-III) bearing mineral, whatever the initial lepidocrocite concentration. The crystals of the biotically formed GR2(SO4 2-) are significantly larger than those observed for GR2(SO4 2-) obtained through abiotic preparation, < 15 μ m diameter as against 0.5–4 μm, respectively.  相似文献   

13.
I. Struve  U. Lüttge 《Planta》1987,170(1):111-120
Membrane vesicles were isolated from mesophyll cells of Mesembryanthemum crystallinum in the C3 state and in the crassulacean acid metabolism (CAM) state. The distribution of ATP-hydrolysis and H+-transport activities, and the activities of hydroxypyruvate reductase and Antimycin-insensitive cytochrome-c-reductase on continuous sucrose gradients was studied. For isolations carried out routinely a discontinuous sucrose gradient (24%/37%/50%) was used. Nitrate-sensitive ATP-hydrolysis and H+-transport activities increased several-fold during the transition from C3 photosynthesis to CAM. Nitrate-sensitive ATPase showed a substrate preference for ATP with an apparent Km (MgATP2-) of 0.19–0.37 mM. In both C3 and CAM states the ATPase showed a concentration-dependent stimulation by the anions chloride and malate. However, the pH optima of the two states were different: the ATPase of C3- M. crystallinum had an optimum of pH 7.4 and that of CAM-M. crystallinum an optimum of pH 8.4. The optical probe oxonol-VI was used to demonstrate the formation of MgATP2--dependent electric-potential gradients in tonoplast vesicles.Abbreviations Bistris-Pronane 1,3-bis [tris(hydroxymethyl)-methylaminol propane - CAM Crassulacean acid metabolism - DIDS 4,4-dilsothiocyano-2,2-stilbene disulfonic acid: - DTT dithiothreitol - ER endoplasmic reticulum - Hepes 4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid - HPR hydroxypyruvate reductase - IDPase inosine 5-diphosphatase - OX-VI oxonol VI - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

14.
A chlorine-containing non-protein amino acid which was recently discovered from the fruit bodies ofAmanita gymnopus (2S)-2-amino-5-chloro-4-hydroxy-5-hexenoic acid, was isolated and crystallized for the first time from the fruit bodies of an unknown member ofAmanita belonging to the sectionRoanokenses, subsectionSolitariae. The results of elementary analyses, determination of optical rotations,1H- and13C-NMR-spectra, and some chemical reactions supported an earlier proposed structure.Part 24 in the series Biochemical studies of nitrogen compounds in fungi. for Part 23, see Hatanaka, S. I. et al. 1994. this journal35: 391–394.  相似文献   

15.
Based on second-order perturbation theory (MP2) predictions with large 6-311++G(3df, 3pd) basis set we have reviewed the possible structures and stabilities of a series of neutral MHn(M=Al, Ga; n=4, 5, 6) species. For AlH4 and AlH5, our results confirm the previous theoretical findings, which indicate the dihydrogen Cs complexes (2A′) AlH2(H2) and (1A′) AlH3(H2), respectively, as the lowest energy isomers. We found, similarly, Cs (2A′) GaH2(H2) and (1A′) GaH3(H2) van der Waals complexes as the most stable species of the gallium analogues GaH4 and GaH5. The calculated H2 dissociation energies (De) for AlH2(H2) and AlH3(H2) are of the order 1.8–2.5 kcalmol1, whereas this range of values for GaH2(H2) and GaH3(H2) is 1.4–1.8 kcalmol1 . Symmetry-adapted perturbation theory (SAPT) was used to analyze the interaction energies of these dihydrogen complexes (for n=5) to determine why the Ga species show a smaller binding energy than the Al species. The SAPT partitioning of the interaction energy showed significant differences between AlH3(H2) and GaH3(H2), resulting from the much stronger “hydride” character of the aluminum species. The experimental observation of AlH2(H2) and AlH3(H2), and likely GaH3(H2), via low-temperature matrix isolation has been reported recently by Pullumbi et al. and Andrews et al., supporting the theoretical predictions. For n=6, we found the degenerate C2(2A) and Cs(2A′) MH2(H2)2 “double H2” type van der Waals complexes as the lowest energy species for both M=Al and Ga.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

16.
Improvement in H2 production was achieved through redirection of metabolic pathways by blocking formation of alcohol and some organic acids in Enterobacter cloacae IIT-BT 08. The wild type strain was more susceptible to allyl alcohol (7 mM) and to the combined effect of NaBr and NaBrO3 (40 mM each at pH 5.5) than were double mutants, with defects in both alcohol and organic acid formation pathways, which had higher H2 yields (3.4 mol mol–1 glucose) than the wild type strain (2.1 mol mol–1 glucose).  相似文献   

17.
From our previous studies on the mechanism of methane formation from acetate it was known that cell extracts of acetate-grown Methanosarcina barkeri (100 000 × g supernatant) catalyze the conversion of acetyl-CoA plus tetrahydromethanopterin (=H4MPT) to methyl-H4MPT, CoA, CO2 and presumably H2. We report here that these extracts, in the absence of H4MPT, mediated an isotope exchange between CO2 ([S]0.5 v=0.2% in the gas phase) and the carbonyl group of acetyl-CoA at almost the same specific rate as the above conversion (10 nmol · min–1 · mg protein–1). Both the exchange and the formation of methyl-H4MPT were inhibited by N2O, suggesting that a corrinoid could be the primary methyl group acceptor in the acetyl-CoA C-C-cleavage reaction. Both activities were dependent on the presence of H2 (E0=–414 mV). Ti(III)citrate (E0=–480 mV) was found to substitute for H2, indicating a reductive activation of the system. In the presence of Ti(III)citrate it was shown that the formation of CO2 from the carbonyl group of acetyl-CoA is associated with a 1:1 stoichiometric generation of H2. Free CO, a possible intermediate in CO2 and H2 formation, was not detected.Non-standard abbreviations AcCoA acetyl-CoA - acetyl-P acetyl phosphate - OH-B12 hydroxocobalamin - H-S-CoM coenzyme M = 2-mercaptoethanesulfonate - CH3-S-CoM methyl-coenzyme M = 2-(methylthio)ethanesulfonate - H-S-HTP N-7-mercaptoheptanoylthreonine phosphate - HTP-S-S-HTP disulfide of H-S-HTP - CoM-S-S-HTP disulfide of H-S-CoM and H-S-HTP - H4MPT tetrahydromethanopterin - CH3-H4MPT N5-methyl-H4MPT - DTT dithiothreitol - MOPS morpholinopropane sulfonic acid  相似文献   

18.
The synthesis and pharmacology of 15 1-deoxy-Δ8-THC analogues, several of which have high affinity for the CB2 receptor, are described. The deoxy cannabinoids include 1-deoxy-11-hydroxy-Δ8-THC (5), 1-deoxy-Δ8-THC (6), 1-deoxy-3-butyl-Δ8-THC (7), 1-deoxy-3-hexyl-Δ8-THC (8) and a series of 3-(1′,1′-dimethylalkyl)-1-deoxy-Δ8-THC analogues (2, n=0–4, 6, 7, where n=the number of carbon atoms in the side chain−2). Three derivatives (1719) of deoxynabilone (16) were also prepared. The affinities of each compound for the CB1 and CB2 receptors were determined employing previously described procedures. Five of the 3-(1′,1′-dimethylalkyl)-1-deoxy-Δ8-THC analogues (2, n=1–5) have high affinity (Ki=<20 nM) for the CB2 receptor. Four of them (2, n=1–4) also have little affinity for the CB1 receptor (Ki=>295 nM). 3-(1′,1′-Dimethylbutyl)-1-deoxy-Δ8-THC (2, n=2) has very high affinity for the CB2 receptor (Ki=3.4±1.0 nM) and little affinity for the CB1 receptor (Ki=677±132 nM).
Scheme 3. (a) (C6H5)3PCH3+ Br, n-BuLi/THF, 65°C; (b) LiAlH4/THF, 25°C; (c) KBH(sec-Bu)3/THF, −78 to 25°C then H2O2/NaOH.  相似文献   

19.
Experiments conducted on samples collected from a large oligotrophic lake revealed the following: (1) excretion rates of PO inf4 sup3– by single Daphnia thorata were below detection (5 pmol animal–1 min–1) in 20 ml of oligotrophic lake water over a period of 10 min, (2) experimental addition of D. thorata to 20 ml aliquots of lake water decreased community-wide microbial uptake of PO inf4 sup3– on two occasions (as measured by 32PO inf4 sup3– incorporation), and (3) the presence of D. thorata increased uptake by organisms smaller than 1µm, and decreased uptake by large phytoplankton. The specific mechanism for these responses remains unclear, but the results imply that when phytoplankton larger than 1µm encounter cm scale patches of water recently occupied by Daphnia they may experience decreased PO inf4 sup3– availability rather than elevated concentrations of PO inf4 sup3– caused by excretion. We show that 32P uptake experiments using natural plankton assemblages can be influenced by the presence or absence of large zooplankton, and that neither grazing, turbulence, nor PO inf4 sup3– excretion can account for this influence.  相似文献   

20.
Various organic sulfides and inorganic sulfide were studied in respect to their effect on growth and methane production of Methanobacterium strain AZ. In mineral, sulfide-free medium, cysteine regulated the specific rate of methane production (optimum concentration =5·10–4 mole/l). A supplement of sulfide (10–4 mole/l) caused an additional stimulation. Coenzyme M** or glutathione could be substituted for cysteine when sulfide was present. Growth was stimulated by CoM and glutathione to the same extent as with cysteine in sulfide-containing media. The concentration of sulfide in cysteine-containing media affected the excretion of amino acids.Abbreviations CoM Coenzyme M; HS–CH2–CH2–SO3 (Taylor and Wolfe, 1974)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号