首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Naturally occurring smallpox has been eradicated, yet it remains as one of the highest priority pathogens due to its potential as a biological weapon. The majority of the US population would be vulnerable in a smallpox outbreak. SIGA Technologies, Inc. has responded to the call of the US government to develop and supply to the Strategic National Stockpile a smallpox antiviral to be deployed in the event of a smallpox outbreak. ST-246(?) (tecovirimat) was initially identified via a high-throughput screen in 2002, and in the ensuing years, our drug-development activities have spanned in vitro analysis, preclinical safety, pharmacokinetics and efficacy testing (all according to the 'animal rule'). Additionally, SIGA has conducted Phase I and II clinical trials to evaluate the safety, tolerability and pharmacokinetics of ST-246, bringing us to our current late stage of clinical development. This article reviews the need for a smallpox therapeutic and our experience in developing ST-246, and provides perspective on the role of a smallpox antiviral during a smallpox public health emergency.  相似文献   

2.
Smallpox is a serious and highly contagious disease that is caused by the variola virus. It is one of the most severe infectious human diseases known, with mortality rates as high as 30%. A successful worldwide vaccination program led to the eradication of smallpox in 1980. However, the high transmission rate of variola virus, coupled with the deadly nature of smallpox, makes this virus a potentially devastating weapon for bioterrorism. Currently, there is no specific treatment for smallpox. However, a recent article on the structure of a variola topoisomerase IB-DNA complex provides an intriguing starting point for the rational design of drugs with potential activity against smallpox.  相似文献   

3.
Countermeasures to the bioterrorist threat of smallpox   总被引:1,自引:0,他引:1  
Variola, the agent of smallpox, is a bioterrorist threat, as is monkeypox virus, which also occurs naturally in Africa. Development of countermeasures, in the form of improved vaccines, antiviral drugs, and other therapeutic strategies are a high priority. Recent advances in molecular biology and in animal model development have provided fresh insight into the virulence determinants for smallpox and the pathophysiology of disease. The complex replication cycle for orthopoxviruses, and the pivotal role for viral-specific immunomodulatory proteins which contribute to escape from immunologic surveillance, provide many unique targets for therapeutic intervention. The "toxemia" of smallpox has been elucidated in part by variola-infected primate studies which revealed the central role of apoptosis and the evolution of a cytokine storm leading to hemorrhagic diathesis, resembling fulminent "black" smallpox. This suggests a potential role for therapeutic strategies developed for septic shock, in treatment of smallpox. Drugs licensed for other viruses which share molecular targets with orthopoxviruses (e.g. Cidofovir) or cancer drugs (e.g. Gleevec and other tyrosine kinase inhibitors) have immediate application for treatment of smallpox and monkeypox and provide leads for second generation drugs with higher therapeutic indices. Recent advances in identification of virulence determinants and immune evasion genes facilitate the design of alternative vaccines to replace live vaccinia strains that are unsuitable for a large proportion of individuals in a mass immunization campaign.  相似文献   

4.
Post-vaccinal encephalitis, although relatively uncommon, is a known adverse event associated with many live, attenuated smallpox vaccines. Although smallpox vaccination ceased globally in 1980, vaccine manufacture has resumed in response to concerns over the possible use of smallpox virus as an agent of bioterrorism. To better support the production of safer smallpox vaccines, we previously reported the development of a mouse model in which a relatively attenuated vaccine strain (Dryvax®) could be discerned from a more virulent laboratory strain (WR). Here we have further tested the performance of this assay by evaluating the neurovirulence of several vaccinia virus-based smallpox vaccines spanning a known range in neurovirulence for humans. Our data indicate that testing of 10–100 pfu of virus in mice following intracranial inoculation reliably assesses the virus's neurovirulence potential for humans.  相似文献   

5.
It has been more than 35 years since the last naturally occurring case of smallpox. Sufficient time has passed to allow an objective overview of what were the key factors in the success of the eradication effort and what lessons smallpox can offer to other campaigns. Professor D. A. Henderson headed the international effort to eradicate smallpox. Here, we present a summary of D. A. Henderson''s perspectives on the eradication of smallpox. This text is based upon the Unither Baruch Blumberg Lecture, delivered by D. A. Henderson at the University of Oxford in November 2012 and upon conversations and correspondence with Professor Henderson.  相似文献   

6.
The potency of the U.S. Reference Smallpox Vaccine, Lot 2, the International Reference Preparation of Smallpox Vaccine, and commercial smallpox vaccines was determined by the chorioallantoic membrane (CAM) and rabbit scarification (RS) potency assay methods. The mean titer of the U.S. Reference (based on 107 ampoules) was 10(8.1) pock-forming units (PFU) per ml and that of the International Reference (based on 3 ampoules) was 10(7.8) PFU/ml. A statistical analysis of the CAM data for the U.S. Reference resulted in the establishment of a table of limits of acceptance for smallpox vaccines. Of the commercial smallpox vaccines tested by the CAM and RS methods, 89% demonstrated potencies comparable to the U.S. Reference. Our results show that the CAM test method has application in the control testing of smallpox vaccines produced by U.S. licensed manufacturers provided it is used within the limits discussed.  相似文献   

7.
Live virus vaccines provide a unique opportunity to study human CD8(+) T-cell memory in the context of a controlled, primary acute viral infection. Yellow fever virus-17D and Dryvax are two such live-virus vaccines that are highly efficacious, used worldwide and provide long-term immunity against yellow fever and smallpox respectively. In this review, we describe the properties of virus-specific memory CD8(+) T cells generated in smallpox and yellow fever vaccinees. We address fundamental questions regarding magnitude, functional quality and longevity of the CD8(+) T-cell response, which are otherwise challenging to address in humans. These findings provide insights into the attributes of the human immune system as well as provide a benchmark for the optimal quality of a CD8(+) T-cell response that can be used to evaluate novel candidate vaccines.  相似文献   

8.
Summary In 2 out of 13 contacts of smallpox patients, variola virus was recovered from nasopharyngeal secretions on the 14th and the 18th day after the last contact. One of them was vaccinated, and showed transient prodromal symptoms, the other, who had never beee vaccinated did not show signs of illness. Evidence has been obtained from this investigation, that a few cases of smallpox during a local epidemic, which could not be explained by contact with a smallpox patient, may be explained by contact with a virus carrier.  相似文献   

9.
10.
Outbreaks of smallpox (i.e., caused by variola virus) resulted in up to 30% mortality, but those who survived smallpox infection were regarded as immune for life. Early studies described the levels of neutralizing antibodies induced after infection, but smallpox was eradicated before contemporary methods for quantifying T-cell memory were developed. To better understand the levels and duration of immunity after smallpox infection, we performed a case-control study comparing antiviral CD4(+) and CD8(+) T-cell responses and neutralizing antibody levels of 24 smallpox survivors with the antiviral immunity observed in 60 smallpox-vaccinated (i.e., vaccinia virus-immune) control subjects. We found that the duration of immunity following smallpox infection was remarkably similar to that observed after smallpox vaccination, with antiviral T-cell responses that declined slowly over time and antiviral antibody responses that remained stable for decades after recovery from infection. These results indicate that severe, potentially life-threatening disease is not required for the development of sustainable long-term immunity. This study shows that the levels of immunity induced following smallpox vaccination are comparable in magnitude to that achieved through natural variola virus infection, and this may explain the notable success of vaccination in eradicating smallpox, one of the world's most lethal diseases.  相似文献   

11.
Although naturally occurring smallpox was eliminated through the efforts of the World Health Organization Global Eradication Program, it remains possible that smallpox could be intentionally released. Here we examine the magnitude and duration of antiviral immunity induced by one or more smallpox vaccinations. We found that more than 90% of volunteers vaccinated 25-75 years ago still maintain substantial humoral or cellular immunity (or both) against vaccinia, the virus used to vaccinate against smallpox. Antiviral antibody responses remained stable between 1-75 years after vaccination, whereas antiviral T-cell responses declined slowly, with a half-life of 8-15 years. If these levels of immunity are considered to be at least partially protective, then the morbidity and mortality associated with an intentional smallpox outbreak would be substantially reduced because of pre-existing immunity in a large number of previously vaccinated individuals.  相似文献   

12.
Monkeypox virus (MPXV) is an orthopoxvirus closely related to variola virus, the causative agent of smallpox. Human MPXV infection results in a disease that is similar to smallpox and can also be fatal. Two clades of MPXV have been identified, with viruses of the central African clade displaying more pathogenic properties than those within the west African clade. The monkeypox inhibitor of complement enzymes (MOPICE), which is not expressed by viruses of the west African clade, has been hypothesized to be a main virulence factor responsible for increased pathogenic properties of central African strains of MPXV. To gain a better understanding of the role of MOPICE during MPXV-mediated disease, we compared the host adaptive immune response and disease severity following intrabronchial infection with MPXV-Zaire (n = 4), or a recombinant MPXV-Zaire (n = 4) lacking expression of MOPICE in rhesus macaques (RM). Data presented here demonstrate that infection of RM with MPXV leads to significant viral replication in the peripheral blood and lungs and results in the induction of a robust and sustained adaptive immune response against the virus. More importantly, we show that the loss of MOPICE expression results in enhanced viral replication in vivo, as well as a dampened adaptive immune response against MPXV. Taken together, these findings suggest that MOPICE modulates the anti-MPXV immune response and that this protein is not the sole virulence factor of the central African clade of MPXV.  相似文献   

13.
The smallpox vaccine is widely considered the gold standard for human vaccines, yet the key antibody targets in humans remain unclear. We endeavored to identify a stereotypic, dominant, mature virion (MV) neutralizing antibody target in humans which could be used as a diagnostic serological marker of protective humoral immunity induced by the smallpox vaccine (vaccinia virus [VACV]). We have instead found that diversity is a defining characteristic of the human antibody response to the smallpox vaccine. We show that H3 is the most immunodominant VACV neutralizing antibody target, as determined by correlation analysis of immunoglobulin G (IgG) specificities to MV neutralizing antibody titers. It was determined that purified human anti-H3 IgG is sufficient for neutralization of VACV; however, depletion or blockade of anti-H3 antibodies revealed no significant reduction in neutralization activity, showing anti-H3 IgG is not required in vaccinated humans (or mice) for neutralization of MV. Comparable results were obtained for human (and mouse) anti-L1 IgG and even for anti-H3 and anti-L1 IgG in combination. In addition to H3 and L1, human antibody responses to D8, A27, D13, and A14 exhibited statistically significant correlations with virus neutralization. Altogether, these data indicate the smallpox vaccine succeeds in generating strong neutralizing antibody responses not by eliciting a stereotypic response to a single key antigen but instead by driving development of neutralizing antibodies to multiple viral proteins, resulting in a "safety net" of highly redundant neutralizing antibody responses, the specificities of which can vary from individual to individual. We propose that this is a fundamental attribute of the smallpox vaccine.  相似文献   

14.
Eradication of the smallpox virus through extensive global vaccination efforts has resulted in one of the most important breakthroughs in medical history, saving countless lives from the severe morbidity and mortality that is associated with this disease. Although smallpox is now extinct in nature, laboratory stocks of this virus still remain and the subject of smallpox vaccination has gained renewed attention due to the potential risk that smallpox may be used as a biological weapon by terrorists or rogue states. Despite having the longest history of any modern vaccine, there is still much to be learned about smallpox vaccination and the correlates of protection remain to be formally defined. This Commentary will discuss the strengths and weaknesses of traditional smallpox vaccination in comparison with immunization using modified vaccinia virus Ankura (MVA), a non-replicating virus with a strong safety record but weakened immunogenicity.  相似文献   

15.
Of 20 suckling rabbits, 4-5-days old, inoculated with live smallpox vaccine intradermally 6 displayed symptoms of generalized pox virus and neuroparalysis complications. Intensive accumulation of specific antigen in the brain, lungs, spleen, and the lymph glands was revealed by immunofluorescent method. The smallpox vaccine virus was isolated from these organs. Prolonged persistance of the attenuated smallpox virus was observed in the brain, spinal cord, lungs, spleen, and the lymph glands of 14 suckling rabbits showing no signs of any disease; specific antigen was revealed by immunofluorescent test. Vascular disturbances and slight cell changes were observed in the brain tissue of the inoculated animals. These changes were more severe in the sick animals.  相似文献   

16.
微量滴定法代替血球吸附法测定天花疫苗效力。通过对Vero细胞接种浓度和细胞病变判定时间的优化,确定了微量滴定法测定天花疫苗效力的方法,用Vero细胞微量滴定法和血球吸附法测定14批天花疫苗。两种滴定方法的检测结果差异有显著意义(P<0.05),二者存在正相关(r=0.76,0.001相似文献   

17.
Smallpox was eradicated by the World Health Organization (WHO) vaccination campaign in the 1970s and the variola virus was restricted to repositories in the United States and Russia. Recently, however, concerns have arisen about the possible existence of variola outside these sites and the potential for using the virus as a weapon of bioterror. The world population now has little residual immunity to smallpox and supplies of the smallpox vaccine are being reconstituted. Large numbers of individuals with various skin diseases or immunosuppression owing to AIDS or organ transplantation medications, or who are pregnant or have heart disease might not be ideal candidates for vaccination with the current live vaccines. It would be useful to have an orally active drug that could be self-administered in case of an outbreak of smallpox.  相似文献   

18.

Background  

Quantification of the transmission dynamics of smallpox is crucial for optimizing intervention strategies in the event of a bioterrorist attack. This article reviews basic methods and findings in mathematical and statistical studies of smallpox which estimate key transmission parameters from historical data.  相似文献   

19.
The effect of antigenic polymorphism of the ABO-system blood groups on the character of the vaccinal process after immunization against natural smallpox was investigated. The increased susceptibility of persons possessing A antigen to the harmful effect of smallpox vaccine virus is due to hereditary rather than to acquired factors. The leukocytes of peripheral blood of these persons showed a poorer binding capacity with respect to the smallpoxvaccine virus; they also exhibited a high rate of chromosomal aberration after vaccination, resulting to some extent from increased proliferative ability of the cells.  相似文献   

20.
The potential threat of smallpox as a bioweapon has led to the production and stockpiling of smallpox vaccine in some countries. Human monkeypox, a rare but important viral zoonosis endemic to central and western Africa, has recently emerged in the United States. Thus, even though smallpox has been eradicated, a vaccinia virus vaccine that can induce protective immunity against smallpox and monkeypox is still invaluable. The ability of the highly attenuated vaccinia virus vaccine strain LC16m8, with a mutation in the important immunogenic membrane protein B5R, to induce protective immunity against monkeypox in nonhuman primates was evaluated in comparison with the parental Lister strain. Monkeys were immunized with LC16m8 or Lister and then infected intranasally or subcutaneously with monkeypox virus strain Liberia or Zr-599, respectively. Immunized monkeys showed no symptoms of monkeypox in the intranasal-inoculation model, while nonimmunized controls showed typical symptoms. In the subcutaneous-inoculation model, monkeys immunized with LC16m8 showed no symptoms of monkeypox except for a mild ulcer at the site of monkeypox virus inoculation, and those immunized with Lister showed no symptoms of monkeypox, while nonimmunized controls showed lethal and typical symptoms. These results indicate that LC16m8 prevents lethal monkeypox in monkeys, and they suggest that LC16m8 may induce protective immunity against smallpox.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号