共查询到20条相似文献,搜索用时 15 毫秒
1.
A Golay L Zech M Z Shi C Y Jeng Y A Chiou G M Reaven Y D Chen 《Journal of lipid research》1987,28(1):10-18
The effect of alloxan-induced insulin deficiency on high density lipoprotein (HDL) metabolism was studied in rabbits. Rabbits with alloxan-induced diabetes had significantly higher (P less than 0.001, mean +/- SEM) plasma concentrations of glucose (541 +/- 13 vs. 130 +/- 2 mg/dl), triglyceride (2851 +/- 332 vs. 101 +/- 10 mg/dl), and total plasma cholesterol (228 +/- 55 vs. 42 +/- 4 mg/dl) than did normal control rabbits. However, diabetic rabbits had lower plasma HDL-cholesterol (7.2 +/- 1 vs. 51.3 +/- 1.3 mg/dl, P less than 0.001) and HDL apoA-I (38.3 +/- 6.0 vs. 87.2 +/- 4.3 mg/dl, P less than 0.001) concentrations. HDL kinetics were compared in diabetic and normal rabbits, using either 125I-labeled HDL or HDL labeled with 125I-labeled apoA-I, and it was demonstrated that HDL fractional catabolic rate (FCR) was slower and residence time was longer in the diabetic rabbits when either tracer was used. The slow FCR and the low apoA-I pool size led to reduced apoA-I/HDL synthetic rate in diabetic rabbits (0.97 +/- 0.11 vs. 0.34 +/- 0.07 mg per kg per hr). Thus, the reduced plasma HDL-cholesterol concentrations seen in rabbits with alloxan-induced insulin deficiency was associated with a lower total apoA-I/HDL synthetic rate. Since insulin treatment restored to normal all of the changes in plasma lipoprotein concentration and kinetics seen in diabetic rabbits, it is unlikely that the phenomena observed were secondary to a nonspecific toxic effect of alloxan. These data strongly support the view that insulin plays an important role in regulation of HDL metabolism. 相似文献
2.
3.
David Gvaramia Marjolein E. Blaauboer Roeland Hanemaaijer Vincent Everts 《Matrix biology》2013,32(6):307-315
Fibrosis underlies the pathogenesis of numerous diseases and leads to severe damage of vital body organs and, frequently, to death. Better understanding of the mechanisms resulting in fibrosis is essential for developing appropriate treatment solutions and is therefore of upmost importance. Recent evidence suggests a significant antifibrotic potential of an integral membrane protein, caveolin-1. While caveolin-1 has been widely studied for its role in the regulation of cell signaling and endocytosis, its possible implication in fibrosis remains largely unclear. In this review we survey involvement of caveolin-1 in various cellular processes and highlight different aspects of its antifibrotic activity. We hypothesize that caveolin-1 conveys a homeostatic function in the process of fibrosis by (a) regulating TGF-β1 and its downstream signaling; (b) regulating critical cellular processes involved in tissue repair, such as migration, adhesion and cellular response to mechanical stress; and (c) antagonizing profibrotic processes, such as proliferation. Finally, we consider this homeostatic function of caveolin-1 as a possible novel approach in treatment of fibroproliferative diseases. 相似文献
4.
Caveolin-1 is a protein component (of relative molecular mass 22, 000) of the striated coat that decorates the cytoplasmic surface of caveolae membranes. Previous biochemical and molecular tests have indicated that caveolin-1 is an integral membrane protein that is co-translationally inserted into endoplasmic-reticulum membranes of fibroblast and epithelial cells such that its carboxy- and amino-terminal ends are in the cytoplasm. Here we identify caveolin-1 in the secretory pathway of exocrine cells. Secretion of caveolin-1 from pancreatic acinar cells and a transfected exocrine cell line, but not from Chinese hamster ovary cells, is stimulated by the secretagogues secretin, cholecystokinin and dexamethasone. The secreted caveolin-1 co-fractionates with apolipoproteins, indicating that it may be secreted in a complex with lipids. 相似文献
5.
Rhee J Ge H Yang W Fan M Handschin C Cooper M Lin J Li C Spiegelman BM 《The Journal of biological chemistry》2006,281(21):14683-14690
6.
Role of phosphatidylcholine biosynthesis in the regulation of lipoprotein homeostasis 总被引:1,自引:0,他引:1
Vance DE 《Current opinion in lipidology》2008,19(3):229-234
PURPOSE OF REVIEW: This review summarizes the role of phosphatidylcholine metabolism in plasma lipoprotein homeostasis. RECENT FINDINGS: While it was previously known that phosphatidylcholine biosynthesis was required for normal hepatic VLDL secretion, recent studies have shown that both phosphatidylcholine biosynthetic pathways (the cytidine 5'-diphosphocholine and the phosphatidylethanolamine methylation pathways) are required. In addition, a requirement of acyl-coenzyme A synthetase 3, but not acyl-coenzyme A synthetase 1 or 4, for phosphatidylcholine synthesis and VLDL secretion is now documented. ABCA1 has been implicated in the transfer of phosphatidylcholine to apolipoproteinA-1 both during and after secretion of apolipoproteinA-1. Other studies have introduced the concept of reverse phosphatidylcholine transport in which both HDL and LDL supply phosphatidylcholine to the liver. An unexpected finding is that half of the phosphatidylcholine delivered to liver from lipoproteins is converted into triacylglycerol. SUMMARY: The liver is both a donor of phosphatidylcholine during the assembly and secretion of lipoproteins as well as a recipient of phosphatidylcholine from plasma lipoproteins. 相似文献
7.
载脂蛋白M(apoM)是lipocalin家族成员,其表达具有组织特异性.血小板活化因子(PAF)能增加apoM以及apoM mRNA在Hepg2细胞中的表达,而PAF受体拮抗剂(1exipafant)能抑制apoM的表达.apoM血清水平的高低与肝细胞核因子(HNF-1a)浓度有关.胰岛素在体内也调节apoM的生成.瘦素(Levtin)特异性调节apoM的分泌.apoM大部分存在于高密度脂蛋白(HDL)中,影响HDL的代谢并具有抗动脉粥样硬化作用.通过对apoA-I缺陷小鼠研究发现:正常小鼠体内apoM与apoA-I代谢有关.在低密度脂蛋白(LDL)与HDL中apoM存在5个亚型.在汉族人群中apoM基因的核苷酸778C等位基因以及855C均能增加患冠状动脉粥样硬化的危险性.apoM似乎与2型糖尿病患者的动脉粥样硬化的因子相关. 相似文献
8.
Role of iron in the regulation of ferritin metabolism 总被引:5,自引:0,他引:5
9.
窖蛋白-1在细胞增殖和肝再生中的作用 总被引:1,自引:0,他引:1
窖蛋白-1(caveolin-1,Cav-1)是组成胞膜窖(caveolae)的主要功能蛋白.作为质膜上的独立结构,胞膜窖参与多种细胞活动,如胆固醇运输、信号转导以及细胞膜的组装等.通常,窖蛋白-1可以通过其N端的窖蛋白脚手架区(caveolin scaffolding domain,CSD)寡聚细胞外信号激酶(Erk1/2)的上游蛋白,抑制Erk1/2的活化,从而抑制细胞增殖和肿瘤转移.新近研究表明,窖蛋白-1通过促进甘油三酯的储存和利用而对肝再生起重要的调控作用.因此,窖蛋白-1可能是调控肝实质细胞增殖的关键蛋白. 相似文献
10.
11.
Adenovirus-mediated expression of caveolin-1 in mouse liver increases plasma high-density lipoprotein levels 总被引:3,自引:0,他引:3
Caveolae are 50-100 nm plasma membrane invaginations, which function in cell signaling and transcytosis, as well as in regulating cellular cholesterol homeostasis. These subcompartments of the plasma membrane are characterized by the presence of caveolin proteins. Recent studies have indicated that caveolae may be involved in the regulation of cellular cholesterol efflux to HDL, as well as selective uptake mediated by SR-BI. In the present study, we have determined the effect of caveolin-1 overexpression in mouse liver on plasma lipoprotein metabolism. We evaluated this effect using an adenovirus-mediated gene delivery system. C57BL/6J mice were injected with adenoviruses encoding either caveolin-1 (Adcav-1) or green fluorescent protein (AdGFP) together with a transactivator adenovirus (AdtTA). We found that, after adenovirus injection, caveolin-1 was overexpressed in hepatocytes. Moreover, the recombinant protein was localized to the plasma membrane. We also found that caveolin-1 overexpression induced a marked change in the lipoprotein profile of injected animals. In caveolin-1 overexpressing animals, plasma HDL-cholesterol levels were found to be approximately 2-fold elevated, as compared with control animals. To determine the effect of caveolin-1 on SR-BI-mediated selective uptake, we infected murine hepatocytes in culture with an adenoviral vector carrying the caveolin-1 cDNA or GFP as a control protein. We show that, in primary cultures of hepatocytes, caveolin-1 inhibits DiI-HDL uptake mediated by SR-BI. This result would mechanistically explain the increased plasma HDL-cholesterol levels we observed in caveolin-1 adenovirus-injected animals. In addition, caveolin-1 expression increased the secretion of apolipoprotein A-I in cultured hepatocytes and increased apolipoprotein A-I plasma levels in mice. Our study therefore demonstrates an important role for caveolin-1 in regulating HDL metabolism. 相似文献
12.
Although caveolins normally reside in caveolae, they can accumulate on the surface of cytoplasmic lipid droplets (LDs). Here, we first provided support for our model that overaccumulation of caveolins in the endoplasmic reticulum (ER) diverts the proteins to nascent LDs budding from the ER. Next, we found that a mutant H-Ras, present on the cytoplasmic surface of the ER but lacking a hydrophobic peptide domain, did not accumulate on LDs. We used the fact that wild-type caveolin-1 accumulates in LDs after brefeldin A treatment or when linked to an ER retrieval motif to search for mutants defective in LD targeting. The hydrophobic domain, but no specific sequence therein, was required for LD targeting of caveolin-1. Certain Leu insertions blocked LD targeting, independently of hydrophobic domain length, but dependent on their position in the domain. We propose that proper packing of putative hydrophobic helices may be required for LD targeting of caveolin-1. 相似文献
13.
Opposite effect of caveolin-1 in the metabolism of high-density and low-density lipoproteins 总被引:3,自引:0,他引:3
Truong TQ Aubin D Bourgeois P Falstrault L Brissette L 《Biochimica et biophysica acta》2006,1761(1):24-36
Receptors of the scavenger class B family were reported to be localized in caveolae, the cell surface microdomains rich in free cholesterol and glycosphyngolipids, which are characterized by the presence of caveolin-1. Parenchymal hepatic and hepatoma HepG2 cells express very low levels of caveolin-1. In the present study, stable transformants of HepG2 cells expressing caveolin-1 were generated to address the effect of caveolin-1 on receptor activity. Compared to normal cells, these cells show higher (125)I-bovine serum albumin (BSA) uptake and cholesterol efflux, two indicators of functional caveolae. By immunoprecipitation, cell fractionation and confocal analyses, we found that caveolin-1 is well colocalized with the cluster of differentiation-36 (CD36) and the low-density lipoprotein (LDL) receptor (LDLr) but to a lesser extent with the scavenger receptor class B type I (SR-BI) in HepG2 cells expressing caveolin-1. However, caveolin-1 expression favors the dimerization of SR-BI. Two clones of cells expressing caveolin-1 were investigated for their lipoprotein metabolism activity. Compared to normal cells, these cells show a 71-144% increase in (125)I-LDL degradation. The analysis of the cholesteryl esters (CE)-selective uptake (CE association minus protein association) revealed that the expression of caveolin-1 in HepG2 cells decreases by 59%-73% LDL-CE selective uptake and increases high-density lipoprotein (HDL)-CE selective uptake by 44%-66%. We conclude that the expression of caveolin-1 in HepG2 cells moves the balance of LDL degradation/CE selective uptake towards degradation and favors HDL-CE selective uptake. Thus, in the normal hepatic parenchymal situation where caveolin-1 is poorly expressed, LDL-CE selective uptake is the preferred pathway. 相似文献
14.
15.
16.
We have created by transfection a series of HEK 293 cell lines that express varying amounts of caveolin-1 to test the possible effect of this protein on the transport and metabolism of long chain fatty acids (FA) in cells with this gain of function. We used an extracellular fluorescent probe (ADIFAB) to monitor binding of exogenous FA to the plasma membrane and an intracellular pH probe to monitor FA equilibration across the plasma membrane. Real-time fluorescence measurements showed rapid binding of oleic acid to the extracellular side of the plasma membrane and a rapid translocation across the lipid bilayer by the flip-flop mechanism (<5 s). Two cell lines expressing levels of caveolin-1 roughly comparable to that of adipocytes, which have a very high level of endogenous expression of caveolin-1, showed a relatively slow change in intracellular pH (t(1/2) < 100 s) in addition to the fast changes in fluorescence. We interpret this additional second phase to represent translocation of additional FA from the outer to inner leaflet of the plasma membrane. The slower kinetics could represent either slower flip-flop of FA across highly organized, rigid regions of the plasma membrane or binding of FA to caveolin-1 in the intracellular leaflet of the plasma membrane. The kinetics of palmitate and elaidate (a trans FA) transmembrane movement were identical to that for oleate. These results were observed in the absence of the putative FA transport protein, CD36, and in the absence of any changes in expression of fatty acid transport proteins (FATP) 2 and 4, and are in direct correlation with increased cellular free cholesterol content. FA metabolism was slow in all cell lines and was not enhanced by caveolin-1 expression. We conclude that transport of FA across the plasma membrane is modulated by caveolin-1 and cholesterol and is not dependent on the putative FA transport proteins CD36 and FATP. 相似文献
17.
18.
Waschke J Golenhofen N Kurzchalia TV Drenckhahn D 《Histochemistry and cell biology》2006,126(1):17-26
Protein kinase C (PKC) is activated in response to various inflammatory mediators and contributes significantly to the endothelial barrier breakdown. However, the mechanisms underlying PKC-mediated permeability regulation are not well understood. We prepared microvascular myocardial endothelial cells from both wild-type (WT) and caveolin-1-deficient mice. Activation of PKC by phorbol myristate acetate (PMA) (100 nM) for 30 min induced intercellular gap formation and fragmentation of VE-cadherin immunoreactivity in WT but not in caveolin-1-deficient monolayers. To test the effect of PKC activation on VE-cadherin-mediated adhesion, we allowed VE-cadherin-coated microbeads to bind to the endothelial cell surface and probed their adhesion by laser tweezers. PMA significantly reduced bead binding to 78±6% of controls in WT endothelial cells without any effect in caveolin-1-deficient cells. In WT cells, PMA caused an 86±18% increase in FITC-dextran permeability whereas no increase in permeability was observed in caveolin-1-deficient monolayers. Inhibition of PKC by staurosporine (50 nM, 30 min) did not affect barrier functions in both WT and caveolin-1-deficient MyEnd cells. Theses data indicate that PKC activation reduces endothelial barrier functions at least in part by the reduction of VE-cadherin-mediated adhesion and demonstrate that PKC-mediated permeability regulation depends on caveolin-1. 相似文献
19.
Contribution of cholesterol 7alpha-hydroxylase to the regulation of lipoprotein metabolism. 总被引:2,自引:0,他引:2
J C Cohen 《Current opinion in lipidology》1999,10(4):303-307
Clinical studies have clearly established a relationship between bile acid synthesis and plasma LDL-cholesterol concentrations. Interruption of the enterohepatic circulation of bile acids leads to increased bile acid synthesis and a reduction in plasma LDL-cholesterol concentrations. New studies indicate that genetic variation in cholesterol 7alpha-hydroxylase activity accounts for a significant fraction of the inter-individual variation in plasma LDL-cholesterol concentrations in the general population, and a specific CYP7A1 allele associated with increased plasma LDL-cholesterol concentrations has been identified. Studies in which cholesterol 7alpha-hydroxylase was transiently overexpressed in hamsters and mice indicate that direct manipulation of cholesterol 7alpha-hydroxylase leads to changes in plasma LDL-cholesterol concentrations. Interestingly, targeted inactivation of the gene encoding cholesterol 7alpha-hydroxylase does not lead to increased plasma LDL-cholesterol concentrations in mice. 相似文献
20.
Ranganathan G Pokrovskaya I Ranganathan S Kern PA 《Molecular endocrinology (Baltimore, Md.)》2005,19(10):2527-2534
Activation of protein kinase A by catecholamines inhibits lipoprotein lipase (LPL) activity through the elaboration of an RNA binding complex, which inhibits LPL translation by binding to the 3'-untranslated region of the LPL mRNA. To better define this process, we reconstituted the inhibitory RNA binding complex in vitro and demonstrated that the K homology (KH) domain of A kinase anchor protein (AKAP) 121/149 plays a vital role in the inhibition of LPL translation. Inhibition of LPL translation occurred in vitro only when the Calpha subunit, R subunit, and AKAP 149 were present. Using different glutathione-S-transferase fusion proteins of AKAP 149, sequences containing the KH domain were required for inhibition of LPL translation, and the inhibition of AKAP 121 expression in 3T3-F442A adipocytes with short interfering RNA resulted in loss of epinephrine-mediated translation inhibition. After epinephrine injection into mice, LPL activity was inhibited in white adipose tissue but not in brown adipose tissue (BAT) or muscle. LPL activity and synthetic rate were inhibited in vitro by the addition of epinephrine to 3T3-F442A adipocytes, but there was no effect in L6 muscle cells and cultures of brown adipocytes. Corresponding with these differences in LPL translation, AKAP 121 protein and mRNA were abundantly expressed in mouse white adipose tissue, but was either very low or undetectable in BAT and muscle. Thus, AKAP 121/149 contains a KH region that is essential to the translation inhibition of LPL in response to epinephrine. BAT and muscle do not express significant AKAP 121/149, and this likely explains some of the tissue-specific differences in LPL regulation. 相似文献