首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Double immunofluorescence staining experiments designed to examine the synthesis and deposition of collagen types I and IV in cultured explants of embryonic mouse lung revealed the presence of connective tissue-like fibers that were immunoreactive with anti-type IV collagen antibodies. This observation is contrary to the widely accepted belief that type IV collagen is found only in sheet-like arrangements beneath epithelia or as a sheath-like layer enveloping bundles of nerve or muscle cells. The extracellular matrix produced by cells that migrate from embryonic mouse lung rudiments in vitro was examined by double indirect immunofluorescence microscopy. Affinity-purified monospecific polyclonal antibodies were used to examine cells after growth on glass or native collagen substrata. The data show that embryonic mesenchymal cells can produce organized fibers of type IV collagen that are not contained within a basement membrane, and that embryonic epithelial cells deposit fibers and strands of type IV collagen beneath their basal surface when grown on glass; however, when grown on a rat tail collagen substratum the epithelial cells produce a fine meshwork. To our knowledge this work represents the first report that type IV collagen can be organized by cells into a fibrous extracellular matrix that is not a basement membrane.  相似文献   

2.
Dermal cells isolated from the back skin of 7-day chick embryos were cultured on homogeneous two-dimensional substrates consisting of one or two extracellular matrix components (type I, III, or IV collagen, fibronectin and several glycosaminoglycans (GAGs): hyaluronate, chondroitin-4, chondroitin-6, dermatan and heparan sulfates). The effect of these substrates on the production of fibronectin, of types I, III and IV collagen by cells was compared with that of culture dish polystyrene. Using immunofluorescent labeling of cultured cells, it was observed that, on all substrates, in 1-day and 7-day cultures, 85 to 95% of cells contain type I collagen in the perinuclear cytoplasm; label was absent from cell processes. Type I collagen was also detected in extracellular fibers extending between neighboring cells. By contrast, on all substrates, only 5 to 20% of cells produced type III collagen. Otherwise distribution of type III collagen was similar to that of type I collagen. With anti-type IV collagen antibody no staining of either cell content or extracellular spaces was detected. Staining with anti-fibronectin antibody revealed two types of distribution patterns. On polystyrene and on all but type I collagen substrates, labeling revealed clusters of short thick strands and patches of fibronectin-rich material in extracellular spaces. On type I collagen substrate, however, immunostaining revealed a delicate network of regularly spaced parallel fibrils of fibronectin extending between and along cells. Using quantitative radioimmunoassay of the culture media, it was shown that, after 7 days of culture, cells secreted more type I than type III collagen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The present investigation was an ontogenetic study on the distribution of extracellular matrix (ECM) components in the thymic microenvironment of C57BL/6 mice (comprising young and old adults and developing embryos) and NZB mice. In addition, we evaluated the in vivo and in vitro influence of hydrocortisone treatment on basement membrane protein production by a thymic epithelial cell line. In young normal animals, Type I collagen was restricted to the interstitial spaces of the capsule and septa, where Type IV collagen, fibronectin, and laminin could be detected in the basement membranes. In addition, fibronectin-containing fibers were seen within the medulla of the thymic lobules. The ECM distribution pattern in the developing embryos was distinct from that observed in adults, since a fine meshwork of basement membrane-containing proteins was clearly seen throughout the parenchyma. Moreover, aging normal and NZB mice exhibited a denser ECM pattern than young adult normal animals. Treatment with hydrocortisone, both in vivo and in vitro, resulted in enhancement of ECM expression, detected in mice as early as 2 hr post injection and lasting for several days. Considering that the fluctuations of ECM expression parallel important events in thymocyte differentiation, we discuss the possibility that the two phenomena may be associated.  相似文献   

4.
Synthesis of basement membrane components by differentiated thyroid cells   总被引:1,自引:0,他引:1  
Morphological studies indicate that basement membrane formation or maintenance can be achieved in cultures of thyroid cells. In the present investigation we have studied the biosynthesis of this extracellular matrix by differentiated porcine thyroid cells in culture. They were prepared by two procedures: (1) thyroid cells isolated by dispase digestion of the thyroid gland were maintained in serum-free medium on poly(L-lysine) coated dishes; (2) thyroid follicles released by collagenase treatment of the gland were isolated by differential filtration and cultured in suspension on agarose-coated dishes. In both cases, functional follicular-like structures were obtained as shown by their ability to organify Na125I and to respond to thyrotropin stimulation (250 microU/ml). After incubating the cells with radiolabeled proline or methionine, collagen synthesis was observed with the two types of culture, as shown by the formation of radioactive hydroxyproline and by the synthesis of peptides with electrophoretic properties identical to those of authentic collagen molecules and susceptible to collagenase. Besides variable amounts of type I and type III collagen-like peptides, significant proportions of labeled peptides migrated with type IV collagen chains and were precipitated by anti-type IV collagen antibody; thyrotropin had no significant effect either on the total collagen synthesis or on the relative amounts of the different collagen peptides. When thyroid cells were incubated with [35S]sulfate, a labeled glycosaminoglycan with chromatographic properties analogous to that of heparan sulfate could be obtained in both culture conditions; here again, no effect of thyrotropin was observed. The ability of differentiated porcine thyroid cells to synthesize basement membrane was suggested by their production of type IV collagen and heparan sulfate, two of its potential components. Thyrotropin, which drastically enhanced the functional property of the cells, did not seem to regulate this synthesis.  相似文献   

5.
Type IV collagen is a major structural component of basement membranes which play various roles upon their adjacent cells. In order to better understand roles of type IV collagen during the somite differentiation, we produced anti-rat type IV collagen polyclonal antibodies and demonstrated spacial and temporal distribution of type IV collagen in somites of the chick embryo by immunohistochemical procedure. Type IV collagen was detected in the basal surface and the cytoplasm of epithelial dermatome cells at early stage of the somite differentiation, and then detected in myotome cells overlying apical surface of dermatomes, but not in migratory mesenchymal dermatome cells. With the appearance of type IV collagen-expressing myotome cells, epithelial dermatome cells showed the decrease in immunoreaction with anti-type IV collagen antibodies, the disappearance of their basal-apical polarity and their epithelial shape. From these results, it was suggested that type IV collagen is an early marker for myotome cells, and that type IV collagen and/or other factors co-expressed by myotome cells might provide an accelerative signal for epithelial/mesenchymal conversion of dermatome cells.  相似文献   

6.
The biosynthetic products of the Engelbreth-Holm-Swarm (EHS) tumor and the cell-free translation products of EHS tumor cell RNA were characterized. Six distinct gene products (three laminin polypeptides, entactin/nidogen, and two collagen IV chains) comprising the basement membrane matrix were identified by a combination of proteolytic digestion and immunologic techniques. Analysis of the cell-free translation products using EHS tumor RNA precipitated by anti-laminin serum confirms earlier evidence that there are at least two B chains encoded by different genes. The anti-laminin serum also recognized entactin/nidogen, which was further identified by specific immunoprecipitation with anti-entactin serum. Radiolabeled laminin A chains, synthesized by the EHS tumor in organ culture, were also identified by the anti-laminin serum but were not detected among the cell-free translation products of EHS tumor RNA. Pulse-chase studies of EHS tumor in organ culture as well as in vitro translation of EHS tumor RNA suggest that the precursor forms of alpha 1(IV) and alpha 2(IV) collagen chains are nearly identical in size, with apparent molecular weights of 170,000. The mRNAs encoding these two polypeptides migrate differently on sucrose gradients. It is likely that glycosylation and hydroxylation of collagen IV account for the major differences in molecular weight of mature alpha 1(IV) and alpha 2(IV) chains in the EHS tumor matrix.  相似文献   

7.
Little is known about the role of the extracellular matrix in cellular growth, migration and differentiation in the developing liver. The distribution and origin of the main constituents of the hepatic extracellular matrix have never been studied during liver differentiation. We have investigated the extracellular and intracellular distribution of fibronectin, laminin and types I, III and IV collagen in both rat and human liver during the perinatal period by light and electron microscopy, using the indirect immunoperoxidase method. All these components were demonstrated extracellularly, located mainly in portal spaces and, to a lesser extent, surrounding central veins. In perisinusoidal spaces, variations in distribution were observed depending on the matrix protein, the age of the donor and the species. In fetal rat liver, fibronectin formed a continuous layer around hepatocyte clusters while laminin and type III procollagen were present in small amounts. Collagens and laminin were visualized more easily in newborn rat liver. Fetal and newborn human liver contained higher amounts of matrix components than their rat counterparts. Fibronectin also reacted strongly in the sinusoid, and laminin and collagens formed discontinuous deposits. The source of this extracellular matrix was demonstrated to be of mixed origin. The major finding was the presence of immunoreactive laminin in the rough endoplasmic reticulum of hepatocytes irrespective of the age or species. In addition, hepatocytes contained large amounts of fibronectin and little of type I collagen. Another basement membrane component, type IV collagen, was also found in hepatocytes from all groups except fetal rat. Perisinusoidal cells also contained various matrix components including laminin, type III procollagen and, again with the exception of fetal rat liver, type IV collagen. The greater amounts of basement membrane components in the sinusoids of developing liver than in adult tissue and the participation of immature hepatocytes in the production of laminin and to a lesser degree of type IV collagen suggest that these matrix proteins play a critical role during liver differentiation.  相似文献   

8.
Schwann cells, the myelin-forming cells of the peripheral nervous system, are surrounded by a basement membrane. Whether cultured rat Schwann cells synthesize the basement membrane-specific components, laminin and collagen type IV, and whether these components influence the adhesion, morphology, and growth of these cells have been investigated. Both laminin and collagen type IV were detected in the cytoplasm of Schwann cells by immunofluorescence. After ascorbate treatment, laminin and collagen type IV were both found in an extracellular fibrillar matrix bound to the Schwann cell surface. Laminin was further localized on the Schwann cell surface by electron microscopy using gold immunolabeling. Anti-laminin IgG-labeled gold particles were scattered over the cell surface, and linear rows of particles and small aggregates were found along the cell edges and at points of contact with other cells. When added to the culture medium, laminin acted as a potent adhesion factor, stimulating Schwann cell adhesion as much as eightfold above control levels on type IV collagen. In the presence of laminin, the cells became stellate and by 24 hr had extended long, thin processes. Laminin also stimulated cell growth in a dose-dependent manner and anti-laminin IgG completely inhibited cell attachment and growth in the absence of exogenous laminin. Thus, cultured Schwann cells synthesize laminin and collagen type IV, two major components of basement membrane, and laminin may trigger Schwann cell differentiation in vivo during early stages of axon-Schwann cell interaction before myelination.  相似文献   

9.
In this study mouse lung development was examined using an in vitro model system. The culture system permitted examination of a morphogenic process that eventually led to the formation of presumptive alveoli (terminal sacs). The observations included changes in epithelial cell morphology (transition from a columnar to a spindle shape), and evidence for motile activity on the part of primitive airway epithelial cells. The importance of Type IV collagen to the cellular events associated with branching morphogenesis was investigated by immunolocalization. In addition, we assessed the similarity of normal lung development to in vitro development by comparing cultured lungs with equivalent stages of embryonic and fetal mouse lungs. The results show that cultured embryonic lung explants proceed along a morphogenic pathway that parallels normal lung development; that primitive pulmonary epithelial cells engage in motile activity and transiently acquire an extended cell shape both in vitro and in vivo; that, as suggested by others, the pattern of late branching morphogenesis is not dichotomous, but irregular; and that short wisplike fibers of Type IV collagen are present in developing embryonic and fetal lung mesenchyme. Taken together, the results show that early and late lung branching patterns differ significantly, and suggest that later stages of lung branching involve distinct epithelial cell shape transitions. The immunofluorescence data suggest that fibrous Type IV collagen may be the extracellular matrix scaffold within which early epithelial cells accomplish lung branching morphogenesis.  相似文献   

10.
Reconstituted basement membranes and extracellular matrices have been demonstrated to affect, positively and dramatically, the production of milk proteins in cultured mammary epithelial cells. Here we show that both the expression and the deposition of extracellular matrix components themselves are regulated by substratum. The steady-state levels of the laminin, type IV collagen, and fibronectin mRNAs in mammary epithelial cells cultured on plastic dishes and on type I collagen gels have been examined, as has the ability of these cells to synthesize, secrete, and deposit laminin and other, extracellular matrix proteins. We demonstrate de novo synthesis of a basement membrane by cells cultured on type I collagen gels which have been floated into the medium. Expression of the mRNA and proteins of basement membranes, however, are quite low in these cultures. In contrast, the levels of laminin, type IV collagen, and fibronectin mRNAs are highest in cells cultured on plastic surfaces, where no basement membrane is deposited. It is suggested that the interaction between epithelial cells and both basement membrane and stromally derived matrices exerts a negative influence on the expression of mRNA for extracellular matrix components. In addition, we show that the capacity for lactational differentiation correlates with conditions that favor the deposition of a continuous basement membrane, and argue that the interaction between specialized epithelial cells and stroma enables them to create their own microenvironment for accurate signal transduction and phenotypic function.  相似文献   

11.
Morphogenesis of some tissues and organs in the developing embryo requires the transformation of epithelial cells into mesenchyme followed by cell motility and invasion of surrounding connective tissues. Details of the mechanisms involved in this important process are beginning to be elucidated. The epithelial-mesenchymal transformation (EMT) process involves many steps, one of which is the upregulation and activation of specific extracellular proteinases including members of the matrix metalloproteinase (MMP) family. Here we analyze the role of MMPs in the initiation of the mesenchymal cell phenotype in the developing heart, and find that they are necessary for the invasion of mesenchymal cells into the extracellular matrix of the endocardial cushion tissues. An important requirement in the formation of this mesenchyme is the turnover of type IV collagen along the basal surface of endocardial cells. In vitro experiments suggest that type IV collagen does not provide a suitable migratory substrate for endocardial cushion cells unless MMP-2 and MT-MMP are active. Relevant MMPs were found to be upregulated by factors known to be involved in the induction of the EMT such as TGFbeta3. These results provide evidence of an important role for MMPs during a specific stage of the epithelial mesenchymal transformation in the embryonic heart, and suggest that specific cell-matrix interactions which facilitate cell migration only occur when the composition of the surrounding extracellular matrix is proteolytically altered.  相似文献   

12.
The hepatic vitamin A-storing Ito cell has been implicated as a causative cell in hepatic fibrogenesis. Using a modification of a recent method (Friedman, S. L., Roll, F. J., Boyles, J., and Bissell, D. M. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 8681-8685), rat Ito cells were isolated and passaged in vitro on collagen-coated plastic dishes through cell generation 40-50. The collagen synthetic phenotype for Ito cells grown on various extracellular matrices was demonstrated by immunofluorescence and quantitated by competition enzyme-linked immunosorbent assays. When grown on a type I collagen matrix, Ito cells produced type IV greater than type III greater than type I collagen. When grown on a type IV collagen matrix, the cells produced relatively equal amounts of types I and III collagen. The absolute amounts of type I collagen produced were greater when cells were grown on type IV versus type I matrix. When 10(-5) M retinol was added to cell cultures, there was a uniform increase in type III collagen regardless of matrix type but a decrease in type I collagen when cells were grown on a type IV matrix and a large increase in type I collagen when cells were grown on a type I collagen matrix. The levels of cellular retinol binding protein, a key cytosolic retinol transport protein, were quantitated by high performance liquid chromatography and compared for cells grown on type I versus type IV collagen matrices. It was found that cells on a type I matrix contain 4.96 +/- 2.8 times more cellular retinol binding protein than do cells grown on a type IV matrix. In conclusion, Ito cell collagen synthesis may be altered by underlying extracellular matrix and exogenous retinol. This in vitro culture system should allow the study of regulatory factors and possible therapeutic anti-fibrogenic mediators.  相似文献   

13.
Vascular basement membrane contains laminin, fibronectin, proteoglycan and collagens. These molecules have been identified in various tissues by immunolabeling methods and biochemical analyses. We have previously localized laminin, fibronectin and type IV collagen to the basement membrane of rat retinal vessels at the ultrastructural level using an immunoperoxidase method. In this study, we use an immunogold method to re-examine the distribution of these molecules and also to study the localization of heparan sulfate proteoglycan and types I, III and V collagen in the retinal capillary basement membrane. Gold labeling for laminin, type IV collagen and proteoglycan were found diffusely on the basement membrane of the endothelium and pericyte, while that for fibronectin and type V collagen was spotty and variable and that for types I and III collagen was negligible. The segment of basement membrane between the endothelial cell and pericyte appeared less reactive to anti-laminin and anti-type IV collagen than the membrane between the pericyte and perivascular neuroretina. The immunogold method may be useful in quantitative studies of thickened basement membranes under abnormal conditions.  相似文献   

14.
The gene LamC2 encoding the gamma2 chain of laminin 5, an epithelial cell-specific extracellular matrix protein, was identified in a PCR-based subtracted cDNA library from mouse thymic stromal cells. The mRNA existed in two alternative forms (5.1 and 2.4 kb). The full-length message was highly expressed in SCID thymus and in a nurse cell line, but not in other thymic epithelial cell lines, while the short form was more widely expressed. In situ hybridization and immunohistochemical staining revealed laminin 5 expression mostly in the subcapsular region of the adult thymus. Addition to fetal thymic organ cultures of a cell adhesion-blocking mAb to the alpha3 chain of laminin 5 interrupted T cell development. There was a 40% reduction in the total yield of thymocytes, and the most profound decrease (75-90%) was seen in the CD25+CD44+ and CD25+CD44-subsets of the CD4-CD8- double negative fraction. Most of the surviving double negative thymocytes expressed Sca-1, and there were significant increases in the number of cells with CD69 expression and in the fraction of annexin V-stained cells. None of these changes were observed with a nonblocking anti-laminin alpha3 chain mAb. These results suggest that the interaction between double negative thymoctyes and laminin 5 made by subcapsular epithelial cells is required for the survival and differentiation of mouse thymocytes.  相似文献   

15.
Mouse mammary epithelial cultivated on collagen gels demonstrate active spreading as the cells form monolayers. In this novel system, initiation of cell spreading is preceded by de novo synthesis of type IV collagen. The newly synthesized collagen is partitioned such that after 48 hr, approximately 24% is found in the culture medium, 35% is intracellular, and 41% is deposited in the extracellular matrix of the developing epithelium. Cultures deprived of serum failed to spread and to synthesize collagen. Proline analogues were shown to inhibit cell spreading and to suppress collagen synthesis in a dose-dependent manner. Cytochalasin D inhibition of F-actin elongation was shown to prevent cell spreading but not to suppress total collagen synthesis. During cytochalasin D treatment, inhibition of cell spreading was shown to result from failure to deposit or to maintain deposited collagen in the epithelium extracellular matrix. The data indicate that synthesis and extracellular deposition of a major basal lamina component (viz. type IV collagen) must precede and then accompany epithelial cell spreading in collagen gel culture. It is suggested that the microfilament apparatus, through some hypothetical integral membrane protein, can anchor extracellular type IV collagen, which then provides a necessary condition for cell spreading.  相似文献   

16.
The localization of the extracellular matrix recognition molecule J1/tenascin was investigated in the crypt-villus unit of the adult mouse ileum by immunoelectron microscopic techniques. In the villus region, J1/tenascin was detected strongly in the extracellular matrix (ECM) between fibroblasts of the lamina propria. It was generally absent in the ECM at the interface between subepithelial fibroblasts and intestinal epithelium, except for some restricted areas along the epithelial basal lamina of villi, but not of crypts. These restricted areas corresponded approximately to the basal part of one epithelial cell. In J1/tenascin-positive areas, epithelial cells contacted the basal lamina with numerous microvillus-like processes, whereas in J1/tenascin-negative areas the basal surface membranes of epithelial cells contacted their basal lamina in a smooth and continuous apposition. In order to characterize the functional role of J1/tenascin in the interaction between epithelial cells and ECM, the intestinal epithelial cell line HT-29 was tested for its ability to adhere to different ECM components. Cells adhered to substratum-immobilized fibronectin, laminin and collagen types I to IV, but not to J1/tenascin. When laminin or collagen types I to IV were mixed with J1/tenascin, cell adhesion was as effective as without J1/tenascin. However, adhesion was completely abolished when cells were offered a mixture of fibronectin and J1/tenascin as substratum. The ability of J1/tenascin to reduce the adhesion of intestinal epithelial cells to their fibronectin-containing basal lamina suggests that J1/tenascin may be involved in the process of physiological cell shedding from the villus.  相似文献   

17.
Cell spreading and migration associated with the expression of the 92-kD gelatinase (matrix metalloproteinase 9 or MMP-9) are important mechanisms involved in the repair of the respiratory epithelium. We investigated the location of MMP-9 and its potential role in migrating human bronchial epithelial cells (HBEC). In vivo and in vitro, MMP-9 accumulated in migrating HBEC located at the leading edge of a wound and MMP-9 expression paralleled cell migration speed. MMP-9 accumulated through an actin-dependent pathway in the advancing lamellipodia of migrating cells and was subsequently found active in the extracellular matrix (ECM). Lamellipodia became anchored through primordial contacts established with type IV collagen. MMP-9 became amassed behind collagen IV where there were fewer cell-ECM contacts. Both collagen IV and MMP-9 were involved in cell migration because when cell-collagen IV interaction was blocked, cells spread slightly but did not migrate; and when MMP-9 activation was prevented, cells remained fixed on primordial contacts and did not advance at all. These observations suggest that MMP-9 controls the migration of repairing HBEC by remodeling the provisional ECM implicated in primordial contacts.  相似文献   

18.
Cells from the cysts of patients with autosomal dominant polycystic kidney disease (PKD) were grown in vitro under standard conditions without the aid of collagen-pretreated surfaces, and both the synthesis and composition of the extracellular matrix were investigated. At confluence, PKD cells presented the typical features of epithelial cells, but showed a different collagen composition from fibroblasts. Compared with normal tubular epithelia (NTE), PKD monolayers produced an excess of extracellular matrix, which accounted for 30% of the total incorporation of [3H] proline, although this value was considerably lower (by a factor of 10) in the case of NTE. Immunohistochemical and electrophoretic techniques revealed a complex collagen composition in the extracellular matrix which included [alpha (III)]3 and collagen IV. However, part of the collagen components remained unidentified in spite of the fact that they exhibited a typical M(r) of alpha 1(I) and alpha 2(I) in the presence of urea. Immunoprecipitation with monospecific antibodies and Northern blotting with specific probes failed to recognize alpha 1(I) and alpha 2(I), but demonstrated their presence in fibroblasts. Purification and cyanogen bromide digestion demonstrated a strong interhomology in fingerprint peptide composition among the uncharacterized collagens synthesized by PKD cells, thus suggesting a common identity. These observations document a markedly augmented production of extracellular matrix by PKD cultured cells in vitro, and show the presence of collagens which do not share homologies with the major collagen molecules. A better characterization of extracellular matrix composition is central to any comprehension of the cytogenetic mechanisms in vivo.  相似文献   

19.
Matrix metalloproteinase-9 (MMP-9) has been implicated in the degradation of the extracellular matrix in a variety of physiological and pathological processes. We found that MMP-9 expression in thymuses of BALB/c mice that had been injected with anti-CD3 Ab to induce thymocyte apoptosis was increased both at mRNA and protein levels. Macrophages are shown to be the principal stromal cells responsible for phagocytosis of dying thymocytes, and macrophages were found to constitutively express MMP-9. The activity of plasmin, which is known as one of the activators for MMP-9, was increased in the thymuses with MMP-9 activation. Binding of Ab HUIV26, which recognizes a cryptic epitope on collagen type IV following proteolytic cleavage, was found to be reduced in MMP-9 knockout mice, suggesting that collagen type IV is a substrate of MMP-9. Although the formation of thymic neovessels was found following thymocyte apoptosis, it was diminished in anti-CD3 Ab-injected MMP-9 knockout mice. In vivo administration of Ab HUIV26 resulted in a reduction of thymic neovascularization. After clearance of apoptotic thymocytes, the number of macrophages in the thymuses was decreased, and this decrease was delayed by blocking of HUIV26 epitope. Taken together, our results suggest that MMP-9 expression in macrophages mediates degradation of collagen type IV and facilitates their migration from the thymus after clearance of apoptotic thymocytes. These studies demonstrate a potential role of macrophage MMP-9 in the remodeling of thymic extracellular matrix following thymocyte apoptosis.  相似文献   

20.
Human mesenchymal stem cells (MSCs) were cultured in vitro in a cobweb-like biodegradable polymer scaffold: a poly(dl-lactic-co-glycolic acid)-collagen hybrid mesh in serum-free DMEM containing TGF-beta3 for 1-10 weeks. The cells adhered to the hybrid mesh, distributed evenly, and proliferated to fill the spaces in the scaffold. The ability of the cells to express gene encoding type I collagen decreased, whereas its ability to express type II collagen and aggrecan increased. Histological examination by HE staining indicated that the cells showed fibroblast morphology at the early stage and became round after culture for 4 weeks. The cartilaginous matrices were positively stained by safranin O and toluidine blue. Immunostaining with anti-type II collagen and anti-cartilage proteoglycan showed that type II collagen and cartilage proteoglycan were detected around the cells. In addition, a homogeneous distribution of cartilaginous extracellular matrices was detected around the cells. These results suggest the chondrogenic differentiation of the mesenchymal stem cells in the hybrid mesh. The PLGA-collagen hybrid mesh enabled the aggregation of mesenchymal stem cells and provided a promotive microenvironment for the chondrogenic differentiation of the MSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号