首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Freezing denaturation of ovalbumin at acid pH   总被引:1,自引:0,他引:1  
The effects of rapid freezing and thawing at acid pH on the physiochemical properties of ovalbumin were examined. At low pH (around 2), UV difference spectra showed microenvironmental changes around the aromatic amino acid residues; elution curves by gel permeation chromatography showed decreasing numbers of monomers after neutralization. These changes depended on the incubation temperature (between -196 and -10 degrees C) and the protein concentration (0.5-10 mg/ml), and a low concentration of ovalbumin incubated at around -40 degrees C suffered the most damage to its conformation. With freezing and then incubation at -40 degrees C, three of the four sulfhydryl groups in the ovalbumin molecule reacted with 2,2'-dithiodipyridine. The CD spectra showed these changes in the secondary structure, but they were smaller than those when guanidine hydrochloride was used for denaturation. Supercooling at -15 degrees C or freezing at -196 degrees C had little or no effect on the conformation of the ovalbumin molecule. Thus, irreversible conformational changes of ovalbumin were caused under the critical freezing condition at an acid pH. These changes arose from partial denaturation and resembled those with thermal denaturation of ovalbumin at neutral pH.  相似文献   

3.
Curcumin influences the transition point, the concentration of denaturant required to effect 50% of the total change, of myoglobin denaturation. Curcumin enhances absorbance of myoglobin at 280 nm with a binding constant K=3.0×10(4) M(-1) whereas fluorescence of curcumin is quenched by myoglobin with a Stern-Volmer association constant of 2.5×10(5) M(-1). Unfolding process of myoglobin-curcumin induces a recovery in fluorescence lifetime loss. The gain in time-resolved fluorescence lifetime during unfolding has been again lost during refolding of curcumin-myoglobin complex by dilution process suggesting partial reversibility of unfolding process for both myoglobin and curcumin-myoglobin complex.  相似文献   

4.
5.
6.
7.
The effect of the lyotropic series of anions on the stability and renaturation of tetrameric 20 beta-hydroxysteroid dehydrogenase (17,20 beta,21-trihydroxysteroid:NAD+ oxidoreductase, EC 1.1.1.53) was investigated. The variations in enzymatic activity were correlated with the changes in protein fluorescence, circular dichroism, reactivity of histidine residues and molecular weight. High concentrations of salting-out anions (phosphate, citrate, sulphate) were found to stabilize the enzyme markedly and increase the renaturation yield of the urea-denatured enzyme. Phosphate, for instance, induced the highest stabilization at about 1.2 M and the maximum reactivation (66%) at 0.5 M. At low anion concentration (0.01 M), the reactivation was only 7%. The renaturation property of salting-out anions seems to be due to their stabilizing effect on the end-product, i.e., the assembled tetramer. Salting-in anions (perchlorate, thiocyanate, iodide) inactivated the enzyme. At moderate anion concentrations (no greater than 0.25 M) the activation, which occurred slowly, without tetramer dissociation and with minor modifications of enzyme conformation, was fully reversed by concentrated phosphate or by saturating concentrations of NADH. In contrast, the inactivation induced by high anion concentrations (1-2 M) was rapid, irreversible and linked to considerable modifications of enzyme conformation.  相似文献   

8.
A novel firefly luciferin- enhanced luminescent procedure for the quantitation of horseradish peroxidase labels has been directly incorporated into established enzyme immunoassays. The procedure is rapid and sensitive and uses readily available reagents. Light emission from the enhanced reaction is high and relatively constant and thus easily measured. The luminescence procedure has been successfully incorporated into immunometric assays for rubella antibody and human IgE and into a competitive immunoassay for digoxin.  相似文献   

9.
10.
11.
12.
The authors in a previous report (Klausner, R. D., Kempf, C., Weinstein, J. N., Blumenthal, R., and van Renswoude, J. (1983) Biochem. J. 212, 801-810) have argued that native folding of ovalbumin occurs during translation, but not in a renaturation system of the denatured form. To re-examine the possibility, we searched for the conditions of correct oxidative refolding of denatured disulfide-reduced ovalbumin. Data of trypsin resistance, CD-spectrum, and selective reactivity of cysteine sulfhydryls revealed that the fully denatured protein can refold into the native conformation under disulfide-reduced conditions. The interconversion between the native and denatured forms was fully reversible with a free energy change for unfolding of 6.6 kcal/mol at 25 degrees C. Subsequent reoxidation under a variety of redox conditions generated only one disulfide bond in the reduced refolded protein with six cysteine sulfhydryls. Furthermore, the regenerated disulfide was found by peptide analyses to correspond to the native disulfide pairing, Cys73-Cys120. We, therefore, concluded that co-translational folding, if any, is not requisite for the correct oxidative folding of ovalbumin.  相似文献   

13.
14.
15.
The fluorescence-monitored kinetics of folding and unfolding of barstar by guanidine hydrochloride (GdnHCl) in the folding transition zone, at pH 7, 25 degrees C, have been quantitatively analyzed using a 3-state mechanism: U(S)<-->UF<-->N. U(S) and UF are slow-refolding and fast-refolding unfolded forms of barstar, and N is the native protein. U(S) and UF probably differ in possessing trans and cis conformations, respectively, of the Tyr 47-Pro 48 bond. The 3-state model could be used because the kinetics of folding and unfolding of barstar show 2 phases, a fast phase and a slow phase, and because the relative amplitudes of the 2 phases depend only on the final refolding conditions and not on the initial conditions. Analysis of the observed kinetics according to the 3-state model yields the values of the 4 microscopic rate constants that describe the transitions between the 3 states at different concentrations of GdnHCl. The value of the equilibrium unfolded ratio U(S):UF (K21) and the values of the rate constants of the U(S)-->UF and UF-->U(S) reactions, k12 and k21, respectively, are shown to be independent of the concentration of GdnHCl. K21 has a value of 2.1 +/- 0.1, and k12 and k21 have values of 5.3 x 10(-3) s-1 and 11.2 x 10(-3) s-1, respectively. Double-jump experiments that monitor reactions that are silent to fluorescence monitoring were used to confirm the values of K21, k12, and k21 obtained from the 3-state analysis and thereby the validity of the 3-state model.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
Chloroplast NADP-dependent malate dehydrogenase exists in two interconvertible forms: the inactive disulfide-containing form and the active dithiol form. No major difference in secondary structure or conformation was found between the oxidized and the reduced enzyme as determined by circular dichroism and intrinsic protein fluorescence. The guanidine/HCl-dependent unfolding of the enzyme is characterized by two transition midpoints: those of the reduced enzyme are lower by about 0.2 M guanidine/HCl compared to the oxidized enzyme. As shown by analytical ultracentrifugation, there was no effect of guanidine/HCl concentrations up to 0.25 M on the quaternary structure of the enzyme in its oxidized and reduced forms: both sedimentation coefficient (S20,w = 4.9 +/- 0.1 S) and sedimentation equilibrium (75 +/- 3 kDa) yield the dimer. In the oxidized state the enzyme undergoes guanidine-dependent dissociation to the monomer with a midpoint of transition at 0.5 M. The kinetics of unfolding were found to be significantly faster for the reduced than for the oxidized enzyme. Renaturation and reactivation of reduced enzyme was more rapid and occurred with higher yields (100%) than for the oxidized enzyme (60-80% yield). Furthermore, the effect of denaturants on catalytic activity, and reductive activation of the oxidized form, were studied. Both increase in protein fluorescence and a stimulatory effect on the activities at low guanidine/HCl concentrations were observed for the oxidized and the reduced form of the enzyme. Denaturants increase the rate of reductive activation of NADP-malate dehydrogenase.  相似文献   

18.
19.
Glucoamylase II (GA II) immobilized to Eupergit C and CIZ as a porous and nonporous matrix shows enzymatic characteristics indistinguishable from those of the free enzyme, except for reduced specific activity. Since this decrease is equally observed for both matrices, it has to be ascribed to nonproductive fixation of the enzyme or steric hindrance rather that perturbations caused by "inner diffusion" effects. Authenticity refers to the optimum pH for catalytic activity, Michaelis constants for starch and maltoheptaose, as well as identical stability toward temperature, pH, and guanidinium chloride (GdmCl). On the basis of these data, the two-state mechanism observed for the equilibrium transitions of the free enzyme may be assumed to hold also for the immobilized enzyme. Renaturation after preceding denaturation in 6.4 and 7 M GdmCl leads to widely differing yields depending on the conditions. Shifting the denaturant concentration stepwise back to nondenaturing GdmCl concentrations leads to a broad range of "hysteresis" accompanied by aggregation. Rapid dilution of the free and immobilized enzymes at pH greater than 6 and sufficiently low protein concentration leads to reactivation yields of 80 and 45%, respectively. For the free enzyme, reconstitution at lower pH is determined by the kinetic competition of folding and aggregation. In the case of the immobilized enzyme, "entangling" of the matrix with the unfolded polypeptide chain competes with renaturation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号