首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Circulating tumor cells (CTCs) are exfoliated at various stages of cancer, and could provide invaluable information for the diagnosis and prognosis of cancers. There is an urgent need for the development of cost-efficient and scalable technologies for rare CTC enrichment from blood. Here we report a novel method for isolation of rare tumor cells from excess of blood cells using gas-filled buoyant immuno-microbubbles (MBs). MBs were prepared by emulsification of perfluorocarbon gas in phospholipids and decorated with anti-epithelial cell adhesion molecule (EpCAM) antibody. EpCAM-targeted MBs efficiently (85%) and rapidly (within 15 minutes) bound to various epithelial tumor cells suspended in cell medium. EpCAM-targeted MBs efficiently (88%) isolated frequent tumor cells that were spiked at 100,000 cells/ml into plasma-depleted blood. Anti-EpCAM MBs efficiently (>77%) isolated rare mouse breast 4T1, human prostate PC-3 and pancreatic cancer BxPC-3 cells spiked into 1, 3 and 7 ml (respectively) of plasma-depleted blood. Using EpCAM targeted MBs CTCs from metastatic cancer patients were isolated, suggesting that this technique could be developed into a valuable clinical tool for isolation, enumeration and analysis of rare cells.  相似文献   

2.
Dynamics of compartmentalization of epidermal growth factor (EGF) in human carcinoma A431 cells during the first hour after initiation of endocytosis was examined by methods of the organelle fractionation on a 20% Percoll gradient and of the microfluorimetric visualization of endocytosis of rhodamine-labeled EGF (EGF-R). EGF was revealed in small vesicles localized in the peripheral region of cytoplasm in a few minutes after endocytosis initiation. During centrifugation in Percoll these vesicles (endosomes), with an average density of 1.038 g/ml, were seen co-sedimented with Golgi membranes. By one hour after initiation of endocytosis, EGF-R was accumulated in perinuclear zone, in a trans-Golgi region, as numerous big luminous centres that were apparently MB-endosomes and had the same density in Percoll as did small peripheral endosomes. Such centres appeared in several cells already within 5-10 minutes. In A431 cells EGF did not reach lysosomes within 60 minutes, because no accumulation of 125I-EGF was shown in lysosome corresponding regions of Percoll gradient (average density 1.070 g/ml).  相似文献   

3.
The presence of circulating tumor cells (CTCs) in breast cancer patients has been proven to have clinical relevance. Cytogenetic characterization of these cells could have crucial relevance for targeted cancer therapies. We developed a method that combines an immunomagnetic selection of CTCs from peripheral blood with the fluorescence immunophenotyping and interphase cytogenetics as a tool for investigation of neoplasm (FICTION) technique. Briefly, peripheral blood (10 ml) from healthy donors was spiked with a predetermined number of human breast cancer cells. Nucleated cells were separated by double density gradient centrifugation of blood samples. Tumor cells (TCs) were immunomagnetically isolated with an anti-cytokeratin antibody and placed onto slides for FICTION analysis. For immunophenotyping and genetic characterization of TCs, a mixture of primary monoclonal anti-pancytokeratin antibodies was used, followed by fluorescent secondary antibodies, and finally hybridized with a TOP2A/HER-2/CEP17 multicolor probe. Our results show that TCs can be efficiently isolated from peripheral blood and characterized by FICTION. Because genetic amplification of TOP2A and ErbB2 (HER-2) in breast cancer correlates with response to anthracyclines and herceptin therapies, respectively, this novel methodology could be useful for a better classification of patients according to the genetic alterations of CTCs and for the application of targeted therapies. (J Histochem Cytochem 56:667–675, 2008)  相似文献   

4.

Background

Epithelial cell adhesion molecule (EpCAM)-based enumeration of circulating tumor cells (CTC) has prognostic value in patients with solid tumors, such as advanced breast, colon, and prostate cancer. However, poor sensitivity has been reported for non-small cell lung cancer (NSCLC). To address this problem, we developed a microcavity array (MCA) system integrated with a miniaturized device for CTC isolation without relying on EpCAM expression. Here, we report the results of a clinical study on CTCs of advanced lung cancer patients in which we compared the MCA system with the CellSearch system, which employs the conventional EpCAM-based method.

Methods

Paired peripheral blood samples were collected from 43 metastatic lung cancer patients to enumerate CTCs using the CellSearch system according to the manufacturer’s protocol and the MCA system by immunolabeling and cytomorphological analysis. The presence of CTCs was assessed blindly and independently by both systems.

Results

CTCs were detected in 17 of 22 NSCLC patients using the MCA system versus 7 of 22 patients using the CellSearch system. On the other hand, CTCs were detected in 20 of 21 small cell lung cancer (SCLC) patients using the MCA system versus 12 of 21 patients using the CellSearch system. Significantly more CTCs in NSCLC patients were detected by the MCA system (median 13, range 0–291 cells/7.5 mL) than by the CellSearch system (median 0, range 0–37 cells/7.5 ml) demonstrating statistical superiority (p = 0.0015). Statistical significance was not reached in SCLC though the trend favoring the MCA system over the CellSearch system was observed (p = 0.2888). The MCA system also isolated CTC clusters from patients who had been identified as CTC negative using the CellSearch system.

Conclusions

The MCA system has a potential to isolate significantly more CTCs and CTC clusters in advanced lung cancer patients compared to the CellSearch system.  相似文献   

5.
BACKGROUND: Circulating tumor cells (CTCs) in patients with carcinomas are extremely rare. In metastatic breast cancer, the presence of >or=5 CTCs in 7.5 ml of blood has been associated with short survival. As this threshold has clinical implications, it is important to recognize the limitations associated with the detection and enumeration of CTCs. METHODS: Statistical analyses were performed on data generated from a multi-center clinical trial that utilized the CellSearchtrade mark System to isolate and enumerate CTCs in 7.5 ml blood samples. The statistical issues associated with each step of the process, from blood collection to final image analysis and CTC enumeration, were determined and implemented into a model. RESULTS: A model describing the statistics of the different process steps that are needed for the isolation and detection of CTCs was developed. The model uses the Poisson distribution for blood collection and empirically determined distributions for the isolation and identification of CTCs. The variability between readers was identified as one of the main sources of errors responsible for the current threshold level of five CTCs. CONCLUSIONS: Elimination of the errors made in the identification of tumor cells isolated from 7.5 ml of blood could potentially reduce the CTC threshold for the identification of patients with a poor prognosis from the current value of five CTCs to one CTC per 7.5 ml of blood.  相似文献   

6.
Detecting the cancer cells in the peripheral blood, i.e. circulating tumor cell (CTC), have been considered as the “liquid biopsy” and become a particular area of focus. A deep insight into CTC provides a potential alternative method for early diagnosis of solid tumor. Previous studies showed that CTC counts could be regarded as an indicator in tumor diagnosis, predicting clinical outcomes and monitoring treatment responses. In this report, we utilize our facile and efficient CTC detection device made of hydroxyapatite/chitosan (HA/CTS) for rare cancer cells isolation and enumeration in clinical use. A biocompatible and surface roughness controllable nanofilm was deposited onto a glass slide to achieve enhanced topographic interactions with nanoscale cellular surface components, anti-EpCAM (epithelial cell adhesion molecule, EpCAM) were then coated onto the surface of nanosubstrate for specific capture of CTCs. This device performed a considerable and stable capture yields. We evaluated the relationship performance between serial CTC changes and the changes of tumor volume/serum tumor marker in gastrointestinal cancer patients undergoing anti-cancer treatments. The present study results showed that changes in the number of CTC were associated with tumor burden and progression. Enumeration of CTCs in cancer patients may predict clinical response. Longitudinal monitoring of individual patients during the therapeutic process showed a close correlation between CTC quantity and clinical response to anti-cancer therapy. Effectively capture of this device is capable of CTCs isolation and quantification for monitoring of cancer and predicting treatment response.  相似文献   

7.
Circulating tumor cells (CTCs) are the potential precursors of metastatic disease. Most assays established for the enumeration of CTCs so far–including the gold standard CellSearch—rely on the expression of the cell surface marker epithelial cell adhesion molecule (EpCAM). But, these approaches may not detect CTCs that express no/low levels of EpCAM, e.g. by undergoing epithelial-to-mesenchymal transition (EMT). Here we present an enrichment strategy combining different antibodies specific for surface proteins and extracellular matrix (ECM) components to capture an EpCAMlow/neg cell line and EpCAMneg CTCs from blood samples of breast cancer patients depleted for EpCAM-positive cells. The expression of respective proteins (Trop2, CD49f, c-Met, CK8, CD44, ADAM8, CD146, TEM8, CD47) was verified by immunofluorescence on EpCAMpos (e.g. MCF7, SKBR3) and EpCAMlow/neg (MDA-MB-231) breast cancer cell lines. To test antibodies and ECM proteins (e.g. hyaluronic acid (HA), collagen I, laminin) for capturing EpCAMneg cells, the capture molecules were first spotted in a single- and multi-array format onto aldehyde-coated glass slides. Tumor cell adhesion of EpCAMpos/neg cell lines was then determined and visualized by Coomassie/MitoTracker staining. In consequence, marginal binding of EpCAMlow/neg MDA-MB-231 cells to EpCAM-antibodies could be observed. However, efficient adhesion/capturing of EpCAMlow/neg cells could be achieved via HA and immobilized antibodies against CD49f and Trop2. Optimal capture conditions were then applied to immunomagnetic beads to detect EpCAMneg CTCs from clinical samples. Captured CTCs were verified/quantified by immunofluorescence staining for anti-pan-Cytokeratin (CK)-FITC/anti-CD45 AF647/DAPI. In total, in 20 out of 29 EpCAM-depleted fractions (69%) from 25 metastatic breast cancer patients additional EpCAMneg CTCs could be identified [range of 1–24 CTCs per sample] applying Trop2, CD49f, c-Met, CK8 and/or HA magnetic enrichment. EpCAMneg dual-positive (CKpos/CD45pos) cells could be traced in 28 out of 29 samples [range 1–480]. By single-cell array-based comparative genomic hybridization we were able to demonstrate the malignant nature of one EpCAMneg subpopulation. In conclusion, we established a novel enhanced CTC enrichment strategy to capture EpCAMneg CTCs from clinical blood samples by targeting various cell surface antigens with antibody mixtures and ECM components.  相似文献   

8.
BACKGROUND: Erythroblasts have been the most encouraging candidate cell type for noninvasive prenatal genetic investigation. We previously showed that human erythroblasts can be recovered from bone marrow and blood bank buffy coats by a physical cell separation. In the present study, we modified our previous methodology, taking into account the peculiar behavior of erythroblasts in response to modifications of pH and osmolality of the separation medium. METHODS: Twenty to forty milliters of cord blood were initially centrifuged on Ficoll/diatrizoate (1.085 g/ml). The interphase cells were further separated on a continuous density gradient (1.040-1.085 g/ml). Two different gradients were initially compared: the first was iso-osmolar and neutral, whereas the second also contained an ionic strength gradient and a pH gradient (triple gradient). A subsequent monocyte depletion was performed by using magnetic microbeads coated with anti-CD14 monoclonal antibody (mAb), and erythroblasts were purified by sedimentation velocity. Purified cells were investigated by analyses with fluorescence-activated cell sorting (FACS) and fluorescence in situ hybridization (FISH) and immunocytochemistry with mAb against fetal hemoglobin and were cultured in vitro. RESULTS: When nucleated cells were spun on an iso-osmolar and neutral continuous density gradient, two separated bands of nucleated red blood cells (NRBCs) were obtained: a light fraction banding at 1.062 g/ml and an heavy fraction banding at 1.078 g/ml. Conversely, when cells were spun in the triple gradient, NRBCs were shifted to the low-density region. Monocyte depletion by immunomagnetic microbeads and velocity sedimentation provided a pure erythroblast population. FACS and FISH analyses and immunocytochemistry substantiated the purity of the isolated cell fraction, which was successfully cultured in vitro. CONCLUSIONS: We have shown that fetal erythroblasts can be purified up to homogeneity from cord blood, but further refinements of the isolation procedure are necessary before the same results can be obtained from maternal peripheral blood.  相似文献   

9.
10.

Background

Circulating tumor cells (CTCs) are cancer cells that can be isolated via liquid biopsy from blood and can be phenotypically and genetically characterized to provide critical information for guiding cancer treatment. Current analysis of CTCs is hindered by the throughput, selectivity and specificity of devices or assays used in CTC detection and isolation.

Methodology/Principal Findings

Here, we enriched and characterized putative CTCs from blood samples of patients with both advanced stage metastatic breast and lung cancers using a novel multiplexed spiral microfluidic chip. This system detected putative CTCs under high sensitivity (100%, n = 56) (Breast cancer samples: 12–1275 CTCs/ml; Lung cancer samples: 10–1535 CTCs/ml) rapidly from clinically relevant blood volumes (7.5 ml under 5 min). Blood samples were completely separated into plasma, CTCs and PBMCs components and each fraction were characterized with immunophenotyping (Pan-cytokeratin/CD45, CD44/CD24, EpCAM), fluorescence in-situ hybridization (FISH) (EML4-ALK) or targeted somatic mutation analysis. We used an ultra-sensitive mass spectrometry based system to highlight the presence of an EGFR-activating mutation in both isolated CTCs and plasma cell-free DNA (cf-DNA), and demonstrate concordance with the original tumor-biopsy samples.

Conclusions/Significance

We have clinically validated our multiplexed microfluidic chip for the ultra high-throughput, low-cost and label-free enrichment of CTCs. Retrieved cells were unlabeled and viable, enabling potential propagation and real-time downstream analysis using next generation sequencing (NGS) or proteomic analysis.  相似文献   

11.
Detailed examination of tumor components is leading‐edge to establish personalized cancer therapy. Accompanying research on cell‐free DNA, the cell count of circulating tumor cells (CTCs) in patient blood is seen as a crucial prognostic factor. The potential of CTC analysis is further not limited to the determination of the overall survival rate but sheds light on understanding inter‐ and intratumoral heterogeneity. In this regard, commercial CTC isolation devices combining an efficient enrichment of rare cells with a droplet deposition of single cells for downstream analysis are highly appreciated. The Liquid biopsy platform CTCelect was developed to realize a fully‐automated enrichment and single cell dispensing of CTCs from whole blood without pre‐processing. We characterized each process step with two different carcinoma cell lines demonstrating up to 87 % enrichment (n = 10) with EpCAM coupled immunomagnetic beads, 73 % optical detection and dispensing efficiency (n = 5). 40 to 56.7 % of cells were recovered after complete isolation from 7.5 ml untreated whole blood (n = 6). In this study, CTCelect enabled automated dispensing of single circulating tumor cells from HNSCC patient samples, qPCR‐based confirmation of tumor‐related biomarkers and immunostaining. Finally, the platform was compared to commercial CTC isolation technologies to highlight advantages and limitations of CTCelect. This system offers new possibilities for single cell screening in cancer diagnostics, individual therapy approaches and real‐time monitoring.  相似文献   

12.

Background

It has been considered that the detection methods for circulating tumor cells (CTCs) based on epithelial cell adhesion molecule (EpCAM) underestimate the number of CTCs and may miss a metastatic subpopulation with cancer stem cell (CSC) properties. Therefore, we investigated EpCAM-positive and -negative CTCs in non-small cell lung cancer (NSCLC) patients at different stages, assessed the clinical value of these CTCs and explored their capacity in the following CSC model.

Methods

CTCs were enriched by the depletion of leukocytes with bi-antibodies using a magnetic bead separation technique and then identified by the expression of EpCAM and cytokeratin 7 and 8 using multi-parameter flow cytometry. We determined the distribution of CTCs classified by the expression of EpCAM in 46 NSCLC patients with stages I to IV, assessed the diagnostic value of these CTCs by longitudinal monitoring in 4 index patients during adjuvant therapy and characterized the stemness of these CTCs by the expression of CXCR4 and CD133 in 10 patients.

Results

EpCAM-negative (E-) CTCs were detected to be significantly higher than EpCAM-positive (E+) CTCs in stage IV (p = 0.003). The patients with the percentage of E-CTCs more than 95% (r > 95%) were detected to be significantly increased from 13.3% in stage I-II to 61.1% in stage IV (p = 0.006). Kaplan–Meier analysis indicated that the patients with r > 95% had significantly shorter survival time than those with r ≤ 0.95 (p = 0.041). Longitudinal monitoring of CTCs indicated that the patients with a high percentage of E-CTCs in the blood were not responsive to either chemotherapy or targeted therapy. Further characterization of CTCs revealed that a stem-like subpopulation of CXCR4+CD133+ CTCs were detected to be significantly more prevalent in E-CTCs than that in E+CTCs (p = 0.005).

Conclusions

The enrichment of CTCs by the depletion of leukocytes with bi-antibodies is a valuable method for estimating the number of CTCs, which can be potentially applied in predicting the prognosis, monitoring the therapeutic effect of NSCLC patients and further analyzing the biology of CTCs.  相似文献   

13.
14.
循环肿瘤细胞(circulating tumor cells,CTCs)是指从原发肿瘤或转移灶脱落、发生上皮-间质转化进入患者外周血血液循环的恶性肿瘤细胞.CTCs在肿瘤研究和临床诊断上的作用逐渐得到认可,外周血中CTCs存在与否以及数量多少不但可以用于肿瘤的早期诊断,还可以用于评估肿瘤预后、监测肿瘤的转移和复发.微流控芯片作为一个高通量、小型化的细胞实验平台,已被应用于CTCs的分选当中.本文综述了用于CTCs捕获的微流控芯片系统的最新研究进展,着重介绍各类芯片的捕获原理、芯片结构和捕获效率,最后对微流控芯片技术在CTCs分选中的应用前景进行了展望.  相似文献   

15.
Circulating tumor cells (CTCs) are those cells that have separated from a macroscopic tumor and spread through the blood and lymph systems to seed secondary tumors(1,2,3). CTCs are indicators of metastatic disease and their detection in blood samples may be used to diagnose cancer and monitor a patient's response to therapy. Since CTCs are rare, comprising about one tumor cell among billions of normal blood cells in advanced cancer patients, their detection and enumeration is a difficult task. We exploit the presence of pigment in most melanoma cells to generate photoacoustic, or laser induced ultrasonic waves in a custom flow cytometer for detection of circulating melanoma cells (CMCs)(4,5). This process entails separating a whole blood sample using centrifugation and obtaining the white blood cell layer. If present in whole blood, CMCs will separate with the white blood cells due to similar density. These cells are resuspended in phosphate buffered saline (PBS) and introduced into the flowmeter. Rather than a continuous flow of the blood cell suspension, we induced two phase flow in order to capture these cells for further study. In two phase flow, two immiscible liquids in a microfluidic system meet at a junction and form alternating slugs of liquid(6,7). PBS suspended white blood cells and air form microliter slugs that are sequentially irradiated with laser light. The addition of a surfactant to the liquid phase allows uniform slug formation and the user can create different sized slugs by altering the flow rates of the two phases. Slugs of air and slugs of PBS with white blood cells contain no light absorbers and hence, do not produce photoacoustic waves. However, slugs of white blood cells that contain even single CMCs absorb laser light and produce high frequency acoustic waves. These slugs that generate photoacoustic waves are sequestered and collected for cytochemical staining for verification of CMCs.  相似文献   

16.
目的探讨超声引导下前列腺穿刺联合外周血循环肿瘤细胞(CTCs)检测对前列腺癌预后的预测效果。方法选取2011年1月至2017年12月期间于郑州大学第二附属医院收治的83例前列腺癌患者为研究对象,全部患者均根据超声引导下经直肠前列腺穿刺活检术确诊为前列腺癌,检测病理标本中CK34BE12、p63、α-甲酰基辅酶A消旋酶(AMACR)等免疫标志物的表达状况,并采用Cell Search细胞搜索系统检测外周血CTCs的数量,据此分为阳性组(≥5个/7.5 ml)和阴性组(<5个/7.5 ml)。分析穿刺组织中免疫标志物表达状况、外周血CTCs计数与患者临床病理特征、生存状况的相关性。各标志物的阳性例数、Gleason评分>7分的比例、TNM分期等定性资料的比较采用x^2检验或Fisher确切概率法,年龄、血常规、凝血功能、肝功能、PSA水平等定量资料的比较采用t检验。采用Kaplan-Meier法进行生存分析,采用多因素Cox比例风险回归模型分析患者预后的预测因素。结果(1)全部患者中外周血CTCs、穿刺组织中CK34BE12、p63、AMACR的阳性率分别为31.33、3.61、3.61、86.75。CTCs阳性组的AMACR阳性率为100.00,高于CTCs阴性组的80.70,差异有统计学意义(x^2=4.227,P<0.05)。(2)AMACR阳性组患者的血红蛋白(HB)低于AMACR阴性组[(123.66±13.33)g/L比(134.89±20.08)g/L,t=2.420,P=0.018],血小板(PLT)、血清谷丙转氨酶、D-二聚体(DD)、前列腺特异抗原(PSA)水平、Gleason评分>7分的比例均高于AMACR阴性组[(197.23±36.98)×10^9/L比(172.83±33.33)×10^9/L,t=2.062,P=0.042;(38.80±10.03)U/L比(31.46±7.83)U/L,t=2.317,P=0.023;(255.00±38.80)μg/L比(220.81±30.99)μg/L,t=2.785,P=0.007;(26.60±12.23)ng/ml比(17.90±8.88)ng/ml,t=2.263,P=0.026;45.83比9.09,x^2=3.916,P=0.048],差异有统计学意义(P<0.05)。CTCs阳性组患者的HB低于CTCs阴性组[(121.69±15.89)g/L比(132.73±18.85)g/L,t=2.767,P=0.007],血清碱性磷酸酶、DD、PSA水平、Gleason评分>7分、T3~T4期、M1期的比例均高于CTCs阴性组[(105.69±30.56)U/L比(88.89±35.58)U/L,t=2.205,P=0.030;(256.63±35.86)μg/L比(236.98±33.30)μg/L,t=2.368,P=0.020;(30.09±11.89)ng/ml比(23.33±10.99)ng/ml,t=2.533,P=0.013;57.69比33.33,x^2=4.381,P=0.036;30.77比8.77,x^2=4.981,P=0.026;50.00比17.54,x^2=9.390,P=0.002],差异有统计学意义(P<0.05)。(3)全部患者的中位生存时间为58.33个月,1、3、5年的生存率分别为88.95、51.81、30.12。AMACR阳性组、CTCs阳性组患者的中位生存时间为40.93、36.93个月,低于AMACR阴性组、CTCs阴性组的66.66、69.56个月,差异有统计学意义(P<0.05)。多因素Cox比例风险回归模型分析结果表明,Gleason评分>7分、M1期、AMACR阳性、CTCs阳性是患者死亡的独立危险因素(HR=1.883、3.666、2.009、2.923,P<0.05)。结论超声引导下前列腺穿刺联合外周血CTCs检测对前列腺癌患者的预后具有重要的预测价值,临床上可根据穿刺组织中AMACR表达水平和外周血CTCs计数进行预后的综合分析。  相似文献   

17.
The mechanisms by which androgens stimulate proliferation of prostate cancer cells are poorly understood. It has been proposed that androgen stimulation may induce the mitogen-activated protein (MAP) kinase system in prostate cancer cells and lead to cellular proliferation. We attempted to evaluate the role of the extracellular signal-regulated kinase (ERK) pathway in the stimulation by androgens of prostate cancer cell proliferation. Androgen-sensitive prostate cancer cell line (LNCaP) cells plated on sterile glass coverslips were treated with 10(-8) M dihydrotestosterone (DHT) or epidermal growth factor (EGF) (10 ng/ml) for periods ranging from 1 min to 96 h. The proliferative index of the cells, evaluated by immunoperoxidase staining of cells with an antibody to Ki-67, was increased at least two-fold at all time points from 5 min to 48 h following exposure to either DHT or EGF. Immunohistochemical evaluation of ERK1/2 and pERK (activated ERK) demonstrated high levels of ERK1/2 in untreated LNCaP cells, while pERK was expressed at much lower levels. Following treatment with DHT, no change in staining intensity for either ERK1/2 or pERK was observed, while treatment with EGF resulted in no change in ERK1/2, but significantly increased cytoplasmic staining for pERK at all time points beyond 2 min. These results were confirmed by Western blot analysis of ERK1/2 and pERK expression in these cell lines following treatment with DHT or EGF. Our findings suggest that the proliferative response of prostate cancer cells to androgens, unlike the proliferative response to EGF, is not mediated by the activation of ERK1/2, and that currently undefined pathways other than those involving ERK1/2 are involved.  相似文献   

18.
The mechanisms by which androgens stimulate proliferation of prostate cancer cells are poorly understood. It has been proposed that androgen stimulation may induce the mitogen-activated protein (MAP) kinase system in prostate cancer cells and lead to cellular proliferation. We attempted to evaluate the role of the extracellular signal-regulated kinase (ERK) pathway in the stimulation by androgens of prostate cancer cell proliferation. Androgen-sensitive prostate cancer cell line (LNCaP) cells plated on sterile glass coverslips were treated with 10?8 M dihydrotestosterone (DHT) or epidermal growth factor (EGF) (10 ng/ml) for periods ranging from 1 min to 96 h. The proliferative index of the cells, evaluated by immunoperoxidase staining of cells with an antibody to Ki-67, was increased at least two-fold at all time points from 5 min to 48 h following exposure to either DHT or EGF. Immunohistochemical evaluation of ERK1/2 and pERK (activated ERK) demonstrated high levels of ERK1/2 in untreated LNCaP cells, while pERK was expressed at much lower levels. Following treatment with DHT, no change in staining intensity for either ERK1/2 or pERK was observed, while treatment with EGF resulted in no change in ERK1/2, but significantly increased cytoplasmic staining for pERK at all time points beyond 2 min. These results were confirmed by Western blot analysis of ERK1/2 and pERK expression in these cell lines following treatment with DHT or EGF. Our findings suggest that the proliferative response of prostate cancer cells to androgens, unlike the proliferative response to EGF, is not mediated by the activation of ERK1/2, and that currently undefined pathways other than those involving ERK1/2 are involved.  相似文献   

19.
The mechanisms by which androgens stimulate proliferation of prostate cancer cells are poorly understood. It has been proposed that androgen stimulation may induce the mitogen-activated protein (MAP) kinase system in prostate cancer cells and lead to cellular proliferation. We attempted to evaluate the role of the extracellular signal-regulated kinase (ERK) pathway in the stimulation by androgens of prostate cancer cell proliferation. Androgen-sensitive prostate cancer cell line (LNCaP) cells plated on sterile glass coverslips were treated with 10-8 M dihydrotestosterone (DHT) or epidermal growth factor (EGF) (10 ng/ml) for periods ranging from 1 min to 96 h. The proliferative index of the cells, evaluated by immunoperoxidase staining of cells with an antibody to Ki-67, was increased at least two-fold at all time points from 5 min to 48 h following exposure to either DHT or EGF. Immunohistochemical evaluation of ERK1/2 and pERK (activated ERK) demonstrated high levels of ERK1/2 in untreated LNCaP cells, while pERK was expressed at much lower levels. Following treatment with DHT, no change in staining intensity for either ERK1/2 or pERK was observed, while treatment with EGF resulted in no change in ERK1/2, but significantly increased cytoplasmic staining for pERK at all time points beyond 2 min. These results were confirmed by Western blot analysis of ERK1/2 and pERK expression in these cell lines following treatment with DHT or EGF. Our findings suggest that the proliferative response of prostate cancer cells to androgens, unlike the proliferative response to EGF, is not mediated by the activation of ERK1/2, and that currently undefined pathways other than those involving ERK1/2 are involved.  相似文献   

20.
Ethanol-fixed cells in sputum from patients with undifferentiated carcinoma of the lung were separated in aqueous Ficoll using a discontinuous density gradient centrifugation technique. The selective enrichment of small cell undifferentiated (e.g., oat cell) or large cell undifferentiated carcinoma cells was achieved while removing most of the leukocytes (80-90%) and macrophages (65-75%) from specimen fractions containing the greatest relative frequencies of cancer cells. The maximum purity of small cell carcinoma cells (0.04%) occurs in moderate density (rho = 1.121 g/ml) gradient fractions and results in a 2.4-fold enrichment relative to unprocessed specimens. In contrast, the maximum purity of large cell carcinoma cells (0.22%) is obtained in very high density (rho = 1.172 g/ml) gradient fractions and results in a 1.2-fold enrichment in comparison with unprocessed specimens. Microscopic examination of Papanicolaou-stained specimen fractions reveals that these enrichments were achieved while retaining diagnostically significant cytomorphologic and tinctorial features necessary for cancer screening and diagnosis. Peak purity ranges of undifferentiated cancer cells significantly overlap comparable ranges for material from bronchogenic adenocarcinoma and squamous cell carcinoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号