首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
2.
Though it has been shown that immunological functions of CD4+ T cells are time of day-dependent, the underlying molecular mechanisms remain largely obscure. To address the question whether T cells themselves harbor a functional clock driving circadian rhythms of immune function, we analyzed clock gene expression by qPCR in unstimulated CD4+ T cells and immune responses of PMA/ionomycin stimulated CD4+ T cells by FACS analysis purified from blood of healthy subjects at different time points throughout the day. Molecular clock as well as immune function was further analyzed in unstimulated T cells which were cultured in serum-free medium with circadian clock reporter systems. We found robust rhythms of clock gene expression as well as, after stimulation, IL-2, IL-4, IFN-γ production and CD40L expression in freshly isolated CD4+ T cells. Further analysis of IFN-γ and CD40L in cultivated T cells revealed that these parameters remain rhythmic in vitro. Moreover, circadian luciferase reporter activity in CD4+ T cells and in thymic sections from PER2::LUCIFERASE reporter mice suggest that endogenous T cell clock rhythms are self-sustained under constant culture conditions. Microarray analysis of stimulated CD4+ T cell cultures revealed regulation of the NF-κB pathway as a candidate mechanism mediating circadian immune responses. Collectively, these data demonstrate for the first time that CD4+ T cell responses are regulated by an intrinsic cellular circadian oscillator capable of driving rhythmic CD4+ T cell immune responses.  相似文献   

3.
Germline encoded pattern recognition receptors, such as TLRs, provide a critical link between the innate and adaptive immune systems. There is also evidence to suggest that pathogen-associated molecular patterns may have the capacity to modulate immune responses via direct effects on CD4+ T cells. Given the key role of both CD4+CD25+ T regulatory (Treg) cells and the TLR5 ligand flagellin in regulating mucosal immune responses, we investigated whether TLR5 may directly influence T cell function. We found that both human CD4+CD25+ Treg and CD4+CD25- T cells express TLR5 at levels comparable to those on monocytes and dendritic cells. Costimulation of effector T cells with anti-CD3 and flagellin resulted in enhanced proliferation and production of IL-2, at levels equivalent to those achieved by costimulation with CD28. In contrast, costimulation with flagellin did not break the hyporesponsiveness of CD4+CD25+ Treg cells, but rather, potently increased their suppressive capacity and enhanced expression of FOXP3. These observations suggest that, in addition to their APC-mediated indirect effects, TLR ligands have the capacity to directly regulate T cell responses and modulate the suppressive activity of Treg cells.  相似文献   

4.
The size of the latent HIV reservoir is associated with the timing of therapeutic interventions and overall health of the immune system. Here, we demonstrate that T cell phenotypic signatures associate with viral reservoir size in a cohort of HIV vertically infected children and young adults under durable viral control, and who initiated anti-retroviral therapy (ART) <2 years old. Flow cytometry was used to measure expression of immune activation (IA), immune checkpoint (ICP) markers, and intracellular cytokine production after stimulation with GAG peptides in CD4 and CD8 T cells from cross-sectional peripheral blood samples. We also evaluated the expression of 96 genes in sort-purified total CD4 and CD8 T cells along with HIV-specific CD4 and CD8 T cells using a multiplexed RT-PCR approach. As a measure of HIV reservoir, total HIV-DNA quantification by real-time PCR was performed. Poisson regression modeling for predicting reservoir size using phenotypic markers revealed a signature that featured frequencies of PD-1+CD4 T cells, TIGIT+CD4 T cells and HIV-specific (CD40L+) CD4 T cells as important predictors and it also shows that time of ART initiation strongly affects their association with HIV-DNA. Further, gene expression analysis showed that the frequencies of PD-1+CD4 T cells associated with a CD4 T cell molecular profile skewed toward an exhausted Th1 profile. Our data provide a link between immune checkpoint molecules and HIV persistence in a pediatric cohort as has been demonstrated in adults. Frequencies of PD-1+ and TIGIT+CD4 T cells along with the frequency of HIV-specific CD4 T cells could be associated with the mechanism of viral persistence and may provide insight into potential targets for therapeutic intervention.  相似文献   

5.
6.
Retroviral vectors have yet not been tested for their potential as vaccines despite their frequent utilization in gene therapy allowing for highly efficient gene transfer into a number of cell types and their suitability for large-scale production in biotechnology. To investigate MLV-based vectors suitability for inducing immune response against HIV-1-antigens, we generated a MLV(HIV-1) pseudotype vector enabling CD4-specific transduction of HIV-1 genes env, vpu, tat and rev originating from the pathogenic SHIV-89.6P. Functional expression of the lentiviral genes in packaging cells, human and rhesus CD4+ target cells was demonstrated by various assays. Following highly efficient ex vivo transduction, up to 3.4x10(7) autologous, transfer vector-positive rhesus peripheral blood mononuclear cells (rhPBMCs) were re-inoculated into a rhesus macaque. Five weeks after the initial inoculation HIV-1 Env-specific antibodies were detected using ELISA. ELIspot-assay revealed the induction of a HIV-1 Rev and Env-specific CTL-response 7.5 weeks after immunization. Thus, these novel MLV(HIV-1) vectors facilitate efficient transduction and subsequent expression of HIV-1-genes in CD4-positive host cells. Induction of both humoral and cellular HIV-1-specific immune responses in vivo confirmed their potential as an effective HIV-1 vaccine to be further studied in SHIV/rhesus macaque model of lentivirus infection.  相似文献   

7.
Vitamin D receptor (VDR) agonists are well known for their capacity to control calcium metabolism and to regulate growth and differentiation of many cell types. More recently, it has become clear that VDR agonists possess immunoregulatory properties and, in particular, pronounced pro-tolerogenic activities. VDR agonists can act directly on T cells, but DCs appear to be their primary targets. The capacity of VDR agonists to modulate DC and T cell functions is mediated by VDR expression in both cell types and by the presence of common targets in their signal transduction pathways, such as the nuclear factor NF-kappaB that is downregulated by VDR agonists in APCs and in T cells. A potentially very important activity of VDR agonists is their capacity to induce in vitro and in vivo tolerogenic DCs able to enhance CD4+CD25+ suppressor T cells that, in turn, inhibit Th1 cell responses. These mechanisms of action can explain some of the immunoregulatory properties of VDR agonists in the treatment of Th1-mediated autoimmune diseases, but may also represent a physiologic element in the VDR-mediated regulation of innate and adaptive immune responses.  相似文献   

8.
The murine immune response to lymphocytic choriomeningitis virus (LCMV) infection involves the activation of CD8+, class I MHC-restricted and virus-specific CTL. At times coinciding with CTL activation, high levels of IL-2 gene expression and production occur, the IL-2R is expressed, and T cell blastogenesis and proliferation are induced. We have previously found that, although both CD4+ and CD8+ T cell subsets transcribe IL-2, the CD4+ subset appears to be the major producer of IL-2 whereas the CD8+ subset appears to be the major proliferating population when the subsets are separated after activation in vivo. The studies presented here were undertaken to examine the contribution made by the CD4+ subset to lymphocyte proliferation in vivo. Responses to LCMV infection were examined in intact mice and in mice depleted of CD4+ or CD8+ subsets by antibody treatments in vivo. Protocols were such that in vivo treatments with anti-CD4 or anti-CD8 depleted the respective subset by greater than 90%. In situ hybridizations demonstrated that the IL-2 gene was expressed in non-B lymphocytes isolated from either CD4+ cell-depleted or CD8+ cell-depleted mice on day 7 post-infection with LCMV. When placed in culture, however, cells from CD8+ cell-depleted mice produced significantly higher levels of detectable IL-2 than did cells isolated from CD4+ cell-depleted mice on day 7 post-infection. IL-2 was apparently produced in vivo in mice depleted of either CD4+ or CD8+ cells, as expression of the gene for the p55 chain of the IL-2R, IL-2 responsiveness, and lymphocyte proliferation were observed with cells isolated from both sets of mice. Lymphocyte proliferation was shown to be sustained in mice depleted of CD4+ cells in vivo by three criteria: 1) non-B lymphocytes isolated from infected mice depleted of CD4+ cells underwent more DNA synthesis than did those isolated from uninfected mice or from infected mice depleted of CD8+ cells; 2) leukocyte yields were expanded during infection of CD4+ cell-depleted mice; and 3) CD8+ cell numbers were increased during infection of CD4+ cell-depleted mice. The majority of non-B lymphocytes having the characteristics of blast lymphocytes was recovered in the CD8+ populations isolated from infected CD4+ cell-depleted mice. These findings suggest that the requirement for the CD4+ subset to sustain CD8+ lymphocyte proliferation in vivo is limited, and that CD4+ and CD8+ cell types can function independently in many aspects of their responses to viral infections.  相似文献   

9.
CD39 is an ectoenzyme, present on different immune cell subsets, which mediates immunosuppressive functions catalyzing ATP degradation. It is not known whether CD39 is expressed and implicated in the activity of CD8+ regulatory T lymphocytes (Treg). In this study, CD39 expression and function was analyzed in both CD8+ and CD4+CD25hi Treg from the peripheral blood of healthy donors as well as from tumor specimens. CD39 was found expressed by both CD8+ (from the majority of healthy donors and tumor patients) and CD4+CD25hi Treg, and CD39 expression correlated with suppression activity mediated by CD8+ Treg. Importantly, CD39 counteraction remarkably inhibited the suppression activity of CD8+ Treg (both from peripheral blood and tumor microenvironment) suggesting that CD39-mediated inhibition constitutes a prevalent hallmark of their function. Collectively, these findings, unveiling a new mechanism of action for CD8+ Treg, provide new knowledge on intratumoral molecular pathways related to tumor immune escape, which could be exploited in the future for designing new biological tools for anticancer immune intervention.  相似文献   

10.
HIV infects key cell types of the immune system, most notably macrophages and CD4+ T cells. Whereas macrophages represent an important viral reservoir, activated CD4+ T cells are the most permissive cell types supporting high levels of viral replication. In recent years, it has been appreciated that the innate immune system plays an important role in controlling HIV replication, e.g. via interferon (IFN)-inducible restriction factors. Moreover, innate immune responses are involved in driving chronic immune activation and the pathogenesis of progressive immunodeficiency. Several pattern recognition receptors detecting HIV have been reported, including Toll-like receptor 7 and Retinoic-inducible gene-I, which detects viral RNA. Here we report that human primary T cells fail to induce strong IFN responses, despite the fact that this cell type does express key molecules involved in DNA signaling pathways. We demonstrate that the DNA sensor IFI16 migrates to sites of foreign DNA localization in the cytoplasm and recruits the signaling molecules stimulator of IFN genes and Tank-binding kinase, but this does not result in expression of IFN and IFN-stimulated genes. Importantly, we show that cytosolic DNA fails to affect HIV replication. However, exogenous treatment of activated T cells with type I IFN has the capacity to induce expression of IFN-stimulated genes and suppress HIV replication. Our data suggest the existence of an impaired DNA signaling machinery in T cells, which may prevent this cell type from activating cell-autonomous anti-HIV responses. This phenomenon could contribute to the high permissiveness of CD4+ T cells for HIV-1.  相似文献   

11.
12.
The glucocorticoid-induced TNF-related gene receptor (GITR) is the newest member of the costimulatory molecule family and is expressed on both resting CD4+CD25+ regulatory T (T(R)) cells and activated CD4+ T cells. We investigated the endogenous mechanisms that regulate GITR expression on both T(R) and CD4+ T cells, as well as the functional interaction between GITR and other costimulatory molecules. CD28 stimulation increased GITR expression on both T(R) and CD4+ T cells via IL-2-dependent mechanisms. In addition, ligation of GITR and/or CD28 increased the level of CD4+ T cell proliferation and effector function under both APC-dependent and -independent conditions, suggesting that these costimulatory molecules cooperate to regulate CD4+ T cell activation and function by directly signaling to the CD4+ T cell. Thus, GITR may serve opposing functional roles on CD4+ T(R) and effector cells and alterations in GITR expression and/or function may tip the balance between immune tolerance and effector function.  相似文献   

13.
Previous studies have attributed to the cocoa powder the capacity to attenuate the immune response in a rat oral sensitization model. To gain a better understanding of cocoa-induced mechanisms at small intestinal level, 3-week-old female Lewis rats were fed either a standard diet or a diet containing 10% cocoa for 4 weeks with or without concomitant oral sensitization with ovalbumin (OVA). Thereafter, we evaluated the lymphocyte composition of the Peyer's patches (PPL), small intestine epithelium (IEL) and lamina propria (LPL). Likewise, gene expression of several immune molecules was quantified in the small intestine. Moreover, histological samples were used to evaluate the proportion of goblet cells, IgA+ cells and granzyme+ cells as well. In cocoa-fed animals, we identified a five-time reduction in the percentage of IgA+ cells in intestinal tissue together with a decreased proportion of TLR4+ IEL. Analyzing the lymphocyte composition, almost a double proportion of TCRγδ+ cells and an increase of NK cell percentage in PPL and IEL were found. In addition, a rise in CD25+, CD103+ and CD62L− cell proportions was observed in CD4+ PPL from cocoa-fed animals, along with a decrease in gene expression of CD11b, CD11c and IL-10. These results suggest that changes in PPL and IEL composition and in the gene expression induced by the cocoa diet could be involved, among other mechanisms, on its tolerogenic effect.  相似文献   

14.
15.
Proinsulin is a key Ag in type 1 diabetes, but the mechanisms regulating proinsulin immune tolerance are unknown. We have shown that preproinsulin-2 gene-deficient mice (proins-2(-/-)) are intolerant to proinsulin-2. In this study, we analyzed the mechanisms underlying T cell-mediated tolerance to proinsulin-2 in 129/Sv nonautoimmune mice. The expression of one proinsulin-2 allele, whatever its parental origin, was sufficient to maintain tolerance. The site of proinsulin-2 expression relevant to tolerance was evaluated in thymus and bone marrow chimeras. CD4+ T cell reactivity to proinsulin-2 was independent of proinsulin-2 expression in radiation-sensitive bone marrow-derived cells. A wt thymus restored tolerance in proins-2(-/-) mice. Conversely, the absence of the preproinsulin-2 gene in radioresistant thymic cells was sufficient to break tolerance. Although chimeric animals had proinsulin-2-reactive CD4+ T cells in their peripheral repertoire, they displayed no insulitis or insulin Abs, suggesting additional protective mechanisms. In a model involving transfer to immunodeficient (CD3epsilon(-/-)) mice, naive and proinsulin-2-primed CD4+ T cells were not activated, but could be activated by immunization regardless of whether the recipient mice expressed proinsulin-2. Furthermore, we could not identify a role for putative specific T cells regulating proinsulin-2-reactive CD4+ T in transfer experiments. Thus, proinsulin-2 gene expression by radioresistant thymic epithelial cells is involved in the induction of self-tolerance, and additional factors are required to induce islet abnormalities.  相似文献   

16.
Two types of dendritic cells (DC) are circulating in human blood and can be identified by their differential expression of the myeloid Ag CD11c. In this study, we show that CD11c- peripheral blood (PB)-DC correspond to plasmacytoid DC of lymphoid tissue not only by their surface Ag expression profile but, more impressively, by their peculiar ultramorphology. We also demonstrate that CD11c- and CD11c+ DC differ in the quality of their response to and in their requirement for certain cytokines. Freshly isolated CD11c- cells depend on IL-3 for survival and use autocrine or exogenous TNF-alpha as maturation signal, leading to the appearance of a highly dendritic phenotype, the up-regulation and redistribution of MHC class II from lysosomal compartments to the plasma membrane, the increased expression of costimulatory molecules, and the switch from a high Ag-processing to a low Ag-processing/potent accessory cell mode. Surprisingly, IL-4 efficiently killed freshly isolated CD11c- PB-DC, but did not impair the viability of CD11c+ PB-DC and, together with GM-CSF, induced maturation of these cells. A direct functional comparison revealed that neo-Ag-modified and subsequently matured CD11c- but to a lesser extent CD11c+ DC were able to prime naive Ag-specific CD4+ T cells. Our findings show that two diverse DC types respond to certain T cell-derived cytokines in a differential manner and, thus, suggest that suppression or activation of functionally diverse DC types may be a novel mechanism for the regulation of the quantity and quality of immune responses.  相似文献   

17.
Cancer progression is attributed in part to immune evasion strategies that include lack of co-stimulation, down-regulation of cell surface MHC molecules, and secretion of immunosuppressive factors, such as transforming growth factor-beta (TGF-beta). Gene therapy has been employed to counter these mechanisms of immune evasion by transference of B7.1, IFN-gamma or antisense TGF-beta genes into tumor cells, resulting in cell surface expression of B7.1, upregulation of MHC class I and class II molecules, or elimination of tumor-derived TGF-beta, respectively. Although each of these transgenes has been shown to alter tumorigenicity in murine models, a direct comparison of their efficacy has not been performed. In this study, we have employed a very aggressive, poorly immunogenic and highly metastatic mammary model, 4T1, to compare the efficacy of B7.1, IFN-gamma and antisense TGF-beta gene transfer in stimulating an anti-tumor response. We demonstrate that both IFN-gamma and antisense TGF-beta gene expression significantly reduced the tumorigenicity of these cells compared to mock transduced cells, with IFN-gamma having a greater effect. In contrast, B7.1 gene transfer did not affect the tumorigenicity of 4T1 cells. The anti-tumor response directed against antisense TGF-beta-expressing 4T1 tumors was mediated by CD4+ and CD8+ T cells. However, CD8+ T cells, and not CD4+ T cells, appeared to mediate the anti-tumor response against IFN-gamma-expressing tumors. Treatment of tumor-bearing animals with IFN-gamma or antisense TGF-beta gene-modified tumor cell vaccines reduced the number of clonogenic metastases to the lungs and liver compared to treatment with mock-transduced cells. Finally, in a residual disease model in which the primary tumor was excised and mice were vaccinated with irradiated tumor cells, treatment of mice with vaccinations consisting of 4T1 cells expressing both antisense TGF-beta and IFN-gamma genes was the most effective in prolonging survival.  相似文献   

18.
Shan F  Xia Y  Wang N  Meng J  Lu C  Meng Y  Plotnikoff NP 《Peptides》2011,32(5):929-937
MENK, the endogenous neuropeptide, is suggested to be involved in the regulatory loop between the immune and neuroendocrine systems, with modulation of various functions of cells related to both the innate and adaptive immune systems. Our present research findings show that MENK serves as an immune modulator to the pathway between DCs and CD4+T cells. We studied changes of DCs in key surface molecules, the activity of acid phosphatases (ACPs), the production of IL-12, and the effects on murine CD4+T cell expansion and their cytokine production by MENK alone, and in combination with interkeukin-2 (IL-2) or interferon-γ (IFN-γ). In fact, we found that MENK could markedly induce the maturation of DCs through the addition of surface molecules such as MHC class II, CD86, and CD40 on murine DCs, the production of IL-12, and the down-regulation of ACP inside DCs, (which occurs when phagocytosis of DCs is decreased, and antigen presentation increased with maturation). We also found that MENK alone or in combination with IL-2 or IFN-γ, could markedly up-regulate both CD4+T cell expansion and the CD4 molecule expression in vivo and in vitro and that MENK alone, or MENK + IL-2, could enhance the production of interferon-γ from CD4+T cells. Moreover, MENK alone, or MENK + IFN-γ, could enhance the production of IL-2 from CD4+T cells. It is therefore concluded that MENK can exert positive modulation to the pathway between dendtritic cells and CD4+T cells.  相似文献   

19.
20.
Cytokine profiles of CD4+ and CD8+ T-cell subsets were evaluated in 8 patients with infectious mononucleosis (IM). Intracellular detection of cytokines using flow cytometry revealed an expansion of IFN-gamma-expressing CD4+ T cells, and particularly CD8+ T cells, while IL-2 expressing cells were less frequently encountered when compared to healthy controls. Single TNF-alpha-expressing CD4+ and CD8+ T cells were likewise reduced and shifted towards IFN-gamma/TNF-alpha co-production. The predominant pro-inflammatory type 1-biased immune response during IM was emphasized by low frequencies of IL-10 expression in both T cell subsets, although some patients displayed elevated serum levels. Six months later, a decreased, but still elevated IFN-gamma expression within the CD8+ T cell subset, and an increased percentage of IL-2-expressing CD4+ and CD8+ T cells, reaching values shown for controls, were noted. Type 2-associated cytokines such as IL-4 and IL-13, as well as IL-6 and TNF-alpha were not significantly different when compared to controls at study entry and at follow-up. The striking expansion of IFN-gamma-producing CD8+ T cells with rather low expression of IL-10, appears to be a key factor for clinically overt disease, but is nevertheless compatible with successful control of the viral infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号