首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The endosomal system functions as a network of protein and lipid sorting stations that receives molecules from endocytic and secretory pathways and directs them to the lysosome for degradation, or exports them from the endosome via retrograde trafficking or plasma membrane recycling pathways. Retrograde trafficking pathways describe endosome‐to‐Golgi transport while plasma membrane recycling pathways describe trafficking routes that return endocytosed molecules to the plasma membrane. These pathways are crucial for lysosome biogenesis, nutrient acquisition and homeostasis and for the physiological functions of many types of specialized cells. Retrograde and recycling sorting machineries of eukaryotic cells were identified chiefly through genetic screens using the budding yeast Saccharomyces cerevisiae system and discovered to be highly conserved in structures and functions. In this review, we discuss advances regarding retrograde trafficking and recycling pathways, including new discoveries that challenge existing ideas about the organization of the endosomal system, as well as how these pathways intersect with cellular homeostasis pathways.  相似文献   

2.
The functional consequences of signaling receptor endocytosis are determined by the endosomal sorting of receptors between degradation and recycling pathways. How receptors recycle efficiently, in a sequence-dependent manner that is distinct from bulk membrane recycling, is not known. Here, in live cells, we visualize the sorting of a prototypical sequence-dependent recycling receptor, the beta-2 adrenergic receptor, from bulk recycling proteins and the degrading delta-opioid receptor. Our results reveal a remarkable diversity in recycling routes at the level of individual endosomes, and indicate that sequence-dependent recycling is an active process mediated by distinct endosomal subdomains distinct from those mediating bulk recycling. We identify a specialized subset of tubular microdomains on endosomes, stabilized by a highly localized but dynamic actin machinery, that mediate this sorting, and provide evidence that these actin-stabilized domains provide the physical basis for a two-step kinetic and affinity-based model for protein sorting into the sequence-dependent recycling pathway.  相似文献   

3.
Endosomes regulate both the recycling and degradation of plasma membrane (PM) proteins, thereby modulating many cellular responses triggered at the cell surface. Endosomes also play a role in the biosynthetic pathway by taking proteins to the vacuole and recycling vacuolar cargo receptors. In plants, the trans-Golgi network (TGN) acts as an early/recycling endosome whereas prevacuolar compartments/multivesicular bodies (MVBs) take PM proteins to the vacuole for degradation. Recent studies have demonstrated that some of the molecular complexes that mediate endosomal trafficking, such as the retromer, the ADP-ribosylation factor (ARF) machinery, and the Endosomal Sorting Complexes Required for Transport (ESCRTs) have both conserved and specialized functions in plants. Whereas there is disagreement on the subcellular localization of the plant retromer, its function in recycling vacuolar sorting receptors (VSRs) and modulating the trafficking of PM proteins has been well established. Studies on Arabidopsis ESCRT components highlight the essential role of this complex in cytokinesis, plant development, and vacuolar organization. In addition, post-translational modifications of plant PM proteins, such as phosphorylation and ubiquitination, have been demonstrated to act as sorting signals for endosomal trafficking.  相似文献   

4.
Previous studies of fibroblasts have demonstrated that recycling of endocytic receptors occurs through a default mechanism of membrane-volume sorting. Epithelial cells require an additional level of polar membrane sorting, but there are conflicting models of polar sorting, some suggesting that it occurs in early endosomes, others suggesting it occurs in a specialized apical recycling endosome (ARE). The relationship between endocytic sorting to the lysosomal, recycling and transcytotic pathways in polarized cells was addressed by characterizing the endocytic itineraries of LDL, transferrin (Tf) and IgA, respectively, in polarized Madin-Darby canine kidney (MDCK) cells. Quantitative analyses of 3-dimensional images of living and fixed polarized cells demonstrate that endocytic sorting occurs sequentially. Initially internalized into lateral sorting endosomes, Tf and IgA are jointly sorted from LDL into apical and medical recycling endosomes, in a manner consistent with default sorting of membrane from volume. While Tf is recycled to the basolateral membrane from recycling endosomes, IgA is sorted to the ARE prior to apical delivery. Quantifications of the efficiency of sorting of IgA from Tf between the recycling endosomes and the ARE match biochemical measurements of transepithelial protein transport, indicating that all polar sorting occurs in this step. Unlike fibroblasts, rab11 is not associated with Tf recycling compartments in either polarized or glass-grown MDCK cells, rather it is associated with the compartments to which IgA is directed after sorting from Tf. These results complicate a suggested homology between the ARE and the fibroblast perinuclear recycling compartment and provide a framework that justifies previous conflicting models of polarized sorting.  相似文献   

5.
Rab GTPases comprise a large family of monomeric proteins that regulate a diverse number of membrane trafficking events, including endocytosis. In this paper, we examine the subcellular distribution and function of the GTPase Rab15. Our biochemical and confocal immunofluorescence studies demonstrate that Rab15 associates with the transferrin receptor, a marker for the early endocytic pathway, but not with Rab7 or the cation-independent mannose 6-phosphate receptor, markers for late endosomal membranes. Furthermore, Rab15 colocalizes with Rab4 and -5 on early/sorting endosomes, as well as Rab11 on pericentriolar recycling endosomes. Consistent with its localization to early endosomal membranes, overexpression of the constitutively active mutant HArab15Q67L reduces receptor-mediated and fluid phase endocytosis. Therefore, our functional studies suggest that Rab15 may function as an inhibitory GTPase in early endocytic trafficking.  相似文献   

6.
Many studies have demonstrated a role for ubiquitin (Ub) in the down-regulation of cell surface proteins. In yeast, down-regulation is marked by the internalization of proteins, followed by their delivery to the lumen of the vacuole where both the cytosolic and lumenal domains are degraded. It is generally believed that the regulatory step of this process is internalization from the plasma membrane and that protein delivery to the lysosome or vacuole is by default. By separating the process of internalization from degradation, we demonstrate that incorporation of proteins into intralumenal vesicles represents a distinct sorting step along the endocytic pathway that is controlled by recognition of ubiquitin. We show that attachment of a single ubiquitin can serve as a specific sorting signal for the degradative pathway by redirecting recycling Golgi proteins and resident vacuolar proteins into intralumenal vesicles of the yeast vacuole. This pathway is independent of PtdIns(3,5) P2 and does not rely on the specific composition of transmembrane domain segments. These data provide a physiological basis for how ubiquitination of cell surface proteins guides their degradation and removal from the recycling pathway.  相似文献   

7.
Lipid modifications are essential in cellular sorting and trafficking inside cells. The role of phosphoinositides in trafficking between Golgi and endocytic/lysosomal compartments has been extensively explored and the kinases responsible for these lipid changes have been identified. In contrast, the mechanisms that mediate exit and recycling from lysosomes (Lys), considered for a long time as terminal compartments, are less understood. In this work, we identify a dynamic association of the lipid kinase PI4KIIIβ with Lys and unveil its regulatory function in lysosomal export and retrieval. We have found that absence of PI4KIIIβ leads to abnormal formation of tubular structures from the lysosomal surface and loss of lysosomal constituents through these tubules. We demonstrate that the kinase activity of PI4KIIIβ is necessary to prevent this unwanted lysosomal efflux under normal conditions, and to facilitate proper sorting when recycling of lysosomal material is needed, such as in the physiological context of lysosomal reformation after prolonged starvation.  相似文献   

8.
Liang YJ  Wu DF  Stumm R  Höllt V  Koch T 《Cell research》2008,18(7):768-779
The interaction of mu-opioid receptor (MOPr) with the neuronal membrane glycoprotein M6a is known to facilitate MOPr endocytosis in human embryonic kidney 293 (HEK293) cells. To further study the role of M6a in the post-endocytotic sorting of MOPr, we investigated the agonist-induced co-internalization of MOPr and M6a and protein targeting after internalization in HEK293 cells that co-expressed HA-tagged MOPr and Myc-tagged M6a. We found that M6a, MOPr, and Rab 11, a marker for recycling endosomes, co-localized in endocytotic vesicles, indicating that MOPr and M6a are primarily targeted to recycling endosomes after endocytosis. Furthermore, co-expression of M6a augmented the post-endocytotic sorting of delta-opioid receptors into the recycling pathway, indicating that M6a might have a more general role in opioid receptor post-endocytotic sorting. The enhanced post-endocytotic sorting of MOPr into the recycling pathway was accompanied by a decrease in agonist-induced receptor down-regulation of M6a in co-expressing cells. We tested the physiological relevance of these findings in primary cultures of cortical neurons and found that co-expression of M6a markedly increased the translocation of MOPrs from the plasma membrane to intracellular vesicles at steady state and significantly enhanced both constitutive and agonist-induced receptor endocytosis. In conclusion, our results strongly indicate that M6a modulates MOPr endocytosis and post-endocytotic sorting and has an important role in receptor regulation.  相似文献   

9.
Clathrin-coated vesicles execute receptor-mediated endocytosis at the plasma membrane. However, a role for clathrin in later endocytic trafficking processes, such as receptor sorting and recycling or maintaining the organization of the endocytic pathway, has not been thoroughly characterized. The existence of clathrin-coated buds on endosomes suggests that clathrin might mediate later endocytic trafficking events. To investigate the function of clathrin-coated buds on endosomal membranes, endosome function and distribution were analyzed in a HeLa cell line that expresses the dominant-negative clathrin inhibitor Hub in an inducible manner. As expected, Hub expression reduced receptor-mediated endocytosis at the plasma membrane. Hub expression also induced a perinuclear aggregation of early endosome antigen 1-positive early endosomes, such that sorting and recycling endosomes were found tightly concentrated in the perinuclear region. Despite the dramatic redistribution of endosomes, Hub expression did not affect the overall kinetics of receptor sorting or recycling. These data show that clathrin function is necessary to maintain proper cellular distribution of early endosomes but does not play a prominent role in sorting and recycling events. Thus, clathrin's role on endosomal membranes is to influence organelle localization and is distinct from its role in trafficking pathways at the plasma membrane and trans-Golgi network.  相似文献   

10.
Targeting of many transmembrane proteins to post-Golgi compartments is dependent on cytoplasmically exposed sorting signals. The most widely used signals conform to the tyrosine- or the leucine-based motifs. Both types of signals have been implicated in protein localization to the same intracellular compartments, but previous results from both cell-free experiments and studies of transfected cell lines have indicated that the two types of signals interact with separate components of the sorting machinery. We have overexpressed several transmembrane proteins in stably transfected Madin-Darby canine kidney cells using an inducible promoter system. Overexpression of proteins containing tyrosine- or leucine-based sorting signals resulted in reduced internalization of the transferrin receptor, whereas recycling and polarized distribution was not influenced. Our results indicate that proteins with tyrosine- and leucine-based sorting signals can be transported along common saturable pathways.  相似文献   

11.
Rho GTPases are key regulators of actin dynamics. We report that the Rho GTPase TCL, which is closely related to Cdc42 and TC10, localizes to the plasma membrane and the early/sorting endosomes in HeLa cells, suggesting a role in the early endocytic pathway. Receptor-dependent internalization of transferrin (Tf) is unaffected by suppression of endogenous TCL by small interfering RNA treatment. However, Tf accumulates in Rab5-positive uncoated endocytic vesicles and fails to reach the early endosome antigen-1-positive early endosomal compartments and the pericentriolar recycling endosomes. Moreover, Tf release upon TCL knockdown is significantly slower. Conversely, in the presence of dominant active TCL, internalized Tf accumulates in early endosome antigen-1-positive early/sorting endosomes and not in perinuclear recycling endosomes. Tf recycles directly from the early/sorting endosomes and it is normally released by the cells. The same phenotype is generated by replacing the C terminus of dominant active Cdc42 and TC10 with that of TCL, indicating that all three proteins share downstream effector proteins. Thus, TCL is essential for clathrin-dependent endocytosed receptors to enter the early/sorting endosomes. Furthermore, the active GTPase favors direct recycling from early/sorting endosomes without accumulating in the perinuclear recycling endosomes.  相似文献   

12.
Polarized epithelial cells maintain the polarized distribution of basolateral and apical membrane proteins through a process of receptor-mediated endocytosis, sorting, and then recycling to the appropriate membrane domain. We have previously shown that the small GTP-binding proteins, Rab11a and Rab25, are associated with the apical recycling system of Madin-Darby canine kidney cells. Here we have utilized inducible expression of wild-type, dominant negative, and constitutively active mutants to directly compare the functions of Rab25 and Rab11a in postendocytic vesicular transport. We found that a Rab11a mutant deficient in GTP binding, Rab11aS25N, potently inhibited both transcytosis and apical recycling yet failed to inhibit transferrin recycling. Similarly, expression of either wild type Rab25 or the active mutant Rab25S21V inhibited both apical recycling and transcytosis of IgA by greater than 50% but had no effect on basolateral recycling of transferrin. Interestingly, the GTPase-deficient mutant Rab11aS20V inhibited basolateral to apical transcytosis of IgA, but had no effect on either apical or basolateral recycling. These results indicate that neither Rab11a nor Rab25 function in the basolateral recycling of transferrin in polarized Madin-Darby canine kidney cells cells, consistent with recent morphological observations by others. Thus, transferrin receptors must be recycled to the plasma membrane prior to sorting of apically directed cargoes into Rab11a/Rab25-positive apical recycling endosomes.  相似文献   

13.
The trafficking mechanisms that control the density of synaptic AMPA-type glutamate receptors have received significant attention because of their importance for regulating excitatory synaptic transmission and synaptic plasticity in the hippocampus. AMPA receptors are synthesized in the neuronal cell body and reach their postsynaptic targets after a complex journey involving multiple transport steps along different cytoskeleton structures and through various stages of the endocytic pathway. Dendritic spines are important sites for AMPA receptor trafficking and contain the basic components of endosomal recycling. On induction of synaptic plasticity, internalized AMPA receptors undergo endosomal sorting and cycle through early endosomes and recycling endosomes back to the plasma membrane (model for long-term potentiation) or target for degradation to the lysosomes (model for long-term depression). Exciting new studies now provide insight in actin-mediated processes that controls endosomal tubule formation and receptor sorting. This review describes the path of AMPA receptor internalization up to sites of recycling and summarizes recent studies on actin-mediated endosomal receptor sorting.  相似文献   

14.
Multivesicular bodies: co-ordinated progression to maturity   总被引:2,自引:0,他引:2  
Multivesicular endosomes/bodies (MVBs) sort endocytosed proteins to different destinations. Many lysosomally directed membrane proteins are sorted onto intralumenal vesicles, whilst recycling proteins remain on the perimeter membrane from where they are removed via tubular extensions. MVBs move to the cell centre during this maturation process and, when all recycling proteins have been removed, fuse with lysosomes. Recent advances have identified endosomal-sorting complex required for transport (ESCRT)-dependent and ESCRT-independent pathways in intralumenal vesicle formation and mechanisms for sorting recycling cargo into tubules. Cytoskeletal motors, through interactions with these machineries and by regulating MVB movement, help to co-ordinate events leading to a mature, fusion-competent MVB.  相似文献   

15.
Cargo sorting that promotes the transport of cargo proteins from a membrane compartment has been predicted to be unlikely in the endocytic recycling pathways. We now show that ACAP1 binds specifically and directly to recycling cargo proteins. Reducing this interaction for TfR inhibits its recycling. Moreover, ACAP1 binds to two distinct phenylalanine-based sequences in the cytoplasmic domain of TfR that function as recycling sorting signals to promote its transport from the recycling endosome. Taken together, these findings indicate that ACAP1 promotes cargo sorting by recognizing recycling sorting signals.  相似文献   

16.
In animals, sorting of membrane proteins following their internalization from the plasma membrane (PM) by endocytosis occurs through a series of different endosomal compartments. In plants, how and where these sorting events take place is still poorly understood and our current view of the endocytic pathway still largely relies on analogies made from the animal system. However, extensive differences seem to exist between animal and plant endosomal functions, as exemplified by the role of the trans-Golgi network (TGN) as an early endosomal compartment in plants or the functional diversification of conserved sorting complexes. By using the Arabidopsis root tip as a reference model, we and other have begun to shed light on the complexity of the plant endocytic pathways. Notably, we have recently characterized the functions of an endosomal compartment, the SNX1-endosomes, also referred to as the prevacuolar compartment (PVC) or multivesicular bodies (MVB), in the sorting of different cargo proteins, including two related auxin-efflux carriers, PIN1 and PIN2. We have shown that routing decisions take place at this endosomal level, such as the sorting of PIN2 toward the lytic vacuole for degradation or PIN1 toward the PM for recycling.Key Words: Arabidopsis, intracellular trafficking, endocytic recycling, endosomes, MVB, PVC, VPS29, SNX, PIN, cell polarity  相似文献   

17.
18.
Plasma membrane recycling of G protein-coupled receptors can occur by at least two distinct mechanisms as follows: a "default" mechanism that occurs nonselectively, and a specifically sorted mechanism that requires the endosome-associated protein Hrs. In this study we have defined a sequence in the beta2-adrenergic receptor cytoplasmic tail that confers Hrs dependence on receptor recycling. This sequence resembles acidic dileucine class motifs found in other membrane proteins but is structurally and functionally distinct from previously identified sorting sequences. Mutation of the novel sorting sequence rendered plasma membrane recycling independent of Hrs and independent of a distal PDZ ligand required for Hrs-dependent recycling. We propose that the novel sorting sequence functions to "switch" endocytic trafficking between mechanistically distinct recycling modes, thereby explaining failure of the wild type beta2-adrenergic receptor to recycle efficiently by default.  相似文献   

19.
Prior studies on receptor recycling through late endosomes and the TGN have suggested that such traffic may be largely limited to specialized proteins that reside in these organelles. We present evidence that efficient recycling along this pathway is functionally important for nonresident proteins. P-selectin, a transmembrane cell adhesion protein involved in inflammation, is sorted from recycling cell surface receptors (e.g., low density lipoprotein [LDL] receptor) in endosomes, and is transported from the cell surface to the TGN with a half-time of 20-25 min, six to seven times faster than LDL receptor. Native P-selectin colocalizes with LDL, which is efficiently transported to lysosomes, for 20 min after internalization, but a deletion mutant deficient in endosomal sorting activity rapidly separates from the LDL pathway. Thus, P-selectin is sorted from LDL receptor in early endosomes, driving P-selectin rapidly into late endosomes. P-selectin then recycles to the TGN as efficiently as other receptors. Thus, the primary effect of early endosomal sorting of P-selectin is its rapid delivery to the TGN, with rapid turnover in lysosomes a secondary effect of frequent passage through late endosomes. This endosomal sorting event provides a mechanism for efficiently recycling secretory granule membrane proteins and, more generally, for downregulating cell surface receptors.  相似文献   

20.
A longstanding question in cell biology is how is the routing of intracellular organelles within cells regulated? Although data support the involvement of Rab4 and Rab11 GTPases in the recycling pathway, the function of Rab11 in particular is uncertain. Here we have analyzed the association of these two Rab GTPases with the Fc receptor, FcRn, during intracellular trafficking. This Fc receptor is both functionally and structurally distinct from the classical Fcgamma receptors and transports immunoglobulin G (IgG) within cells. FcRn is therefore a recycling receptor that sorts bound IgG from unbound IgG in sorting endosomes. In the current study we have used dual color total internal reflection fluorescence microscopy (TIRFM) and wide-field imaging of live cells to analyze the events in human endothelial cells that are involved in the trafficking of FcRn positive (FcRn(+)) recycling compartments from sorting endosomes to exocytic sites at the plasma membrane. Our data are consistent with the following model for this pathway: FcRn leaves sorting endosomes in Rab4(+)Rab11(+) or Rab11(+) compartments. For Rab4(+)Rab11(+) compartments, Rab4 depletion occurs by segregation of the two Rab proteins into discrete domains that can separate. The Rab11(+)FcRn(+) vesicle or tubule subsequently fuses with the plasma membrane in an exocytic event. In contrast to Rab11, Rab4 is not involved in exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号