首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Several studies were carried out to investigate the soil microbial components involved in suppressing strawberry black rot root which occurs throughout the Italian strawberry growing region. Quantitative and qualitative evaluation of fungi involved in black root rot were combined with several soil microbial parameters involved in soil suppressiveness towards black root rot agents. The first survey, carried out in an intensively cultivated area of northern Italy, identified Rhizoctonia spp. as the main root pathogen together with several typical weak pathogens belonging to the well‐known black rot root complex of strawberry crop: Cylindrocarpondestructans, Fusarium oxysporum, F. solani, Pestalotia longiseta and others. The root colonisation frequency of strawberry plants increased strongly from autumn to spring at harvesting stage. Rhizoctonia spp. were the only pathogens which followed the rising trend of root colonisation with relative frequency; all the weak pathogens of strawberry black root rot complex did not vary their frequency. Only non‐pathogenic fungi decreased from autumn to spring when at least 60% of colonising fungi were represented by Rhizoctonia. These data suggested that the late vegetative stage was the best time to record the soil inoculum of root rot agents in strawberry using root infection frequency as a parameter of soil health. A further study was performed in two fields, chosen for their common soil texture and pH, but with significant differences in previous soil management: one (ALSIA) had been subjected to strawberry monoculture without organic input for several years; the other (CIF) has been managed according to a 4‐year crop rotation and high organic input. In this study Pythium artificially inoculated was adopted as an indicator for the behaviour of saprophytically living pathogens in bulk soil. Pythium showed a sharp, different response after inoculation in bulk soil from the two soil systems evaluated. Pythium was suppressed only in the CIF field where the highest levels of total fungi and fluorescent bacteria and highest variability were observed. The suppressiveness conditions towards Pythium, observed in the CIF and absent in the ALSIA field, corresponded with the root infection frequency recorded at the late vegetative stage on strawberry plants grown in the two fields: strawberry plants from the CIF field showed lower root colonisation frequency and higher variability than that recorded on those coming from the ALSIA field.  相似文献   

2.
Red root rot caused by Poria hypolateritia is a dreadful disease in tea plant due to sudden death of bushes. In response to fungal pathogen, variation in the defence-related enzymes was investigated. The infected tea root was undertaken to study about various defence-related and pathogen-related enzymes. The infected root, as a prime response to disease attack, was subjected to the analysis of phenolics, phenylalanine ammonia lyase, tyrosine ammonia lyase, peroxidase, polyphenol oxidase, catalase, chitinase, β-1,3-glucanase and protease were assayed. The results on assay of defence-related enzymes revealed that the activity was significantly higher in infected roots when compared with healthy roots. Phenolics were accumulated more in infected roots. The sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis further confirmed the presence of induced pathogenesis-related proteins in the infected root tissues. The activity of all enzymes was increased up to threefold amount when compared with normal ones. The accumulation of defence enzymes in plants revealed the virulence of root pathogen in stimulating induced systemic resistance of tea plants and phytopathogenicity causing pathogenesis. This study exemplify to recognise underlying processes in causing infection and to identify the existence of host–pathogen relationship.  相似文献   

3.
Summary The paper deals with some cultural and physiological studies of a strain ofPhytophthora palmivora Butler, causing fruit rot ofAchras sapota L. Among the various culture media studied, oat meal, corn meal, lima bean and rice meal agars were the best ones, with abundant growth and sporulation of the organism. Lactose, galactose, dextrin and glycogen were the best sources of carbon. Among the various nitrogenous compounds studied, ammonium phosphate (monobasic), ammonium sulphate, ammonium tartrate, ammonium lactate, asparagin, glycine and glutamic acid were the best ones utilized by the organism. A pH of 5.9 was found to be the optimum for the growth and sporulation.Part of Senior Author's M.Sc. (Agriculture) Thesis, University of Poona, IndiaRespectively, Ex-Junior Research Fellow in Mycology and Plant Pathology, I.C.A.R., New Delhi; Professor of Plant Pathology & Principal, College of Agriculture, Junagad (Gujarat); and Plant Pathologist, Wheat Rust Research Station, Mahabaleshwar (Poona), India.  相似文献   

4.
为比较不同来源的丹参(Salvia miltiorrhiza)药材的酚酸类成分,采用化学指纹图谱和定量分析的方法,对不同来源丹参药材中的酚酸类成分进行了系统分析。结果表明:产地、采收期、病害、根色、根的粗细以及药材部位等因素尽管对丹参酚酸类成分绝对含量的影响比较大,但对各成分相对含量的影响较小;不同来源丹参药材酚酸类成分指纹图谱相似性较高;8月份采收的药材,丹酚酸B含量较高;病害能够显著降低丹酚酸B的积累;与白根和褐色根相比,砖红色根中的丹酚酸B含量较高;根越粗,丹酚酸B含量也越高。这为丹参药材的品质评价和资源利用提供了依据。  相似文献   

5.
Twelve widely grown cultivars of subterranean clover (Trifolium subterraneum) were screened both under controlled environment conditions for their resistance to five fungi commonly associated with root rot and under field conditions for their resistance to natural root infections. All cultivars showed decreased seedling survival (particularly from Pythium irregulare and Rhizoctonia solani), tap and lateral root rot (particularly from Fusarium avenaceum, P. irregulare, and R. solani) and reduced plant size (particularly from R. solani and P. irregulare). Individual cultivars generally differed in their response to the five pathogens and for any one pathogen there was generally a range of cultivar susceptibilities. Cultivars with the best resistance to individual root pathogens were identified. The results for the five individual pathogens under controlled conditions only showed correlation with field data for some of the parameters compared.  相似文献   

6.
Root rot, caused by Fusarium solani f. sp. phaseoli, is one of the main root diseases impacting production of common beans throughout the world. Because resistance of common beans to root rot is a quantitative trait that is strongly influenced by environmental factors, reproducible methods to screen bean plants for resistance to root rot are critical to the selection process. In this study, we adapted the inoculum layer method (ILM) developed for screening soybeans for resistance to Phytophthora rot and compared it with the traditional liquid inoculum method (LIM) for screening common beans for resistance to Fusarium root rot. In addition, two methods of evaluating resistance using the ILM were compared. The most significant Pearson correlation coefficient between trials involving 80 recombinant inbred lines was achieved with the ILM and counting discoloured vascular bundles in the lower stem (rp = 0.7113***) compared to rating the discoloration on root and hypocotyl (rp = 0.5555***). The traditional (LIM) screening method and rating the discolouration on roots resulted in a non‐significant correlation between trials (rp = 0.1084).  相似文献   

7.
Activities of defence‐related proteins (β‐1,3‐glucanases, chitinases and peroxidases) and concentrations of total soluble phenolics were measured in roots and leaves of non‐infected and infected plants to investigate the response of different citrus rootstock genotypes to the root rot pathogen Phytophthora palmivora Butler. Infection with the pathogen increased concentrations of total proteins, total phenolics and β‐1,3‐glucanase activity in roots of all genotypes, and increases were associated with the extent of root mass reductions and thus susceptibility of the plants. Root chitinase and root peroxidase levels were slightly reduced or unaltered upon infection. β‐1,3‐Glucanase activity was also elevated in leaves of infected plants, but increases did not differ between tolerant and susceptible rootstocks. Effects of root infection on leaves were typically the reverse of effects on roots for chitinase‐ and peroxidase levels and more pronounced in susceptible rootstock genotypes. Although differences in enzyme expression were observed between susceptible and tolerant citrus seedlings, effects were usually associated with disease progression, and not with resistance to P. palmivora. It is suggested that increased activities of the proteins and soluble phenolics studied are not implicated in the primary defence to Phytophthora root diseases, but may contribute to the inhibition of the pathogen during infection in tolerant citrus.  相似文献   

8.
Differential resistance of four Triticum aestivum L. genotypes to isolates of take-all fungus (Gaeuman-nomyces graminis var. ritici Walker) was tested in a complete factorial experiment set up in a growth chamber using Mn-deficient Wangary sand amended with four rates of Mn. Mn-efficient cultivars produced more dry matter at low supply of Mn. Fertilization with Mn significantly increased its accumulation in roots and shoots. The most sensitive measure of take-all infection was the total length of root stellar lesions; these lesions were reduced by Mn fertilization and were shorter in Mn-efficient genotypes. The resistance-enhancing effect of Mn was the most obvious in the Mn-inefficient genotype (Bayonet) and the least obvious in the Mn-efficient one (C8MM). Phenolics biosynthesis in roots was clicited by fungal infection, especially in the case of the highly virulent isolate. The weakly virulent isolate increased phenolics concentration in roots much more if no Mn was added, indicating that the resistance-enhancing effect of Mn may not be directly exerted through the effects on phenolics biosynthesis. Lignin concentration in roots decreased due to Mn fertilization, while no effect of take-all infection was noted. It appears that biosynthesis of phenolics and lignin in wheat roots has a low Mn requirement which can be satisfied at environmental Mn concentrations below those necessary for optimum plant growth. ei]Section editor: A C Borstlap ei]Section editor: H Lambers  相似文献   

9.
Protocorms or protocorms with roots of an achlorophyllous orchidGaleola septentrionalis were inoculated with isolates ofRhizoctonia repens, R. solani, andRhizoctonia spp. The seedlings were infected with eight of twelve isolates ofR. repens. Fungal coils were formed in the cells, which was suggestive of a symbiotic association. The other isolates caused soft rot or no infection to the protocorms or the protocorms with a root. Contribution No. 97, Laboratories of Plant Pathology and Mycology, Institute of Agriculture and Forestry, University of Tsukuba, Tsukuba, Ibaraki 305, Japan.  相似文献   

10.
Anthracnose fruit rot (AFR) caused by Colletotrichum acutatum is one of the most devastating diseases of strawberry (Fragaria × ananassa) in plasticulture systems in the Southeast US. Host resistance offers the best option to limit crop losses in both nursery and fruiting fields. To evaluate levels of anthracnose resistance and elucidate the role of foliar and fruit resistance in overall field AFR resistance, we tested 14 strawberry genotypes including numerous selections from the North Carolina State University strawberry breeding programme. Inoculations of plug plants with three representative C. acutatum isolates prior to field‐set indicated that the commercially standard cultivar Chandler was highly susceptible, with an average fruit rot incidence of over 72% the following spring. In contrast, breeding lines such as NC C99‐13 and NC C02‐63 showed superior resistance with AFR incidence values of 23.6% and 11.1%, respectively, and showed superior marketable yields. An average hemibiotrophic infection (HI) severity on foliage (percent leaf area covered with acervular growth after paraquat treatment and incubation) did not correlate (r = 0.57) well with in vitro AFR severity on detached fruit, indicating different mechanisms may be operative for resistance to foliar HI and fruit rot resistance. Multiple regression analysis indicated that in vitro fruit rot resistance expressed by lesion diameter and severity of foliar hemibiotrophic infections may be utilized to predict field AFR incidence. Strawberry genotypes bred for resistance against both fruit rot and foliar HI could be effectively selected by using rank‐sum classification methods and this process offers an effective strategy to advance selections for superior AFR field resistance.  相似文献   

11.

Utilization of biocontrol agents is a sustainable approach to reduce plant diseases caused by fungal pathogens. In the present study, we tested the effect of the candidate biocontrol fungus Aureobasidium pullulans (De Bary) G. Armaud on strawberry under in vitro and in vivo conditions to control crown rot, root rot and grey mould caused by Phytophthora cactorum (Lebert and Cohn) and Botrytis cinerea Pers, respectively. A dual plate confrontation assay showed that mycelial growth of P. cactorum and B. cinerea was reduced by 33–48% when challenged by A. pullulans as compared with control treatments. Likewise, detached leaf and fruit assays showed that A. pullulans significantly reduced necrotic lesion size on leaves and disease severity on fruits caused by P. cactorum and B. cinerea. In addition, greenhouse experiments with whole plants revealed enhanced biocontrol efficacy against root rot and grey mould when treated with A. pullulans either in combination with the pathogen or pre-treated with A. pullulans followed by inoculation of the pathogens. Our results demonstrate that A. pullulans is an effective biocontrol agent to control strawberry diseases caused by fungal pathogens and can be an effective alternative to chemical-based fungicides.

  相似文献   

12.
Abstract

Fungal diseases are the most important threat for rice production in the world. Rice fields were visited and sampled from diseased bushes to identify fungal diseases in Kohgiluyeh and Boyer-Ahmad province, in the south-west of Iran. Fungi were isolated from diseased tissues by Agar-plate method, and purified by single-spore or hyphal-tip methods. They were identified by studying morphological characteristics. The virulence of isolated fungi was evaluated on six dominant rice cultivars, Champa of temperate region, Champa of subtropical region, Gerdeh, Shamim, Fajr and Tarom, under greenhouse conditions. The experiment was set up in a factorial experiment in completely randomized design with four replicates. The incidence of three fungal diseases: brown spot caused by Curvularia australiensis and Bipolaris cookei, foot rot caused by Fusarium globosum and Fusarium sambucinum, and black root rot caused by Exserohilum pedicellatum, was proven in this study. Although, all of the tested cultivars significantly showed different reaction to these fungi, but the cultivars Champa of subtropical region and Tarom were resistant to foot rot as well as the black root rot and the cultivar Gerdeh was resistant to brown spot disease.  相似文献   

13.
Phytophthora fragariae var. fragariae is the causal agent of red stele (red core) root rot in strawberry (Fragaria spp.). The inheritance of resistance to one isolate of this fungus was studied in 12 segregating populations of F.×ananassa derived from crosses between four resistant cultivars (‘Climax’, ‘Redgauntlet’, ‘Siletz’, and ‘Sparkle’) and three susceptible cultivars (‘Blakemore’, ‘Glasa’, and ‘Senga’ Sengana’). The analysis clearly supports the hypothesis of a single segregating dominant resistance gene. It is proposed that this gene be designated Rpf2. Received 12 November 1996 / Accepted: 22 November 1996  相似文献   

14.
Diseases affecting strawberry (Fragaria × ananassa Duch.) have been of major concern in recent years because of their widespread occurrence and potential for yield loss. Anthracnose, caused by the fungus Colletotrichum acutatum, is one of the most serious diseases of strawberry worldwide. Tissue-culture induced (somaclonal) variation provides one strategy for generating disease-resistant genotypes. As part of a program to generate strawberry germplasm resistant to anthracnose, an in vitro screening system was used to evaluate several commercial cultivars, Chandler, Delmarvel, Honeoye, Latestar, Pelican and Sweet Charlie propagated in vitro, and shoots regenerated from leaf explants of these cultivars for resistance to C.␣acutatum isolate Goff (highly virulent). Regenerants with increased levels of resistance were identified from all of the cultivars. The greatest increases in disease resistance were observed for regenerants from leaf explants of cultivars Pelican and Chandler that exhibited 17.5- and 6.2-fold increases in resistance, respectively. The highest levels of anthracnose resistance (2 to 6% leaf necrosis) were exhibited by regenerants from explants of cultivars Pelican and Sweet Charlie. These studies suggest that generating somaclonal variation may be a viable approach to obtaining strawberry plants with increased levels of anthracnose resistance.  相似文献   

15.
Ribonuclease activity in the endosperms of 14 corn (Zea mays L.) inbreds ranged from 285 to 1305 units/g fresh weight 50 days after pollination. Activity is low in the inbred M14 and high in the inbred WF9. Hybrid endosperms contain intermediate levels of ribonuclease, and segregation occurs in the F2 generation. The ribonuclease contents of the opaque-2 versions of nine inbred lines ranged from 1288 to 5110 units/g. The floury-2 mutation apparently does not affect ribonuclease content. Two or more genes may be involved in the control of ribonuclease content of developing endosperms.Cooperative investigations of the Plant Science Research Division, Agricultural Research Service, U.S. Department of Agriculture, and the Illinois Agricultural Experiment Station, Urbana, Illinois.  相似文献   

16.
High aluminum (Al) concentration in soil solution is the most important factor restricting plant growth in acidic soils. However, various plant species naturally grow in such soils. Generally, they are highly tolerant to Al, but organic acid exudation, the most common Al tolerance mechanism, cannot explain their tolerance. Lower phospholipid and higher sterol proportions in root plasma membrane enhance Al tolerance. Other cellular components, such as cell walls and phenolics, may also be involved in Al tolerance mechanisms. In this study, the relationships between these cellular components and the Al tolerance mechanisms in Melastoma malabathricum and Melaleuca cajuputi, both highly Al‐tolerant species growing in strongly acidic soils, were investigated. Both species contained lower proportions of phospholipids and higher proportions of sterols in roots, respectively. Concentrations of phenolics in roots of both species were higher than that of rice; their phenolics could form chelates with Al. In these species, phenolic concentrations and composition were the same irrespective of the presence or absence of Al in the medium, suggesting that a higher concentration of phenolics is not a physiological response to Al but a constitutive characteristic. These characteristics of cellular components in roots may be cooperatively involved in their high Al tolerance.  相似文献   

17.
Yiu-Kwok Chan 《Plant and Soil》1986,90(1-3):141-150
Summary A microaerobic diazotrophic bacterium tentatively identified as aPseudomonas species was isolated from a forest soil. Its nitrogenase (C2H2 reduction) activity in liquid medium was significantly supported by phenolic compounds when compared with glucose-, mannitol- or malate-supported activity. The utilization of phenolics was dependent on substrate induction and the appropriate oxygen concentration. At a pO2 of 0.05 protocatechuate was a better carbon source for N2 fixation than glucose. In the case ofLignobacter protocatechuate was a better carbon source for N2 fixation than glucose at pO2 0.2 but not at pO2 0.05. It is suggested that certain monomeric phenols can support nitrogenase activities in many carbon-limited soil environments.Contribution No. 1484 from the Chemistry and Biology Research Institute, Agriculture Canada, Ottawa, Canada.  相似文献   

18.
 Bulked segregant analysis (BSA) was used to identify seven random amplified polymorphic DNA (RAPD) markers linked to the Rpf 1 gene. Rpf 1 confers resistance to Phytophthora fragariae var. fragariae, the causal agent of red stele root rot in Fragaria spp. The bulked DNAs represented subsets of a F1 population obtained from the cross Md683×Senga Sengana which consisted of 60 plants and segregated in a 1:1 ratio for resistance or susceptibility to race 2.3.4 isolate NS2 of P.  fragariae. Seven markers were shown to be linked to Rpf 1 and were generated from four primers; five of these markers were in coupling phase and two in repulsion phase with respect to the gene. A linkage map of this resistance gene region was generated using JoinMap 2.0TM. The manner in which Rpf 1 and the linked markers co-segregated indicated that they are inherited in a disomic fashion. These markers could enable gene pyramiding and marker-assisted selection of resistance genes in strawberry breeding programmes. Received: 26 August 1996 / Accepted: 20 December 1996  相似文献   

19.
The effect of seed‐borne pathogens of wheat and barley on crown and root rot diseases of seven barley cultivars (Jimah‐6, Jimah‐51, Jimah‐54, Jimah‐58, Omani, Beecher and Duraqi) and three wheat cultivars (Cooley, Maissani and Shawarir) was investigated. Bipolaris sorokiniana and Alternaria alternata were detected in seeds of at least eight cultivars, but Fusarium species in seeds of only two barley cultivars (Jimah‐54 and Jimah‐58). Crown rot and root rot symptoms developed on barley and wheat cultivars following germination of infected seeds in sterilized growing media. Bipolaris sorokiniana was the only pathogen consistently isolated from crowns and roots of the emerging seedlings. In addition, crown rot and root rot diseases of non‐inoculated barley cultivars correlated significantly with B. sorokiniana inoculum in seeds (P = 0.0019), but not with Fusarium or Alternaria (P > 0.05). These results indicate the role of seed‐borne inoculum of B. sorokiniana in development of crown rot and root rot diseases. Pathogenicity tests of B. sorokiniana isolates confirmed its role in inducing crown rot and root rot, with two wheat cultivars being more resistant to crown and root rots than most barley cultivars (P < 0.05). Barley cultivars also exhibited significant differences in resistance to crown rot (P < 0.05). In addition, black point disease symptoms were observed on seeds of three barley cultivars and were found to significantly affect seed germination and growth of some of these cultivars. This study confirms the role of seed‐borne inoculum of B. sorokiniana in crown and root rots of wheat and barley and is the first report in Oman of the association of B. sorokiniana with black point disease of barley.  相似文献   

20.
Aphanomyces root rot, caused by Aphanomyces cochlioides Drechs., is one of the most serious diseases of sugar beet (Beta vulgaris L.). Identification and characterization of resistance genes is a major task in sugar beet breeding. To ensure the effectiveness of marker-assisted screening for Aphanomyces root rot resistance, genetic analysis of mature plants’ phenotypic and molecular markers’ segregation was carried out. At a highly infested field site, some 187 F2 and 66 F3 individuals, derived from a cross between lines ‘NK-310mm-O’ (highly resistant) and ‘NK-184mm-O’ (susceptible), were tested, over two seasons, for their level of resistance to Aphanomyces root rot. This resistance was classified into six categories according to the extent and intensity of whole plant symptoms. Simultaneously, two selected RAPD and 159 ‘NK-310mm-O’-coupled AFLP were used in the construction of a linkage map of 695.7 cM. Each of nine resultant linkage groups was successfully anchored to one of nine sugar beet chromosomes by incorporating 16 STS markers. Combining data for phenotype and molecular marker segregation, a single QTL was identified on chromosome III. This QTL explained 20% of the variance in F2 population (in the year 2002) and 65% in F3 lines (2003), indicating that this QTL plays a major role in the Aphanomyces root rot resistance. This is the first report of the genetic mapping of resistance to Aphanomyces-caused diseases in sugar beet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号