首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In the present study, the fixation system of a femoral medullary nail connection was investigated. In surgical treatment of fractured femurs, the fracture is bridged by a medullary nail that is fixed by interlocking screws in the bone. Bone failure around these screws is the most common complication associated with the treatment of fractures of osteoporotic bone. The present study analyses the stresses present in the region of the implant/bone system. Three-dimensional finite element models were generated, a nonlinear structure analysis performed, and the stresses at material interfaces investigated. The highest concentration of stresses is to be found in the middle of the interlocking screws and the holes drilled in the bone. This is in agreement with the results of experimental investigations.  相似文献   

2.
This paper presents a finite element (FE) model to identify parameters that affect the performance of an improved cancellous bone screw fixation technique, and hence potentially improve fracture treatment. In cancellous bone of low apparent density, it can be difficult to achieve adequate screw fixation and hence provide stable fracture fixation that enables bone healing. Data from predictive FE models indicate that cements can have a significant potential to improve screw holding power in cancellous bone. These FE models are used to demonstrate the key parameters that determine pull-out strength in a variety of screw, bone and cement set-ups, and to compare the effectiveness of different configurations. The paper concludes that significant advantages, up to an order of magnitude, in screw pull-out strength in cancellous bone might be gained by the appropriate use of a currently approved calcium phosphate cement.  相似文献   

3.
The following is Part B of a two-part study. Part A evaluated, biomechanically, intramedullary (IM) nails versus locking plates for fixation of an extra-articular, metaphyseal wedge fracture in synthetic osteoporotic bone. Part B of this study introduces deterministic finite element (FE) models of each construct type in synthetic osteoporotic bone and investigates the probability of periprosthetic fracture of the locking plate compared with the retrograde IM nail using Monte Carlo simulation. Deterministic FE models of the fractured femur implanted with IM nail and locking plate, respectively, were developed and validated using experimental data presented in Part A of this study. The models were validated by comparing the load-displacement curve of the experimental data with the load-displacement curve of the FE simulation with a root-mean square error of less than 3?mm. The validated FE models were then modified by defining the cortical and cancellous bone modulus of elasticity as uncertain variables that could be assumed to vary randomly. Monte Carlo simulation was used to evaluate the probability of fracture (POF) of each fixation. The POF represents the cumulative probability that the predicted shear stresses in the cortical bone will exceed the expected shear strength of the cortical bone. This investigation provides information regarding the significance of post-operative damage accumulation on the POF of the implanted bones when the two fixations are used. The probabilistic analysis found the locking plate fixation to have a higher POF than the IM nail fixation under the applied loading conditions (locking plate 21.8% versus IM nail 0.019%).  相似文献   

4.
In vitro comparative testing of fracture fixation implants is limited by the highly variable material properties of cadaveric bone. Bone surrogate specimens are often employed to avoid this confounding variable. Although validated surrogate models of normal bone (NB) exist, no validated bone model simulating weak, osteoporotic bone (OPB) is available. This study presents an osteoporotic long-bone model designed to match the lower cumulative range of mechanical properties found in large series of cadaveric femora reported in the literature. Five key structural properties were identified from the literature: torsional rigidity and strength, bending rigidity and strength, and screw pull-out strength. An OPB surrogate was designed to meet the low range for each of these parameters, and was mechanically tested. For comparison, the same parameters were determined for surrogates of NB. The OPB surrogate had a torsional rigidity and torsional strength within the lower 2% and 16%, respectively, of the literature based cumulative range reported for cadaveric femurs. Its bending rigidity and bending strength was within the lower 11% and 8% of the literature-based range, respectively. Its pull-out strength was within the lower 2% to 16% of the literature based range. With all five structural properties being within the lower 16% of the cumulative range reported for native femurs, the OPB surrogate reflected the diminished structural properties seen in osteoporotic femora. In comparison, surrogates of NB demonstrated structural properties within 23-118% of the literature-based range. These results support the need and utility of the OPB surrogate for comparative testing of implants for fixation of femoral shaft fractures in OPB.  相似文献   

5.
Angled screw insertion has been advocated to enhance fixation strength during posterior spine fixation. Stresses on a pedicle screw and surrounding vertebral bone with different screw angles were studied by finite element analysis during simulated multidirectional loading. Correlations between screw-specific vertebral geometric parameters and stresses were studied. Angulations in both the sagittal and axial planes affected stresses on the cortical and cancellous bones and the screw. Pedicle screws pointing laterally (vs. straight or medially) in the axial plane during superior screw angulation may be advantageous in terms of reducing the risk of both screw loosening and screw breakage.  相似文献   

6.
Finite element (FE) models of bone, developed from computed tomography (CT) scan data, are used to evaluate stresses and strains, load transfer and fixation of implants, and potential for fracture. The experimentally derived relationships used to transform CT scan data in Hounsfield unit to modulus and strength contain substantial scatter. The scatter in these relationships has potential to impact the results and conclusions of bone studies. The objectives of this study were to develop a computationally efficient probabilistic FE-based platform capable of incorporating uncertainty in bone property relationships, and to apply the model to a representative analysis; variability in stresses and fracture risk was predicted in five proximal femurs under stance loading conditions. Based on published variability in strength and modulus relationships derived in the proximal femur, the probabilistic analysis predicted the distributions of stress and risk. For the five femurs analyzed, the 1 and 99 percentile bounds varied by an average of 17.3 MPa for stress and by 0.28 for risk. In each femur, the predicted variability in risk was greater than 50% of the mean risk calculated, with obvious implications for clinical assessment. Results using the advanced mean value (AMV) method required only seven analysis trials (1h) and differed by less than 2% when compared to a 1000-trial Monte-Carlo simulation (400 h). The probabilistic modeling platform developed has broad applicability to bone studies and can be similarly implemented to investigate other loading conditions, structures, sources of uncertainty, or output measures of interest.  相似文献   

7.
To investigate the mechanical and biomechanical properties of nickel–titanium (Ni–Ti) shape memory alloy scaphoid arc nail (NT‐SAN) fixator as well as study the surgical method of treating carpal scaphoid fractures and evaluate its clinical efficacy. (1) Static and dynamic bending tests with embedded axial bending fixture were conducted to study the mechanical properties. (2) To evaluate biomechanical strength and fatigue, 32 scaphoid samples were classified into four groups to perform the fixation rigidity test: intramedullary Kirschner fixation (group A), Kirschner straddle nail fixation (group B), screw nail fixation (group C), and NT‐SAN fixation (group D). Next, 24 scaphoid waist fracture models were classified to conduct fatigue experiments as follows: Kirschner straddle nail fixation (group E), screw nail fixation (group F), and NT‐SAN fixation (group G). (3) The Krimmer score chart was used for clinical evaluations. (1) NT‐SAN showed excellent mechanical performance and a long lifespan. (2) NT‐SAN was fixated with a strong intensity and an anti‐fatigue outcome. (3) Ninety‐eight interviewed patients were satisfied with the therapeutic effects of the arc nail (satisfaction rate: 95.92%). The designed strength and hardness of NT‐SAN corresponded with the anatomical characteristics of the scaphoid, and the designed mechanical properties met the biomechanical requirements of a scaphoid fracture. The fatigue strength can meet the requirements of bone healing after the scaphoid fracture. Clinical trials on NT‐SAN scaphoid fracture treatment have shown that the surgery is simple and the clinical results are satisfactory. The therapeutic level of NT‐SAN is III; thus, it is worth promoting.  相似文献   

8.
The stiffness of the external fixation highly influences the fracture healing pattern. In this work we study this aspect by means of a finite element model of a simple transverse mid-diaphyseal fracture of an ovine metatarsus fixed with a bilateral external fixator. In order to simulate the regenerative process, a previously developed mechanobiological model of bone fracture healing was implemented in three dimensions. This model is able to simulate tissue differentiation, bone regeneration, and callus growth. A physiological load of 500 N was applied and three different stiffnesses of the external fixator were simulated (2300, 1725, and 1150 N/mm). The interfragmentary strain and load sharing mechanism between bone and the external fixator were compared to those recorded in previous experimental works. The effects of the stiffness on the callus shape and tissue distributions in the fracture site were also analyzed. We predicted that a lower stiffness of the fixator delays fracture healing and causes a larger callus, in correspondence to well-documented clinical observations.  相似文献   

9.
The menisci are important biomechanical components of the knee. We developed and validated a finite element model of meniscal replacement to assess the effect of surgical fixation technique on contact behavior and knee stability. The geometry of femoral and tibial articular cartilage and menisci was segmented from magnetic resonance images of a normal cadaver knee using MIMICS (Materialise, Leuven, Belgium). A finite element mesh was generated using HyperWorks (Altair Inc, Santa Ana, CA). A finite element solver (Abaqus v6.9, Simulia, Providence, RI) was used to compute contact area and stresses under axial loading and to assess stability (reaction force generated during anteroposterior translation of the femur). The natural and surgical attachments of the meniscal horns and peripheral rim were simulated using springs. After total meniscectomy, femoral contact area decreased by 26% with a concomitant increase in average contact stresses (36%) and peak contact stresses (33%). Replacing the meniscus without suturing the horns did little to restore femoral contact area. Suturing the horns increased contact area and reduced peak contact stresses. Increasing suture stiffness correlated with increased meniscal contact stresses as a greater proportion of tibiofemoral load was transferred to the meniscus. A small incremental benefit was seen of simulated bone plug fixation over the suture construct with the highest stiffness (50 N/mm). Suturing the rim did little to change contact conditions. The nominal anteroposterior stiffness reduced by 3.1 N/mm after meniscectomy. In contrast to contact area and stress, stiffness of the horn fixation sutures had a smaller effect on anteroposterior stability. On the other hand suturing the rim of the meniscus affected anteroposterior stability to a much larger degree. This model emphasizes the importance of the meniscus in knee biomechanics. Appropriate meniscal replacement fixation techniques are likely to be critical to the clinical success of meniscal replacement. While contact conditions are mainly sensitive to meniscus horn fixation, the stability of the knee under anteroposterior shear loads appeared to be more sensitive to meniscal rim fixation. This model may also be useful in predicting the effect of biomaterial mechanical properties and meniscal replacement shape on knee contact conditions.  相似文献   

10.
A finite element model of the human dentate mandible has been developed to provide a comparison of fixation systems used currently for fracture reduction. Volume domains for cortical bone, cancellous bone, and teeth were created and meshed in ANSYS 8.0 based on IGES curves created from computerized tomography data. A unilateral molar clench was loaded on the model with a fracture gap simulated along the symphysis. Results based on Von Mises stress in cortical and cancellous bone surrounding the screws, and on fracture surface spatial fixation, show some relative differences between different screw-plate systems, yet all were judged to be appropriate in their reduction potential.  相似文献   

11.
In the surgical treatment of fractured femurs, the fracture is bridged by a medullary nail fixed in the bone with interlocking screws. Failure of bone substance in the region of the interlocking screws is the most common complication in the treatment of osteoporotic bone. With the aim of preventing this complication, an additional implant was developed. A finite element analysis of an ideal bone/implant system was carried out to investigate the role of the additional implant. Three defined finite element models were generated, and the associated stress situations compared. The first model is a standard fixation without the additional implant. In the second model, the additional implant is integrated within the bone/implant system. The third model uses a modified form of the additional implant. The results show that both additional implants reduce the stresses occurring, both in the bone substance and at the screws. The modified form of the additional implant proved to be the most favorable version. In the case of the original additional implant, the negative effect of the sharp edges of the thread was demonstrable.  相似文献   

12.
It was proposed that the stresses in the layer of bone immediately beneath a tibial component are an important determinant of fixation durability. Using finite element analysis, (ANSYS), the stresses were determined as a function of the amount of bone resection, the localization or completeness of implant-bone contact, and the interface material. The model was of two-dimensional sagittal slices consisting of quadrilateral elements (1 mm) with a range of seventeen material properties determined by CT scans. Typical prosthesis designs shifted the center of pressure more centrally rather than posteriorly, and thus increased anterior bone stresses. Resection up to 10 mm could actually decrease bone stresses due to an increase in bone surface area as long as complete coverage was obtained. A cement interface or direct metal on bone produced identical stresses. However a 1 mm complian: interface significantly reduced stresses in regions of high elastic modulus gradient. For rigid interfaces, the contact can be irregular, which leads to areas of over and understressing of bone. These conclusions have implications related to implant design.  相似文献   

13.
The presence of a femoral prosthesis superior to a shaft fracture severely complicates fixation and treatment. This study uses two-dimensional, multithickness, plane stress finite-element models of a femur with prosthesis to investigate the stresses developed with the application of three popular fixation techniques: revision to a long stem prosthesis, lateral plating with a cortical bone allograft strut and cerclage wires, and custom plate application with proximal Parham band fixation with distal cortical screws (Ogden plate). The plate and bone contact as well as the fracture site contact were modelled by using orthotropic elements with custom-fit moduli so that only the normal stress to the interface was significant. A thermal analogy was used to model the cerclage and Parham band preloads so that representative preloads in the proximal fixation of the two types of plate treatments could be modelled. A parametric study was performed with the long-prosthesis model to show variations in stem lengths of one, two and three femoral diameters distal to the fracture site. The Ogden plate model showed a transfer of tensile stress near the proximal-most band, with the highest tensile stress being at the fracture site with evidence of stress shielding of the proximal lateral cortex. The cortical bone strut model showed a transfer of tensile stress to the bone strut but showed less shielding of the proximal cortex. The cerclage wires at the base of the bone strut showed the highest changes in load with the distalmost wire increasing to almost four times its original preload.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Ceramic hip resurfacing may offer improved wear resistance compared to metallic components. The study is aimed at investigating the effects of stiffer ceramic components on the stress/strain-related failure mechanisms in the resurfaced femur, using three-dimensional finite element models of intact and resurfaced femurs with varying stem–bone interface conditions. Tensile stresses in the cement varied between 1 and 5 MPa. Postoperatively, 20–85% strain shielding was observed inside the resurfaced head. The variability in stem–bone interface condition strongly influenced the stresses and strains generated within the resurfaced femoral head. For full stem–bone contact, high tensile (151–158 MPa) stresses were generated at the cup–stem junction, indicating risk of fracture. Moreover, there was risk of femoral neck fracture due to elevated bone strains (0.60–0.80% strain) in the proximal femoral neck region. Stresses in the ceramic component are reduced if a frictionless gap condition exists at the stem–bone interface. High stresses, coupled with increased strain shielding in the ceramic resurfaced femur, appear to be major concerns regarding its use as an alternative material.  相似文献   

15.
Quantitative assessment of bone fracture healing remains a significant challenge in orthopaedic trauma research. Accordingly, we developed a new technique for assessing bone healing using virtual mechano-structural analysis of computed tomography (CT) scans. CT scans from 19 fractured human tibiae at 12 weeks after surgery were segmented and prepared for finite element analysis (FEA). Boundary conditions were applied to the models to simulate a torsion test that is commonly used to access the structural integrity of long bones in animal models of fracture healing. The output of each model was the virtual torsional rigidity (VTR) of the healing zone, normalized to the torsional rigidity of each patient’s virtually reconstructed tibia. This provided a structural measure to track the percentage of healing each patient had undergone. Callus morphometric measurements were also collected from the CT scans. Results showed that at 12 weeks post-op, more than 75% of patients achieved a normalized VTR (torsional rigidity relative to uninjured bone) of 85% or above. The predicted intact torsional rigidities compared well with published cadaveric data. Across all patients, callus volume and density were weakly and non-significantly correlated with normalized VTR and time to clinical union. Conversely, normalized VTR was significantly correlated with time to union (R2 = 0.383, p = 0.005). This suggests that fracture scoring methods based on the visual appearance of callus may not accurately predict mechanical integrity. The image-based structural analysis presented here may be a useful technique for assessment of bone healing in orthopaedic trauma research.  相似文献   

16.
Successful design of components for total shoulder arthroplasty has proven to be challenging. This is because of the difficulties in maintaining fixation of the component that inserts into the scapula; i.e., the glenoid component. Glenoid components that are fixated to both the glenoid and acromion (a long process extending medially on the dorsal aspect of the scapula) have the possible advantage of greater stability over those that are fixated to the glenoid alone. In this study, a finite element analysis is used to investigate whether or not acromion fixation is advantageous for glenoid components. Full muscle loading and joint reaction forces are included in the finite element model. Reflective photoelasticity of five scapulae is used to obtain experimental data to compare with results from the finite element analysis, and it confirms the structural behaviour of the finite element model. When implanted with an acromion-fixated prosthesis, it is found that high unphysiological stresses occur in the scapula bone, and that stresses in the fixation are not reduced. Very high stresses are predicted in that part of the prosthesis which connects the acromion to the glenoid. It is found that the very high stresses are partly in response to the muscle and joint reaction forces acting at the acromion. It is concluded that, because of the relatively high forces acting at the acromion, fixation to it may not be the way forward in glenoid component design.  相似文献   

17.

Background

The purpose of this study was to design a customized fixation plate for mandibular angle fracture using topological optimization based on the biomechanical properties of the two conventional fixation systems, and compare the results of stress, strain and displacement distributions calculated by finite element analysis (FEA).

Methods

A three-dimensional (3D) virtual mandible was reconstructed from CT images with a mimic angle fracture and a 1 mm gap between two bone segments, and then a FEA model, including volume mesh with inhomogeneous bone material properties, three loading conditions and constraints (muscles and condyles), was created to design a customized plate using topological optimization method, then the shape of the plate was referenced from the stress concentrated area on an initial part created from thickened bone surface for optimal calculation, and then the plate was formulated as “V” pattern according to dimensions of standard mini-plate finally. To compare the biomechanical behavior of the “V” plate and other conventional mini-plates for angle fracture fixation, two conventional fixation systems were used: type A, one standard mini-plate, and type B, two standard mini-plates, and the stress, strain and displacement distributions within the three fixation systems were compared and discussed.

Results

The stress, strain and displacement distributions to the angle fractured mandible with three different fixation modalities were collected, respectively, and the maximum stress for each model emerged at the mandibular ramus or screw holes. Under the same loading conditions, the maximum stress on the customized fixation system decreased 74.3, 75.6 and 70.6% compared to type A, and 34.9, 34.1, and 39.6% compared to type B. All maximum von Mises stresses of mandible were well below the allowable stress of human bone, as well as maximum principal strain. And the displacement diagram of bony segments indicated the effect of treatment with different fixation systems.

Conclusions

The customized fixation system with topological optimized structure has good biomechanical behavior for mandibular angle fracture because the stress, strain and displacement within the plate could be reduced significantly comparing to conventional “one mini-plate” or “two mini-plates” systems. The design methodology for customized fixation system could be used for other fractures in mandible or other bones to acquire better mechanical behavior of the system and improve stable environment for bone healing. And together with SLM, the customized plate with optimal structure could be designed and fabricated rapidly to satisfy the urgent time requirements for treatment.
  相似文献   

18.
Investigations are reported in the literature, by means of experimental, analytical and numerical methods, concerning the biomechanical properties of bone. However, the evolutionary phenomena of bone fracture healing does not have a large reference literature. This work investigates and describes the behaviour of inclined human femur fractures with external fixation up to complete healing. A numerical formulation based on the finite element method has been adopted. Geometric configuration is defined using data from a magnetic resonance process applied to a femur in vivo. A three dimensional model has been developed by adopting an orthotropic material law for cortical bone and an isotropic law for the fracture gap zone. Stress and strain reponses of the bone and fixation device are investigated with reference to the evolutionary behaviour of the healing tissue.  相似文献   

19.
Glenoid component loosening is the dominant cause of failure in total shoulder arthroplasty. It is presumed that loosening in the glenoid is caused by high stresses in the cement layer. Several anchorage systems have been designed with the aim of reducing the loosening rate, the two major categories being "keeled" fixation and "pegged" fixation. However, no three-dimensional finite element analysis has been performed to quantify the stresses in the cement or to compare the different glenoid prosthesis anchorage systems. The objective of this study was to determine the stresses in the cement layer and surrounding bone for glenoid replacement components. A three-dimensional model of the scapula was generated using CT data for geometry and material property definition. Keeled and pegged designs were inserted into the glenoid, surrounded by a 1-mm layer of bone cement. A 90 deg arm abduction load with a full muscle and joint load was applied, following van der Helm (1994). Deformations of the prosthesis, stresses in the cement, and stresses in the bone were calculated. Stresses were also calculated for a simulated case of rheumatoid arthritis (RA) in which bone properties were modified to reflect that condition. A maximum principal stress-based failure model was used to predict what quantity of the cement is at risk of failure at the levels of stress computed. The prediction is that 94 percent (pegged prosthesis) and 68 percent (keeled prosthesis) of the cement has a greater than 95 percent probability of survival in normal bone. In RA bone, however, the situation is reversed where 86 percent (pegged prosthesis) and 99 percent (keeled prosthesis) of the cement has a greater than 95 percent probability of survival. Bone stresses are shown to be not much affected by the prosthesis design, except at the tip of the central peg or keel. It is concluded that a "pegged" anchorage system is superior for normal bone, whereas a "keeled" anchorage system is superior for RA bone.  相似文献   

20.
目的:对股骨骨折髓内钉术后1年骨愈合模型快速建模,通过有限元分析研究对比术前术后模型,通过术前判定内固定取出后骨折断端是否断裂。方法:运用Mimics、Geomagic Studio、Abaqus等软件采用快速个体化建模方法对股骨骨折髓内钉术后1年内固定取出术前后的多层螺旋CT数据进行快速建立模型,术前模型模拟剥除钢板后进行有限元分析,施加人体单腿站立时的静力载荷和约束,并将分析结果与术后模型进行对比,观察米塞斯应力分布情况、最大值及其所处部位。结果:按照材料属性进行区别显示米赛斯应力的最大值及最小值,在不同应力载荷下,手术前后各类型材料的米赛斯应力最大值及最小值部位相同,各类型材料中,最大值均没有位于骨折断端,不同方法的最大应力值部位相近,均在股骨中远端1/4交界处,手术前后应力分布基本相同。结论:采用个体化建模方法可以对骨折内固定取出前的骨愈合模型进行运算分析,快速预判术后是否导致骨折断端断裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号