首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study the gene products of the HLA complex, we produced two monoclonal antibodies, termed HU-18 and HU-23. They were active in complement-dependent cytotoxicity and detected B-cell alloantigens encoded by a locus (or loci) linked to HLA. When three types of HLA-DR4 homozygous B-cell lines with different HLA-D specificities were tested for reactivity with HU-18 and HU-23, they displayed distinct reaction patterns depending on the HLA-D specificities they possessed: EBV-Wa (HLA-DYT homozygous), negative for both HU-18 and HU-23; KT2 and KOB (HLA-DKT2 homozygous), positive only for HU-18; and ER (HLA-Dw4 homozygous), positive for both. These differential reaction patterns were further confirmed by testing against a panel of 17 HLA-DR4-positive peripheral blood lymphocytes with known HLA-D specificities. Thus, these monoclonal antibodies allow us to identify HLA-DYT, HLA-DKT2, and HLA-Dw4 solely by serologic methods. This is the first clearcut serologic identification of these three HLA-DR4-associated HLA-D specificities, which have been indistinguishable by conventional serology and identified only by cellular techniques. It is hoped that immunochemical investigations using HU-18 and HU-23 will advance our understanding of the HLA-D region on a molecular level.  相似文献   

2.
In a previous study, we showed that the three hitherto serologically indistinguishable HLA-D specificities associated with HLA-DR4, HLA-DYT, HLA-DKT2, and HLA-Dw4 can be distinguished on the basis of their reactivity with two distinct la-like-specific monoclonal antibodies, HU-18 and HU-23. In this study, we attempted to identify and characterize Ia-like molecules recognized by HU-18 and HU-23 on a molecular level because la subsets (HLA-DR, MB, MT, or SB) identified by them remained unknown. The results of sequential coprecipitation assays and two-dimensional gel analyses showed that both HU-18 and HU-23 recognize antigenic determinants borne on M133 but not on HLA-DRw6.2 molecules. Because the two monoclonal antibodies, specific for determinants carried on MB3 molecules, show distinct reactivity against homozygous typing cells defining HLA-DYT, HLA-DKT2, and HLA-Dw4, all of which share DR4-MB3, the data indicate that these three HLA-D clusters associated with HLA-DR4 possess distinct MB3 molecules, suggesting the existence of polymorphism in MB3 antigens.  相似文献   

3.
Differences in structure and function of HLA-class II molecules between HLA-DR4-related HLA-D specificities HLA-Dw4, Dw15, and DKT2 were investigated. Anti-HLA-DR framework monoclonal antibody HU-4 completely inhibited the one-way mixed lymphocyte reaction (MLR) between these specificities. HU-4 precipitated a monomorphic alpha-chain and a polymorphic beta-chain of human class II molecules from each B lymphoblastoid cell line (BLCL) homozygous for these three HLA-D specificities. We established IL 2-dependent T cell lines specific for streptococcal cell wall (SCW) antigen from peripheral blood lymphocytes (PBL) from four DR4-positive donors: an HLA-Dw4/DKT2 heterozygote, an HLA-Dw4/Dw12 heterozygote, an HLA-DKT2/D-blank heterozygote, and an HLA-Dw15/D-blank heterozygote. These T cell lines showed a proliferative response to SCW antigen in the presence of autologous or allogeneic antigen-presenting cells (APC) when T cell donors and APC donors shared at least one of the HLA-D specificities. This cooperation between the T cell line and APC was completely blocked by HU-4. We conclude from these data that the T cells could distinguish three distinct DR4 molecules expressed on APC of HLA-Dw4, Dw15, and DKT2 as restriction molecules at the presentation of SCW antigen.  相似文献   

4.
By using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), we investigated the difference in the HLA class II molecule between HLA-Dw2 and Dw12, both of which are typed as HLA-DR2 serologically. The anti-HLA-DR framework monoclonal antibody (MoAb) HU-4 precipitated an alpha-chain and two beta-chains of human class II molecules from both Dw2 and Dw12 homozygous B lymphoblastoid cell lines. It was demonstrated clearly that an alpha-chain (alpha 1) and one of the beta-chains (beta 1) showed no difference in mobility in the 2D-PAGE between Dw2 and Dw12, but that another beta chain (beta 2) of Dw2 was distinct from that of Dw12 in the 2D-PAGE profile. Thus, MoAb HU-4 precipitated alpha 1 beta 1 and alpha 1 beta 2 molecules from Dw2 and Dw12, and the alpha 1 beta 1 molecule appears to be an HLA-DR2 molecule. The alpha 1 beta 2 molecule, on the other hand, is a class II molecule distinct from those precipitated with anti-DR2, anti-DQw1 (DC1, MB1, MT1), or anti-FA MoAbs. MoAb HU-4 completely inhibited the mixed lymphocyte culture reaction (MLR) between Dw2 and Dw12, but anti-DR2 MoAb HU-30, which reacts only with the alpha 1 beta 1 molecule, did not show an inhibitory effect on the MLR between Dw2 and Dw12. The alpha 1 beta 2 molecule is therefore the molecule which elicits MLR between Dw2 and Dw12. An IL 2-dependent T cell line established from an HLA-Dw12/D blank heterozygous high responder to the streptococcal cell wall antigen (SCW) clearly distinguished the Dw2 specificity from Dw12 specificity expressed on the antigen-presenting cell (APC). Moreover, MoAb HU-4 markedly inhibited the cooperation between the T cell line and APC to respond to SCW. These observations indicate that the alpha 1 beta 2 molecule is recognized as a restriction molecule by the T cell line at the antigen presentation of SCW through APC MoAb HU-30 on the other hand partially inhibited the MLR between Dw2 or Dw12 homozygous cell as a stimulator cell and non DR2 cell as a responder cell. It markedly inhibited the proliferative response of the Dw12/D- heterozygous T cell line to SCW, presented by Dw2+ but Dw12- allogeneic APC, and the peripheral response of Dw2 or Dw12 homozygous peripheral blood lymphocytes to SCW. Thus, two distinct class II molecules encoded by the genes within the HLA-DR subregion of HLA-Dw2 and Dw12 can act as stimulating molecules in the MLR and as restriction molecules in the antigen presentation by APC.  相似文献   

5.
HLA-DR molecules were isolated from eight different HLA-DR3 homozygous B-cell lines by immunoprecipitation with monoclonal antibodies, and they were subsequently analyzed by two-dimensional gel electrophoresis. We found that HLA-DR3 homozygous B-cell lines of consanguineous origin express two types of HLA-DR molecules. One type of HLA-DR molecule was present in all the cell lines tested, whereas the second DR molecule appears to be polymorphic. DNA isolated from the different HLA-DR3 homozygous cell lines was studied by Southern blot analysis to determine whether any DR restriction fragment length polymorphism could be observed. Polymorphisms detected at both the product and genomic level have been compared to each other, and their relations to the serological (HLA-DR) and cellular (HLA-D and LB-Q1) typing data will be discussed.No reprints available  相似文献   

6.
Human Ia-like, class II molecules were isolated by immunoprecipitation with monoclonal antibodies from various HLA-D/DR homozygous cell lines and were analyzed by two-dimensional gel electrophoresis. The monoclonal antibody PLM12 reacted with B cells carrying DR4, DR5, DRw6.2, and DRw9 phenotypes, and its reactivity perfectly correlated with the previously defined TB21 (MB3-like) specificity. Class II molecules detected by PLM12 were structurally distinct from those precipitated by the anti-DR monoclonal antibody NC1 on all HLA-DR4, DR5, DRw6.2, and DRw9 homozygous cell lines and showed polymorphism in heavy and light chains among these cell lines. The monoclonal antibodies PLM2 and PLM9 only reacted with B cells carrying DR5 and DRw6.2 and also detected a distinct set of class II molecules from those precipitated by NC1 but identical to those of PLM12. Thus, PLM2 and PLM9 serologically detected a new subtypic antigen of the PLM12-reactive class II molecules. Furthermore, the antibody NC1 precipitated two light chains and one heavy chain from HLA-DRw6.2 homozygous cell line EBV-Sh. The result indicated the presence of three sets of class II molecules: two in a DR family and another carrying the polymorphic determinants detected by PLM2, PLM9, and PLM12 in a second family.  相似文献   

7.
HLA-DR4-associated haplotypes are genotypically diverse within HLA   总被引:2,自引:0,他引:2  
Biochemical diversity among products of class II HLA genes has been observed in individuals who appear to be HLA-D and DR-identical by cellular and serologic typing. We used techniques of restriction enzyme fragment analysis by Southern blotting to analyze this diversity at the level of cellular DNA. A panel of 17 HLA-DR4 homozygous cell lines (HCL) were investigated by using cDNA probes homologous to DQ beta, DQ alpha, and DR beta genes. Each probe was hybridized to cellular DNA digested with a series of different restriction endonucleases. Polymorphisms were observed with the use of the enzymes Pst I, Hind III, and Bam HI: Hybridization of cellular DNA digested with Hind III and Pst I with the DQ beta probe revealed specific polymorphisms, as did hybridization of the Pst I digest with the DQ alpha cDNA probe and the Bam HI digest with the DR beta probe. The observed differences fall into two categories: first, considerable diversity was seen between HLA-DR4 HCL that represent different HLA-D-defined haplotypes; second, diversity was also observed among HCL of the same DR4-associated HLA-D cluster. In contrast to the DQ cDNA probes, hybridization with the DR beta probe revealed relatively limited polymorphism by using a panel of different restriction endonucleases. Thus, although there is a general pattern of polymorphic restriction enzyme fragments homologous to DQ probes within an HLA-D cluster, the pattern seen for any particular cell line was not sufficiently distinct to assign an HLA-D or DR specificity.  相似文献   

8.
The HLA-D region encodes for several serologically defined systems, including DR, MB, and MT. The antigens of MB and MT are strongly associated with two or more DR specificities. The purpose of this study was to determine the role of MB and MT antigens in lymphocyte alloactivation. A soft agar colony assay was used to generate alloreactive lymphocyte clones primed in mixed leukocyte culture against a stimulator who typed as HLA-DR4,-;MB3,-; MT3,-. In secondary primed lymphocyte typing (PLT) assays, several clones were identified with PLT specificities strongly associated with DR4, MB3, or MT3. The data suggest that HLA-D controls different lymphocyte-activating determinants associated with the serologically defined DR, MB, or MT antigens.  相似文献   

9.
The supertypic HLA-DRw53 specificity is associated with three allelic class II specificities defined by alloantisera: HLA-DR4, -DR7, and DRw9. The present study demonstrates the complexity of this supertypic DR specificity by comparing two DRw53-related determinants defined by the monoclonal antibodies PL3 and 109d6. For every HLA-DR4 cell line tested, both monoclonal antibodies were found to bind to the same subpopulation of DR molecules. This PL3+, 109d6+ DR subpopulation is also found on most, but not all, DR7+ cell lines with a beta-chain pattern that is identical to the beta-chain pattern of the PL3+, 109d6+ subpopulation on DR4 cell lines. However, some DR7+ cells which carry the HLA haplotype Bw57, DR7, DRw53, DQw3 were also found which completely lack the expression of the 109d6 determinant, but continue to express the PL3 determinant and some of the DRw53 determinants recognized by alloantisera. This results from the fact that the PL3 determinant is expressed on all of the DR molecules found on DR7 cells, including the distinct subpopulation of molecules that carry the HLA-DR7 determinant recognized by the monoclonal antibody SFR16-DR7. This PL3+, SFR16-DR7+ subpopulation does not carry the 109d6 determinant, demonstrating that the PL3 and 109d6 DRw53-related determinants are distinct and can be expressed on a different number of DR molecules, depending on the allotype of the cells. Blocking studies were also performed by using these monoclonal antibodies with alloreactive HLA-DR7-specific cytotoxic T cell clones. In these studies, the T cell-defined HLA-DR7 determinants were found to be carried by the same subpopulation of DR molecules recognized by the HLA-DR7-specific monoclonal antibody and not carried by the DR molecules recognized by 109d6. The DR7+ cell lines which do not express the 109d6 determinant also fail to express another supertypic determinant recognized by the monoclonal antibody IIIE3 carried on this molecule. Furthermore, no additional allelic forms of this unique DR beta-chain were found associated with the nonpolymorphic DR alpha-chain on these cells, suggesting that this DR beta-chain gene is not expressed. These cells also behave as homozygous typing cells for the Dw11 subtype of DR7 in HLA-D typing in the mixed lymphocyte culture assay. This suggests that the lack of expression of a specific class II gene may contribute additional genetic polymorphism within the known HLA-DR allotypes.  相似文献   

10.
The heavy and light chain subunits of MB3 molecules were isolated from KT2 (DKT2, DR4, MB3 homozygous), ER (Dw4, DR4, MB3 homozygous), JMe (Dw5, DR5, MB3 homozygous), EBV-Sh (DSh, DRw6.2, MB3 homozygous), and EBV-Ky (DKy, DRw9, MB3 homozygous) cells and were compared with one another by two-dimensional gel electrophoresis. The MB3 light chains from KT2, ER, and EBV-Ky cells were clearly different in terms of their isoelectric points, whereas those from ER, JMe, and EBV-Sh cells were indistinguishable. No differences in charge or m.w. were noted for the MB3 heavy chains from the five cell lines. Thus, three out of the five MB3-positive, D/DR-disparate cell lines were found to express structurally distinct MB3 molecules, demonstrating that MB3 is a public serologic specificity shared by at least three structurally distinct MB (human I-A-like) molecules. Because the DR light chain subunits isolated from EBV-Wa, KT2, ER, JMe, EBV-Sh, and EBV-Ky cells differed from one another in their isoelectric points, the DR light chains were apparently more polymorphic than the MB3 light chains.  相似文献   

11.
HLA-DS molecules bearing the MB3 supertypic specificity have been isolated from two DR4 and two DR5 homozygous cell lines by using the monoclonal antibody IVD12 . Limited amino-terminal amino acid sequence analysis of these molecules demonstrates polymorphism of the HLA-DS subregion. Although the distribution of amino-terminal tyrosine residues in the alpha-chains of all IVD12 -reactive molecules was identical, amino-terminal amino acid sequence differences existed between DS beta-chains isolated from these two groups of cell lines bearing different DR specificities. These studies indicate that two DS molecules bearing the same serologic determinant ( MB3 ), although similar to one another, may be structurally distinct.  相似文献   

12.
A monoclonal antibody (mAb) with a novel human B-cell allospecificity was produced by immunizing a C3H/He mouse with the human B lymphoblastoid cell line EBV-Wa (HLA-DR4/Dw15/DQblank homozygous). The mAb, termed HU-46, reacted with B cells from not only DR4/Dw15-positive individuals but also certain DRw8/Dw8-positive ones whose DQ phenotypes had not yet been defined. Two-dimensional gel analyses indicated that the mAb recognized class II antigens which were encoded by the HLA-DQ locus. Furthermore, in genetic analysis, the gene encoding the class II antigen detected by HU-46 met the Hardy-Weinberg condition as a fourth allele of the DQ locus. We provisionally labeled this novel DQ specificity DQWa.  相似文献   

13.
The human class II, HLA-linked, B cell alloantigens include the HLA-DR, MB, MT, and Te determinants. Interest in the molecular relationships of these antigens has recently intensified because of their homology to the murine Ia antigens and their possible importance in disease predisposition and transplantation. We have used alloantisera with carefully defined immunochemical as well as serologic specificity, and two immunochemical techniques, sequential immunoprecipitation with analysis by SDS-PAGE and two-dimensional gel electrophoresis, to explore the molecular relationships of the MT2, MB3, MT4, and HLA-DR5 antigenic determinants. The data presented here indicate that 1) all class II molecules that bear the DR5 antigenic determinant also bear the MT2 antigenic determinant; (2) the homozygous DR5 cell line, Swei, expresses at least two structurally distinct class II molecules, both of which bear MT2: one bears the MT2, MB3, and MT4 antigenic determinants, and the second bears the MT2, but not the MB3 or MT4 antigenic determinant; and (3) the DR5 determinant is located on at least one and possibly both of these distinct class II molecules.  相似文献   

14.
Insulin-dependent diabetes is generally associated with the serologic HLA-DR specificities 3 and 4, in particular with DR-3,4 heterozygosity. The disease is negatively associated with DR-2. To investigate these associations further at the genomic level, DNA from 13 families with a proband having insulin-dependent diabetes, from 11 other individuals with the same disease, and from HLA-DR-matched control individuals was subjected to restriction fragment analysis. Three different enzymes (Bam HI, Eco RI, and Pvu II) and cDNA clones for three HLA-D region class II antigen alpha- and beta-chains (DR-beta, DQ-beta, and DQ-alpha) were used. In six families, a total of 11 siblings HLA-DR-identical to the proband were examined. There was no discrepancy between the hybridization patterns of the proband and those of the DR-identical siblings. Two different DQ-B fragment patterns were detected with each one of the serologic specificities DR-2 and DR-4. In both cases, only one of the patterns correlated significantly with diabetes. Thus, DQ-beta genomic hybridization may be used in conjunction with HLA-DR typing to identify individuals with higher relative risk to acquire insulin-dependent diabetes. These results may suggest that insulin-dependent diabetes is associated with the DQ rather than with the DR locus.  相似文献   

15.
We studied the polymorphisms of HLA-DR and HLA-DQ products from HLA-DRw13 haplotypes by analyzing the restriction of influenza A-specific cloned T cells from an HLA-DRw13,DQw1,Dw19 homozygous individual. The results show that (1) some functional epitopes, which can be borne by either HLA-DR or HLA-DQ molecules, are strictly correlated with the HLA-Dw19 subtype of HLA-DRw13. This clearly indicates that both HLA-DR and HLA-DQ products contribute to the HLA-Dw19 subdivision of HLA-DRw13. (2) At least two different restricting epitopes are borne by DR products: one is correlated with the HLA-DRwl3 serologically defined specificity, which includes Dw19 and Dw18 haplotypes; the other is correlated with the only HLA-Dw19 subtype of HLA-DRwl3. (3) Restricting epitopes borne by DQ molecules have been found on Dw19 cells only. (4) DQ-restricted clones were unable to react with DQwl APC of any other haplotypes tested, including DR1, DR2-long, DR2-short, and DRw14, demonstrating a high degree of functional polymorphism among the serologically defined DQw1 specificities.Abbreviations used in this paper: APC antigen-presenting cells - cpm count per minute - HAU hemagglutinin units - IL-2 interleukin 2 - MHC major histocompatibility complex - mAb monoclonal antibody - PBM peripheral blood mononuclear cells - PHA phytohemagglutinin - pl isoelectric point - PMA phorbol myristic acetate - SD standard deviation  相似文献   

16.
Alloactivated human lymphocytes were cloned by limiting dilution. After 1 month in culture with T-cell growth factor several clones incorporated tritiated thymidine when stimulated with the appropriate allogeneic cells. Specificity of restimulation of two primed lymphocyte clones, designated 12-2 and 12-8, was studied in detail after varying periods of culture (up to 50 days). Clone 12-2 cells were stimulated only by cells expressing the HLA-Dw antigens of the original priming cells (Dw3); furthermore, this primed lymphocyte reagent specifically recognized antigens associated with only one of the three distinct Dw3-bearing haplotypes from an informative family (KOH). Clone 12-8 cells, on the other hand, failed to recognize Dw3 antigens in the random panel or on homozygous typing cells (including the original priming cell), but were strongly restimulated by certain cells expressing Dw4 antigens. In addition, within family KOH, these restimulating products segregated with another one of the three Dw3-bearing haplotypes but with none of the three Dw4-bearing haplotypes. These two clones exemplify a hitherto unknown precision in cellular typing of theHLA-D region. Clone 12-2 allows the discrimination of a probably rare and as yet undetected HLA-Dw3 subtypic specificity. Clone 12-8, on the other hand, apparently identifies an allelic system segregating withHLA but distinct from the HLA-D determinants definable by HTC-typing.Abbreviations used in this paper MHC major histocompatibility complex - HLA human leukocyte antigens - PBL peripheral blood leukocytes - HTC homozygous typing cells - MLC mixed leukocyte culture - PLT primed lymphocyte testing - TCGF T-cell growth factor - CTC cultured T cells - Tdr tritiated thymidine  相似文献   

17.
Among cells that bear the serologically defined Ia alloantigen DR7, four T cell-defined HLA-D specificities have been described: Dw7, Dw17, Dw11, and Dw7L. Ia molecules expressed by cells homozygous for these specificities have been compared by using immunofluorescence and two-dimensional gel electrophoresis in order to identify the DR and DQ polymorphisms among the family of DR7-associated HLA-D specificities. Cells homozygous for each of the four HLA-D specificities have in common one DR molecule that is indistinguishable by these methods. Two DR-specific monoclonal antibodies, IIIE3 and 109d6, detect a second distinct DR molecule on Dw7, Dw17, and Dw7L cells. This second DR molecule is also very similar from cells of the three specificities. In contrast, a second DR molecule was not detected on four Dw11 homozygous cells. Therefore, these data raise the possibility that all DR homozygous cells do not express the same number of DR molecules. The DQ molecules expressed by DQw2-positive Dw7, Dw17, and Dw7L cells are also very similar, whereas DQw3-positive Dw11 DQ molecules are structurally different. Therefore, no DR or DQ structural polymorphisms were detected to correlate with the Dw7, Dw17, and Dw7L T cell-defined Ia polymorphisms.  相似文献   

18.
Biochemistry of HLA-DRw6: evidence for seven distinct haplotypes   总被引:2,自引:0,他引:2  
The DRw6 specificity, which has a frequency of 11% in the Caucasian population, cannot be positively defined, since no monospecific allo-antiserum is available. This particular status among DR specificities led us to study the DRw6 haplotypes at the molecular level. We performed 2D-PAGE analysis of HLA-DR molecules in 44 different DRw6 haplotypes. The data were obtained from six homozygous typing cells, eight families informative for the segregation of the DRw6 haplotype, and 15 unrelated donors. Five unique beta-chain electrophoretic patterns were detected, indicating the existence of five structurally distinct DRw6 beta-chains. Each haplotype expresses one or two beta-chains. The different combinations of the DR beta-chains present in a single haplotype allow to characterize seven unique DRw6 haplotypes. In contrast to what has been previously found for DR2 and DR4, there is no DR beta-chain common to all the DRw6 cells. Correlation of the biochemical data with the recent serologic (DRw13 vs DRw14) and cellular (Dw9, Dw18, Dw19) splits of the DRw6 specificity will be discussed.  相似文献   

19.
With reference sera and homozygous typing cells (HTCs) of 3rd Asia-Oceania Histocompatibility Workshop Conference, 56 healthy unrelated subjects in Shanghai were typed for HLA-A, B, C, DR, DQ, and Dw. This paper presents the results of HLA-Dw typing, its relationship to serological class II antigens, and the distribution of Dw in the population. The polymorphism patterns of Chinese Dw specificities were quite different from those in Caucasoids and Japanese. The predominant Dw phenotypes detected in Shanghai Chinese were Dw 2, Dw 3, DKT 2, Dw 7 c, (Dw7 + Dw 17) and Dw 23 (DB 5). And significant correlations were observed between Dw 1 and DR 1, Dw 2 and DR 2, Dw 3 and DR 3, Dw 7 c and DR 7, DB 7 and DRw 8, as well as Dw 23 and DR 9. SMY 129, a novel Dw specificity defined by local HTCs and co-studied by the laboratories joined for Dw typing in 3rd AOHWC showed its correlation with DR 5. Nevertheless, more than fifty percent of Dw specificities could not be assigned in the four correspondent designated serological antigens, DR 2, DR 5, DRw 8 and DR 9, respectively, which, together with other blank Dw specificities, gave a total blank Dw gene frequency as high as 43.2% in the population. It was suggested by further analysis that novel Dw specificities might be identified more effectively if efforts would be concentrated on DR 5 and DR 9, two antigen families which, in some way, might represent the characteristics of HLA system in Chinese. Besides, certain HTC-defined antigens, e.g. Dw 3 and the DR 4-related Dw specificities, have been revealed to be in linkage disequilibrium with other DR antigens in addition with the correspondent designated ones, resulting in some unique haplotype combinations in Shanghai Chinese. It seems to us that the particular patterns of polymorphisms of serum- and cell-defined HLA class II antigens would be helpful to elucidate the mechanisms by which certain diseases are in association with HLA in Chinese in a different manner as compared with that in Caucasoids.  相似文献   

20.
A linkage between C2 deficiency and the HLA-A10,B18/BfS antigens has been found in a French family from the Strasbourg area. The propositus, suffering from a chronic glomerulonephritis, is homozygous forHLA-A10,B18/BfS and totally C2-deficient. The parents and the brother are heterozygous for C2 deficiency and share theHLA-A10,B18/BfS haplotype. MLC tests and HLA-D typing revealed that the homozygous C2-deficient patient is also homozygous at theHLA-D locus for the w2 specificity. Evidence was obtained for a heterogeneity of the HLA-Dw2 specificity. This observation confirms the remarkable association between C2 deficiency and theHLA-A10,B18,Dw2 haplotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号