首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A conceptual framework for maize leaf development.   总被引:11,自引:0,他引:11  
What is and is not known about the maize leaf is reviewed. Analysis of genetic mosaics and direct observation with the SEM have broken leaf development into three distinct phases: recruitment of cells within the meristem, cell division into the 0.6-mm tall primordium, and postprimordial division and differentiation into the mature leaf. New data are presented that imply that cell division rates in the leaf are coordinated by inductive signals from the internal cells. Leaf cells that tend to divide more are held in check by slower growing neighbors; this complicates the search for developmental compartments. Experiments with recessive mutants that remove the ligule and auricle have been important in identifying an inducer signal with the specific meaning "make ligule-auricle." We have studied many dominant mutant alleles at seven different genes. Each mutant alters the position of the ligule boundary. We conclude the following. First, the mutants act in particular domains of the primordium. Second, the dominant mutants all move the ligule boundary in the same direction. Third, the mutants all retard developmental stage transitions. Fourth, three and probably four of the seven genes for which dominant mutants have been studied specify homeodomain proteins in the wrong place. The concept of "maturation schedule" is used to explain these data. All of the dominant mutant phenotypes are seen as consequences of immature cells being in the wrong place when inductive signals pass through the leaf. Several specific questions of leaf development and especially questions as to source of inductive signals or homologies among juvenile and adult organ parts are recast in light of this "maturation schedule" hypothesis.  相似文献   

2.
3.
4.
5.
The transition to flowering occurs at the shoot apex; however, most of the characterized genes that affect the timing of floral induction are expressed throughout the plant. To further our understanding of these genes and the flowering process, the vegetative molecular phenotypes of 16 Arabidopsis mutants associated with the major flowering initiation pathways were assayed using a 13,000 clone microarray under two different conditions that affect flowering. All mutants showed at least one change in gene expression other than the mutant flowering gene. Metabolism- and defence-related pathways were the areas with the most frequent gene expression changes detected in the mutants. Several genes such as EARLI1 were differentially expressed in a number of flowering mutants from different flowering pathways. Analysis of the promoter regions of genes differentially expressed identified common promoter elements, indicating some form of common regulation.  相似文献   

6.
7.
8.
Despite recent progress, the mechanisms governing shoot morphogenesis in higher plants are only partially understood. Classical physiological studies have suggested that gradients of the plant growth regulator auxin may play a role in controlling tissue differentiation in shoots. More recent molecular genetic studies have also identified knotted1 like homeobox (knox) genes as important regulators of shoot development. The maize (Zea mays L.) mutant rough sheath2 (rs2) displays ectopic expression of at least three knox genes and consequently conditions a range of shoot and leaf phenotypes, including aberrant vascular development, ligular displacements, and dwarfism (R. Schneeberger, M. Tsiantis, M. Freeling, J.A. Langdale [1998] Development 125: 2857–2865). In this report, we show that rs2 mutants also display decreased polar auxin transport in the shoot. We also demonstrate that germination of wild-type maize seedlings on agents known to inhibit polar auxin transport mimics aspects of the rs2 mutant phenotype. The phenotype elaborated in inhibitor-treated plants is not correlated with ectopic KNOX protein accumulation.  相似文献   

9.
In Arabidopsis thaliana, the BEL1-like TALE homeodomain protein family consists of 13 members that form heterodimeric complexes with the Class 1 KNOX TALE homeodomain proteins, including SHOOTMERISTEMLESS (STM) and BREVIPEDICELLUS (BP). The BEL1-like protein BELLRINGER (BLR) functions together with STM and BP in the shoot apex to regulate meristem identity and function and to promote correct shoot architecture. We have characterized two additional BEL1-LIKE HOMEODOMAIN (BLH) proteins, SAWTOOTH1 (BLH2/SAW1) and SAWTOOTH2 (BLH4/SAW2) that, in contrast with BLR, are expressed in lateral organs and negatively regulate BP expression. saw1 and saw2 single mutants have no obvious phenotype, but the saw1 saw2 double mutant has increased leaf serrations and revolute margins, indicating that SAW1 and SAW2 act redundantly to limit leaf margin growth. Consistent with this hypothesis, overexpression of SAW1 suppresses overall growth of the plant shoot. BP is ectopically expressed in the leaf serrations of saw1 saw2 double mutants. Ectopic expression of Class 1 KNOX genes in leaves has been observed previously in loss-of-function mutants of ASYMMETRIC LEAVES (AS1). Overexpression of SAW1 in an as1 mutant suppresses the as1 leaf phenotype and reduces ectopic BP leaf expression. Taken together, our data suggest that BLH2/SAW1 and BLH4/SAW2 establish leaf shape by repressing growth in specific subdomains of the leaf at least in part by repressing expression of one or more of the KNOX genes.  相似文献   

10.
? The CUP-SHAPED COTYLEDON (CUC)/NO APICAL MERISTEM (NAM) family of genes control boundary formation and lateral organ separation, which is critical for proper leaf and flower patterning. However, most downstream targets of CUC/NAM genes remain unclear. ? In a forward screen of the tobacco retrotransposon1 (Tnt1) insertion population in Medicago truncatula, we isolated a weak allele of the no-apical-meristem mutant mtnam-2. Meanwhile, we regenerated a mature plant from the null allele mtnam-1. These materials allowed us to extensively characterize the function of MtNAM and its downstream genes. ? MtNAM is highly expressed in vegetative shoot buds and inflorescence apices, specifically at boundaries between the shoot apical meristem and leaf/flower primordia. Mature plants of the regenerated null allele and the weak allele display remarkable floral phenotypes: floral whorls and organ numbers are reduced and the floral organ identity is compromised. Microarray and quantitative RT-PCR analyses revealed that all classes of floral homeotic genes are down-regulated in mtnam mutants. Mutations in MtNAM also lead to fused cotyledons and leaflets of the compound leaf as well as a defective shoot apical meristem. ? Our results revealed that MtNAM shares the role of CUC/NAM family genes in lateral organ separation and compound leaf development, and is also required for floral organ identity and development.  相似文献   

11.
激活标签法构建拟南芥突变体库及其表型分析   总被引:1,自引:2,他引:1  
以拟南芥(ArabMopsis thaliana)野生生态型(Columbia)植株为实验材料,以含有激活标记双元质粒pCB260的农杆菌进行转化,并以抗除草剂Basta为筛选标记,构建了拟南芥激活标签突变体库,所用pCB260双元质粒含有两个Ds位点、一个GFP标记基因与一个抗basta标记基因,可以方便高效地筛选转基因植物.目前经初步筛选获得了约10 000个独立转化株系(T1代),其中约50个株系具有明显的表型变化,包括花期改变、株型变异、叶形特异、育性降低、花发育异常、种子颜色变浅等.运用TAIL-PCR技术,成功获得了其中10个表型特异株系的T-DNA侧翼序列,分别分布于拟南芥基因组的5条染色体上.  相似文献   

12.
Activation tagging method is an effective tool of obtaining gain of function mutant and investigating the gene function, which plays an important role in plant functional genomics study. In this paper, we used Arabidopsis Columbia wild type as material to construct an activation tagging mutant pool by Agrobacterium tumefaciens mediated transformation, the binary vector pCB260 contained two Ds elements, one GFP report gene and one basta resistance selection genes, which show more convenient and efficient to screen the transgenic plant. Until now, over ten thousand transformed plants were generated. Among them, about 50 dominant mutants with obvious phenotypes were isolated, including early or late flowering time, unmoral leaf shape and flower, sterility and thin seed capsule color. T DNA flanking sequences of ten special mutants were validated by TAIL PCR and sequencing, whose T DNA insertion fragments distributed in all five chromosomes of Arabidopsis genome, respectively.  相似文献   

13.
To identify genes related to plant mitochondrial morphology and dynamics, novel mutants with respect to mitochondrial morphology were isolated from an ethyl methane sulphonate (EMS)-mutated population of Arabidopsis thaliana. Mitochondria were visualized by transforming Arabidopsis with a gene for a fusion protein consisting of GFP and a mitochondria-targeting pre-sequence. From 19,000 M2 populations, 17 mutants were isolated by fluorescent microscopic observations. All mitochondria in these mutants were longer and/or larger than wild-type mitochondria. The approximate chromosomal loci of the mutations of seven mutants that grew well were determined. The mitochondrial phenotypes of six of the mutants were recessive but the mitochondrial phenotype of the seventh mutant was dominant. Chromosomal rough mapping of the seven mutants showed that the mutations occurred at four different loci. At least one of these loci was novel, i.e., it was different from loci of other known mitochondrial morphology mutants of Arabidopsis and different from loci of Arabidopsis homologues of yeast genes related to mitochondrial morphology.  相似文献   

14.
In contrast to some previous reports on the growth of the ABA-deficientwilty mutants of tomato, growth was at least as rapid in themutants as in the wild type, as long as an adequate plant waterstatus was maintained by growing the plants under mist. Moreover,shoot extension was greater and the rate of leaf productionmore rapid in the mutants. Stomatal changes in response to environmentand to time in the light-dark cycle were generally similar inboth wilty mutants and the wild type, though the wild-type weregenerally more closed. Grafting experiments confirmed that thegenotype of the shoot was dominant in determining stomatal aperture,though wild-type rootstocks could cause a slight reduction inthe stomatal conductance of mutant leaves. The effect on plantwater relations of draughting only part of the root system wasinvestigated in a ‘split-root’ experiment. Withholdingwater from only part of the root system was found to lower significantlythe mean leaf water potential, even though the potential evaporationrate was kept very small. Key words: Abscisic acid, stomata, tomato  相似文献   

15.
16.
籼型三系杂交水稻地上部干物质重的发育遗传研究   总被引:1,自引:0,他引:1  
采用数量性状的加性--显性发育遗传模型分析了按NCⅡ交配设计的两套籼型三系杂交水稻地上部干物质重的发育遗传规律.结果表明,在不同发育阶段,地上部干物质重以显性效应为主,控制地上部干物质重的加性效应基因几乎不表达,而显性效应基因在两年中的表达呈连续性,且在生长中期活动强度最大,环境和基因型互作会影响地上部干物质重加性效应基因的表达,而对显性效应基因表达的影响不明显,随着发育进程的推进,地上部干物质重杂种优势趋于减弱。  相似文献   

17.
Genetic Analysis of Rough Sheath1 Developmental Mutants of Maize   总被引:4,自引:1,他引:3       下载免费PDF全文
P. W. Becraft  M. Freeling 《Genetics》1994,136(1):295-311
Maize Rough sheath1 (Rs1) mutants are dominant and cause a proliferation of sheath-like tissue at the base of the blade and throughout the ligular region. They also cause ligule displacement, a chaotic pattern of vasculature and abnormal cellular structure of vascular bundles. The affected region of Rs1-O leaves displays genetic and morphological attributes of both sheath and auricle, suggesting an overlap of these genetic programs. The rs1 locus maps approximately 26 map units distal to opaque2 (o2) on chromosome 7S, defining a new distal-most locus on the genetic map. Three mutant alleles, Rs1-O, Rs1-1025 and Rs1-Z, all display similar phenotypes. The mutations are completely dominant and the Rs1-O phenotype is not affected by dosage of the chromosome arm carrying the rs1(+) allele, indicating that these alleles are neomorphic. Analysis of genetic mosaics showed that the Rs1-O phenotype is non-cell-autonomous, suggesting that intercellular signals convey the phenotype. Rs1 mutant phenotypes are affected by modifiers present in particular genetic backgrounds. An enhancer of Rs1-O was identified; segregation data imply a single recessive gene, ers1. Rs1 mutants were also found to enhance the expression of unlinked rs2 and Rs4 mutants, suggesting that these mutations affect similar developmental processes. We discuss the phenotypic and genetic similarities between Rs1 and Knotted1 (Kn1) mutants that led to the identification of rs1 as a kn1-like homeobox gene (unpublished data).  相似文献   

18.
19.
The resurrection plant (Craterostigma plantagineum) is desiccation tolerant. However, callus derived from this plant, when propagated in vitro, requires exogenously applied abscisic acid (ABA) in order to survive desiccation. Treatment of callus tissue with ABA induces most of the genes that are induced by dehydration in the whole plant. This property has been exploited for the isolation of mutants that show dominant phenotypes resulting from the ectopic expression of endogenous genes induced by the insertion of a foreign promoter. Here we describe new T-DNA tagged Craterostigma desiccation-tolerant (cdt) mutants with different molecular and physiological characteristics, suggesting that different pathways of desiccation tolerance are affected. One of the mutants, cdt-2, constitutively expresses known osmoprotective Lea genes in callus and leaf tissue. Further analysis of this mutant revealed that the tagged locus is similar to a previously characterised gene, CDT-1, which codes for a signalling molecule that confers desiccation tolerance. The nature of the T-DNA insertion provides insight into the mechanism by which the CDT-1/2 gene family functions in ABA signal transduction.  相似文献   

20.
Lxm1-O, a dominant EMS (ethyl methanesulfonate) induced mutation in maize (Zea mays, Poaceae), was originally reported to affect the blade/sheath boundary over the midrib region of the leaf. Here we present a more extensive analysis of the Lxm phenotype in nine different inbred lines. Lxm leaves are longer and narrower, and can initiate ectopic leaves. Additionally, Lxm1-O affects all plant organs observed. Compared to wild-type siblings, Lxm plants have fewer nodes, basal displacement of reproductive structures, and advance more quickly to the reproductive phase. We address questions as to whether Lxm1-O abbreviates a specific developmental phase, using hair, wax, and ear node data. We found that each phase was affected, although to varying degrees, depending on the inbred line. We interpret Lxm1-O to be a heterochronic mutation, causing the developmental acceleration of each phase of the shoot. Lxm1-O is novel, since other systemic heterochronic maize mutants prolong the juvenile phase, thereby extending shoot development. We discuss the importance of heterochronic mutations in the context of morphological evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号