首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The spoIIIE gene of Sporosarcina ureae encodes a 780-residue protein, showing 58% identity to the SpoIIIE protein of Bacillus subtilis, which is thought to be a DNA translocase. Expression of the S. ureae spoIIIE gene is able to restore sporulation in a B. subtilis spoIIIE mutant. Inactivation of the S. ureae spoIIIE gene blocks sporulation of S. ureae at stage III. Within the limits of detection, the sporulation division in S. ureae shows the same symmetry, or near symmetry, as the vegetative division (in contrast to the highly asymmetric location of the sporulation division for B. subtilis), and so it is inferred that SpoIIIE facilitates chromosome partitioning during sporulation, even when the division is not grossly asymmetric. It is suggested that chromosome partitioning lags behind division during sporulation but not during vegetative growth.  相似文献   

3.
4.
5.
6.
Bacillus subtilis undergoes a highly distinctive division during spore formation. It yields two unequal cells, the mother cell and the prespore, and septum formation is completed before the origin-distal 70% of the chromosome has entered the smaller prespore. The mother cell subsequently engulfs the prespore. Two different probes were used to study the behavior of the terminus (ter) region of the chromosome during spore formation. Only one ter region was observed at the time of sporulation division. A second ter region, indicative of chromosome separation, was not distinguishable until engulfment was nearing completion, when one was in the mother cell and the other in the prespore. Separation of the two ter regions depended on the DNA translocase SpoIIIE. It is concluded that SpoIIIE is required during spore formation for chromosome separation as well as for translocation; SpoIIIE is not required for separation during vegetative growth.  相似文献   

7.
The spoIIIG gene encodes a sigma factor that determines prespore-specific gene expression during sporulation in Bacillus subtilis. Correct spatial and temporal expression of the spoIIIG gene depends on a number of other sporulation (spo) genes, but only one of these genes, spoIIIE, has a specific effect on spoIIIG expression and not on gene expression in the other differentiating cell, the mother cell. However, the spoIIIE gene is expressed predominantly before differentiation begins. Thus, its product must play an important role in sensing or determining the spatial localization of prespore-specific gene expression in this system.  相似文献   

8.
Soon after the onset of sporulation in Bacillus subtilis , asymmetric cell division occurs to generate the differentiating prespore and mother cell types. Formation of the septum close to the cell pole initially bisects the nucleoid destined for the prespore, trapping only about one-third of the DNA in the small compartment. The remaining part of the chromosome is then transported through the septum. spoIIIE mutant cells fail to transfer the DNA and arrest with only partially segregated prespore chromosomes. Previous work has shown that the orientation of the chromosome at the time of septation is not random. Here, we use both physical and genetic methods to characterize the trapped DNA. The results show that the chromosome has a very specific orientation at the time of septation, consistent with the action of a centromere-like sequence near oriC . They also demonstrate that the chromosome is folded, or otherwise organized, in a highly ordered manner.  相似文献   

9.
10.
11.
Sharp MD  Pogliano K 《The EMBO journal》2002,21(22):6267-6274
During Bacillus subtilis sporulation, the SpoIIIE DNA translocase moves a trapped chromosome across the sporulation septum into the forespore. The direction of DNA translocation is controlled by the specific assembly of SpoIIIE in the mother cell and subsequent export of DNA into the forespore. We present evidence that the MinCD heterodimer, which spatially regulates cell division during vegetative growth, serves as a forespore-specific inhibitor of SpoIIIE assembly. The deletion of minCD increases the ability of forespore-expressed SpoIIIE to assemble and translocate DNA, and causes otherwise wild-type cells to reverse the direction of DNA transfer, producing anucleate forespores. We propose that two distinct mechanisms ensure the specific assembly of SpoIIIE in the mother cell, the partitioning of more SpoIIIE molecules into the larger mother cell by asymmetric cell division and the MinCD-dependent repression of SpoIIIE assembly in the forespore. Our results suggest that the ability of MinCD to sense positional information is utilized during sporulation to regulate protein assembly differentially on the two faces of the sporulation septum.  相似文献   

12.
13.
L J Wu  J Errington 《The EMBO journal》1997,16(8):2161-2169
The 787 amino acid SpoIIIE protein of Bacillus subtilis is required for chromosome partitioning during sporulation. This process differs from vegetative chromosome partitioning in that it occurs after formation of the septum, apparently by transfer of the chromosome through the nascent septum in a manner reminiscent of plasmid conjugation. Here we show that SpoIIIE is associated with the cell membrane, with its soluble C-terminal domain located inside the cell. Immunofluorescence microscopy using affinity-purified anti-SpoIIIE antibodies shows that SpoIIIE is targeted near the centre of the asymmetric septum, in support of a direct role for SpoIIIE in transport of DNA through the septum. We also report on the isolation of a mutation affecting the N-terminal hydrophobic domain of SpoIIIE that interferes with targeting to the septum and blocks DNA transfer. This mutation also causes de-localization of the activity of the normally prespore-specific sigma factor, sigmaF, consistent with the notion that SpoIIIE can form a seal between the chromosomal DNA and the leading edge of the division septum.  相似文献   

14.
15.
We investigated the genetic interactions between mutations affecting chromosome structure and partitioning in Bacillus subtilis. Loss-of-function mutations in spoIIIE (encoding a putative DNA translocase) and smc (involved in chromosome structure and partitioning) caused a synthetic lethal phenotype. We constructed a conditional mutation in smc and found that many of the spoIIIE smc double-mutant cells had a chromosome bisected by a division septum. The growth defect of the double mutant was exacerbated by a null mutation in the chromosome partitioning gene spo0J. These results suggest that mutants defective in nucleoid structure are unable to move chromosomes out of the way of the invaginating septum and that SpoIIIE is involved in repositioning these bisected chromosomes during vegetative growth.  相似文献   

16.
During formation of spores by Bacillus subtilis the RNA polymerase factor sigma(G) ordinarily becomes active during spore formation exclusively in the prespore upon completion of engulfment of the prespore by the mother cell. Formation and activation of sigma(G) ordinarily requires prior activity of sigma(F) in the prespore and sigma(E) in the mother cell. Here we report that in spoIIA mutants lacking both sigma(F) and the anti-sigma factor SpoIIAB and in which sigma(E) is not active, sigma(G) nevertheless becomes active. Further, its activity is largely confined to the mother cell. Thus, there is a switch in the location of sigma(G) activity from prespore to mother cell. Factors contributing to the mother cell location are inferred to be read-through of spoIIIG, the structural gene for sigma(G), from the upstream spoIIG locus and the absence of SpoIIAB, which can act in the mother cell as an anti-sigma factor to sigma(G). When the spoIIIG locus was moved away from spoIIG to the distal amyE locus, sigma(G) became active earlier in sporulation in spoIIA deletion mutants, and the sporulation septum was not formed, suggesting that premature sigma(G) activation can block septum formation. We report a previously unrecognized control in which SpoIIGA can prevent the appearance of sigma(G) activity, and pro-sigma(E) (but not sigma(E)) can counteract this effect of SpoIIGA. We find that in strains lacking sigma(F) and SpoIIAB and engineered to produce active sigma(E) in the mother cell without the need for SpoIIGA, sigma(G) also becomes active in the mother cell.  相似文献   

17.
The ability of prespore Dictyostelium discoideum amoebae to undergo redifferentiation so as to reestablish normal spore/stalk proportioning has been demonstrated in various ways over the years, beginning with the classic microdissection work of K. Raper. The discovery of anterior-like cells in the slug posterior, however, cast doubt on that ability, and more recent experiments using a cell-specific toxin suggested that prespore redifferentiation may not in fact occur. To reexamine this question, we performed fluorescence-activated cell sorting (FACS) upon amoebae expressing a mutated green fluorescent protein gene (S65T-GFP) under the control of a prespore-specific (PsA) promoter. FACS produced prespore cell populations with purities, measured by GFP expression, as high as 99. 5%. Sorted GFP(+) cells were developmentally competent and produced normally proportioned fruits, indistinguishable from those of "sham-sorted" (permissively gated, mixed GFP(+) and GFP(-)) amoebae. This result confirms the developmental totipotency of prespore amoebae.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号