首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An efficient adventitious shoot regeneration system was developed for pear (Pyrus communis L.), using leaves from in vitro proliferating shoots. Under optimal conditions, bud regeneration frequencies of Comice, Passe-Crassane, Williams and Conference ranged from 60% to 97%, with the mean number of shoots per regenerating leaf ranging from 3.2 to 6.6. Despite the great variability in responses of the different cultivars, in general an initial dark exposure of at least 20 days was required. Ammonium and total nitrogen proved to play an essential role: intermediate NH4 + concentrations were suitable for regeneration. The balance between NH4 + and NO3 - also influenced regeneration; optimal regeneration occured on media with a 1:3 NH4 +/NO3 - ratio. TDZ at 1 M was less efficient than higher concentrations, whatever the NAA level. Finally, length and growth regulator composition of the two phases (induction and expression) influenced the regeneration rate of Conference.Abbreviations BA 6-benzyladenine - EDFS ethylenediamine-tetraacetic acid ferric-sodium salt - IBA 4-indole-3yl-butyric acid - NAA -naphthaleneacetic acid - TDZ thidiazuron (N-phenyl-N-1,2,3-thidiazol-5-ylurea)  相似文献   

2.
A high level of adventitious shoot regeneration was obtained from proliferating shoots in vitro for a range of Prunus spp. There was a significant variability in clone response to a range of adventitious shoot regeneration treatments. Treatment of apricot clone H.152 with Quoirin macroelements (C.R. Rech., Stu. Cult. Fruit. Maraîchères Gemblaux (1977) 93–117), and both apricot clone H.146 and hybrid plum clone P.1869 with half-strength Murashige and Skoog medium, consistently induced regeneration. Thidiazuron (TDZ) alone, or in combination with naptthaleneacetic acid (NAA), was most effective in stimulating adventitious shoot production, the optimum concentration being clone-dependent. Addition of silver nitrate (AgNO3) to regeneration media enhanced regeneration by 10–40% and reduced the variability between experiments. Regeneration with AgNO3 was obtained also for three other plum clones belonging to the P. marianna, P. domestica and P. insititia species.  相似文献   

3.
Certain progenies of Malling apple rootstocks (Malus pumila) have been reported to segregate for a virescent trait: leaves are chlorotic at germination or bud break but turn green as the season progresses. The M432 rootstock mapping progeny, from which a linkage map has recently been elaborated with 323 simple sequence repeat (SSR) markers and 3,069 single nucleotide polymorphism (SNP) markers, also segregates for this phenotype. In this investigation, 188 seedlings were scored and, on the basis of a 3:1 segregation, virescence was attributed to the recessive gene (vir) for which the two parents, M.27 and M.116, are heterozygous. At least seven of 28 Malling rootstocks are heterozygous for this apparently deleterious trait. With the published marker data the gene was mapped to linkage group 12, tightly flanked by the SSR CH01g12 and the SNP marker 475880474, and was located in a physical interval of 2.36 Mb on the Golden Delicious genome sequence. A PCR-based marker was developed from the SNP and along with the SSR was scored in a set of Malus rootstock accessions. The screening of this collection demonstrated that those accessions known to be heterozygous at the vir locus all carried the 152 allele of the SSR and the G allele of the SNP, whilst a virescent accession was homozygous for the alleles. The results we present here could help predict the genotype of apple rootstocks at the vir locus, assist in the fine mapping of the vir locus to identify potential candidate genes for the trait and also aid rootstock breeding.  相似文献   

4.
 Linkage maps for the apple cultivars ‘Prima’ and ‘Fiesta’ were constructed using RFLP, RAPD, isozyme, AFLP, SCAR and microsatellite markers in a ‘Prima’בFiesta’ progeny of 152 individuals. Seventeen linkage groups, putatively corresponding to the seventeen haploid apple chromosomes, were obtained for each parent. These maps were aligned using 67 multi-allelic markers that were heterozygous in both parents. A large number of duplicate RFLP loci was observed and, in several instances, linked RFLP markers in one linkage group showed corresponding linkage in another linkage group. Distorted segregation was observed mainly in two regions of the genome, especially in the male parent alleles. Map positions were provided for resistance genes to scab and rosy leaf curling aphid (Vf and Sd 1, respectively) for the fruit acidity gene Ma and for the self-incompatibility locus S. The high marker density and large number of mapped codominant RFLPs and some microsatellite markers make this map an ideal reference map for use in other progenies also and a valuable tool for the mapping of quantitative trait loci. Received: 17 November 1997 / Accepted: 9 December 1997  相似文献   

5.
Malus baccata is widely used as a rootstock in cold regions of the world because of its cold hardiness. In this study, a highly efficient Agrobacterium rhizogenes strain 8196 transformation system was developed using in vitro-derived stem segments of M. baccata. Approximately 37?% agro-infected explants produced hairy roots when they were incubated on Murashige and Skoog (MS) medium without plant growth regulators. A total of 95?% of hairy roots exhibited glucuronidase activity. Calli were induced from putatively-transformed hairy roots, and subsequently shoots were observed within 4?weeks of culture. The influence of 6-benzyladenine (BA), indole-3-butyric acid (IBA), thidiazuron (TDZ), and gibberellic acid 3 (GA3) on regeneration were investigated using an L9 (34) orthogonal experiment. About 73?% of shoots were regenerated when callus was incubated on MS medium along with 2.0?mg?L?1 BA, 0.5?mg?L?1 IBA, 0.3?mg?L?1 GA3, and 0.5?mg?L?1 TDZ. Moreover, hairy root regenerants showed higher rooting ability and exhibited morphological aberrations such as shortened stem, etiolated, wrinkled and clustered leaves than those of control.  相似文献   

6.
金冠,毛里斯,新红星苹果光合特性的研究   总被引:15,自引:1,他引:15  
通过对金冠、新红星、毛里斯3种苹果品种光合特性日变化,季节变化的研究,结果表明:金冠、新红星2种苹果树的光合速率(Pn)在日变化中出现相似的峰值,日变化呈单峰曲线,高峰值出现在一日中的9:00-11:00。毛里斯苹果的光合速率(Pn)日变化呈双峰曲线,高峰值出现在一天之中的9:00-11:00,3种苹果光合速率(Pn)在季节变化曲线中高峰值期为6月份。并得出各种苹果的光合速率(Pn)与其蒸腾强度I  相似文献   

7.
Adventitious shoots developed from in vitro-grown leaves of Vitis vinifera cultivars Cabernet Sauvignon, French Colombard, Grenache, Thompson Seedless (syn. Sultana) and White Riesling, V. rupestris cv. St. George (syn. du Lot) and V. vinifera × rupestris cv. Ganzin 1. Leaf explants less than 15 mm long were excised from nodal cultures and cultured on Murashige and Skoog or Nitsch and Nitsch-based regeneration media with 0, 1, 2 or 4 mgl-1 6-benzylaminopurine (BAP). Adventitious shoots developed within 4 weeks at the petiolar stub and occasionally from wounded lamina tissues. Shoot organogenesis occurred only on media containing BAP and at a higher frequency with 2 mgl-1 than with 1 or 4 mgl-1. On media containing 2 mgl-1 BAP, 47, 67, 60, and 42%, respectively, of leaf explants of Cabernet Sauvignon, French Colombard, Thompson Seedless, and White Riesling produced adventitious shoots compared to 14, 14, and 29%, respectively, for Grenache, St. George, and Ganzin 1. Solid culture medium was superior to liquid medium and transfer frequency on solid medium did not affect the regeneration frequency. Further shoot growth was promoted by the transfer of regenerating tissues to fresh regeneration medium. More than 80% of explants initially producing adventitious buds exhibited further shoot growth, developing an average of more than 6 shoots each. Shoots rooted easily and the resulting plants appeared morphologically identical to parent vines.  相似文献   

8.
In order to be considered usable as synthetic seeds, encapsulated explants sown underin vitro orex vitro conditions must be able to produce whole plantlets. Ninety percent of non-encapsulated M.26 apple rootstock single nodes produced a plantlet (i.e., a well-formed shoot with a root system) after 30 days of culturein vitro if the explants were previously given a 24-hour treatment with 24.6 μM IBA and 15 g 1−1 sucrose in darkness. In contrast, when the single nodes were encapsulated in a calcium-sodium alginate bead immediately after the same treatment only 10% of the encapsulated explants formed a plantlet. Addition of growth regulators to the artificial endosperm and culture of the single nodes for root primordia initiation for 3, 6 or 9 days in darkness before encapsulation allowed production of 58%, 60% and 66% of plantlets, respectively.  相似文献   

9.
Shoot tips of M.4 apple clone were excised from actively growing one year-old stoolbed branches, and cultured in order to determine the optimal nutrient medium for each stage of their in vitro culture. The basal medium (BM) used was that described by Murashige and Skoog, supplemented with vitamins, glycine, myoinositol, sucrose, with or without agar, and different combinations of plant growth regulators. Best media for each stage were: BM+0.5 mg 1-1 indole-3yl-butyric acid (IBA)+0.5 mg 1-1 6-benzylaminopurine (BAP) for explant establishment (Stage I); BM+0.1 mg 1-1 IBA+1.0 mg 1-1 BAP for multiplication and internode enlargement (Stage II); and 2.0 mg 1-1 IBA+0.1 mg 1-1 BAP without agar for the rooting of the plantlets (Stage III).  相似文献   

10.
A new reliable protocol for the induction of adventitious shoot formation and plant regeneration from apple callus has been developed. High regeneration frequency was obtained with this method in four different genotypes (Jork9, M26, Gala and McIntosh) and callus maintained regeneration ability for several months. The procedure consists of inducing vegetative shoot apices, excised from in vitro shoots, for 20 days in darkness on an MS medium without glycine, supplied with 17.8 μM BA, 2.7 μM NAA and 250 mg l−1 cefotaxime. The explants are then transferred to a fresh auxin-free medium and given light. Histological studies revealed that all the regenerated shoots originated from callus. Regenerated shoots were multiplied, rooted and successfully established in soil. Received: 2 April 1999 / Revision received: 10 November 1999 / Accepted: 15 November 1999  相似文献   

11.
The anatomy of the graft tissue between a rootstock and its shoot (scion) can provide a mechanistic explanation of the way dwarfing Malus rootstocks reduce shoot growth. Considerable xylem tissue disorganization may result in graft tissue having a low hydraulic conductivity (k(h)), relative to the scion stem. The graft may influence the movement of substances in the xylem such as ions, water and plant-growth-regulating hormones. Measurements were made on 3-year-old apple trees with a low-pressure flow system to determine k(h) of root and scion stem sections incorporating the graft tissue. A range of rootstocks was examined, with different abilities of dwarfing; both ungrafted and grafted with the same scion shoot cultivar. The results showed that the hydraulic conductivity (k(hroot)) of roots from dwarfing rootstocks was lower compared with semi-vigorous rootstocks, at least for the size class of root measured (1.5 mm diameter). Scion hydraulic conductivity (k(hs)) was linked to leaf area and also to the rootstock on to which it was grafted, i.e. hydraulic conductivity was greater for the scion stem on the semi-vigorous rootstock. Expressing conductivities relative to xylem cross-sectional areas (k(s)) did not remove these differences suggesting that there were anatomical changes induced by the rootstock. The calculated hydraulic conductivity of the graft tissue was found to be lower for grafted trees on dwarfing rootstocks compared to invigorating rootstocks. These observations are discussed in relation to the mechanism(s) by which rootstock influences shoot growth in grafted trees.  相似文献   

12.
In order to achieve a time and hand-labor saving procedure for the use of direct organogenesis in the production of shoot tips suitable for encapsulation, a set of experiments aimed at the gradual reduction in the accuracy of selection, hand and machine excision of the explants (leaves and whole shoot clusters) was attempted. Vegetative performance of the regenerated shoots was evaluated and encapsulation and subsequent regrowth of adventitious shoot tips was performed. The research provided useful information to devise a mechanical protocol for the production of synthetic seed through encapsulation of differentiating propagules (tissue fragments with shoot primordia) in woody species. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
One-year-old apple cuttings (Malus pumila var.domestica cv. M26) were grown for 6 months in pot culture with and without inoculum of the VA-mycorrhizal fungus (VAMF)Glomus macrocarpum in soil from a long-term fertilizer field experiment with different P availability (20, 210, and 280 mg CAL-extractable P kg−1). The indigenous VAMF propagule density was reduced by 0.5 Mrad X-irradiation. At harvest, non-inoculated and inoculated plants had similar proportions of root length bearing vesicles. Net dry weight of tree cuttings was significantly increased by inoculation only at 20 mg P kg−1 (+62%). Increasing P availability from 210 to 280 mg P kg−1 led to a 4-week depression of shoot elongation rate only in the inoculated plants. Uptake of P was significantly enhanced by inoculation at 20 and 210 mg P kg−1 (+64 and +12%, respectively). On average, inoculated plants had significantly higher concentrations of Zn in leaves and in roots (+16 and +14%, respectively) and of copper in stems and in roots (+13 and +126%, respectively). Proportion of vesicle bearing root length was significantly correlated with root caloric content. A lipid content of 0.9–4.5% in the root dry matter was attributed to the presence of vesicles corresponding to 1.6–8.2% of total root caloric content. As the control plants were also infected, the beneficial effect of VA-mycorrhiza on nutrient uptake and growth of apple cuttings was underestimated at all P levels. Furthermore, VAM-potential at the lowest P level was not fully exploited as onset of infection was most certainly delayed because of a decreased photosynthetic rate due to P deficiency. Energy drain by VAMF-infection was most probably underestimated considerably, due to, among others, loss of infected root cortex during root growth, sampling and staining. It is concluded that apple cuttings rely on VA-mycorrhizal P-uptake at least in low P soils. In high P soils, apple cuttings may profit predominantly from the uptake of Zn and Cu by the fungal symbionts.  相似文献   

14.
Summary A protocol for in vitro shoot regeneration from cotyledon explants of Citrullus lanatus (Thunb.) Matsum. & Nakai cv. Sugar Baby is described. The cotyledons excised from 7-d-old aseptic seedlings showed the highest percentage of shoots on Murashige and Skoog (MS) + N6-benzyladenine (BA; 3.0 μM) + N6-[2-isopentenyl] adenine (2iP; 3.0 μM) and MS + BA (3.0 μM) + indole-3-acetic acid (IAA; 3.0 μM). Whereas the latter medium induced shoot regeneration after the callusing of the explant, the former stimulated direct shoot formation. The regenerated shoots were rooted and the resulting plants were established in earthen pots with 55% success.  相似文献   

15.
A procedure has been established for regeneration from meristem-derived callus protoplasts of scion cultivars of apple that have been difficult to regenerate from leaf protoplasts. Calli were induced from the meristem of apples, Malus×domestica cvs `Fuji' and `Jonagold' and Malus prunifolia var `ringo Asami Mo84-A', cultured on MS medium (2 mg/l 2,4-D, 1 mg/l BA, 0.8% agar) and subcultured in a liquid medium. The ability to regenerate plants from suspension calli was studied under eight different combinations with respect to IAA, ABA, and TDZ concentrations. With the materials studied here, two combinations, one with 0.1 mg/l IAA, 0.1 mg/l ABA, and 2.0 mg/l TDZ and another with 0.1 mg/l IAA, 1.0 mg/l ABA, and 2.0 mg/l TDZ, were effective for plant regeneration. Protoplasts were isolated from the above suspension cultures and then cultured in KM8P medium containing IBA (2 mg/l), BA (1 mg/l), 2,4-D (0.4 mg/l), and MES (5 mM, pH 5.7). Shoot formation of protoplast-derived calli was studied in the above-mentioned regeneration media. The high concentration of Gelrite (0.5% and 0.7%) was also shown to be important for shoot formation of protoplast-derived calli. Shoot primordia were formed in the medium containing IAA (0.1 mg/l), ABA (1.0 mg/l), and TDZ (2.0 mg/l). Ultimately, five regenerants of `Fuji' protoplasts were obtained from 200 protoplast-derived calli. Received: 19 June 1998 / Revision received: 9 October 1998 / Accepted: 27 October 1998  相似文献   

16.
17.
To unravel the relationship between the European wild apple, Malus sylvestris (L.) Mill., and its domesticated relative M. domestica Borkh., we studied chloroplast DNA variation in 634 wild and 422 domesticated accessions originating from different regions. Hybridization between M. sylvestris and M. domestica was checked using 10 nuclear microsatellites and a Bayesian assignment approach. This allowed us to identify hybrids and feral plants escaped from cultivation. Sixty-eight genotypes belonging to 12 other wild Malus species, including 20 M. sieversii (Ledeb.) Roem. accessions were also included in the analysis of chloroplast diversity. Marker techniques were developed to type a formerly described duplication and a newly detected transversion in the matK gene. Chloroplast DNA variation was further investigated using PCR-RFLP (Polymerase Chain Reaction-Random Fragment Length Polymorphism), and haplotypes were constructed based on all mutational combinations. A closer relationship than presently accepted between M. sylvestris and M. domestica was established at the cytoplasmic level, with the detection of eight chloroplast haplotypes shared by both species. Hybridization between M. sylvestris and M. domestica was also apparent at the local level with sharing of rare haplotypes among local cultivars and sympatric wild trees. Indications of the use of wild Malus genotypes in the (local) cultivation process of M. domestica and cytoplasmic introgression of chloroplast haplotypes into M. sylvestris from the domesticated apple were found. Only one of the M. sieversii trees studied displayed one of the three main chloroplast haplotypes shared by M. sylvestris and M. domestica. This is surprising as M. sieversii has formerly been described as the main maternal progenitor of the domesticated apple. This study hereby reopens the exciting discussion on the origin of M. domestica.  相似文献   

18.
19.
植物不定芽离体再生分子调控的评述   总被引:2,自引:0,他引:2  
黄剑  沈海龙  刘长莉  李玉花 《遗传》2007,29(5):528-536
植物的不定芽再生过程涉及众多基因及其互作。细胞分裂素诱导体细胞启动、启动的体细胞进行分裂和由此引发的茎分生组织发育是这一过程中的3个重要步骤。探讨这3个步骤的相关基因表达及其关系, 有助于揭示植物不定芽再生的分子调节机制。文章就这些步骤所涉及的分子调节过程的研究成果作一评述。  相似文献   

20.
An efficient and reproducible procedure is described for the large-scale propagation of an epiphytic orchid,Acampe praemorsa (Roxb.) B latter and McCann using foliar explants. Shoot buds were induced in basal parts of foliar explants on Murashige and Skoog medium supplemented with N6-benzyladenine (BA), kinetin (Kn) or thidiazuron (TDZ), the latter being most effective at 1.0 mg/1. Shoots formed to a TDZ-containing medium elongated following transfer to a substrate supplemented with 2.0 mg/l 1-naphthaleneacetic acid (NAA) and 0.5 mg/1 BA. NAA at lower concentrations had no beneficial effects on shoot regeneration, whether added to the medium along with BA, Kn or TDZ. However, it promoted shoot elongation and leaf expansion. Higher concentrations of NAA suppressed shoot regeneration. The frequency of shoot regeneration was greatly influenced by the developmental stage and orientation of the leaf. Shoots regenerated from the foliar explants were rooted successfully on MS medium containing 1.0 mg/l indole-3-butyric acid. The plantlets were acclimated and eventually transferred to a garden.Abbreviations BA N6-Benzyladenine - IAA Indole-3-acetic acid - IBA Indole-3-butyric acid - Kn Kinetin - MS Murashige and Skoog (1962) medium - NAA 1-Naphthaleneacetic acid - TDZ Thidiazuron (N-phenyl-N-1,2,3-thiadiazol-5-ylurea)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号