首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments were conducted to determine if copper deficiency enhances the rate of thrombin-induced dense granule secretion by modifying the major signal transduction pathways of rat platelets. Platelets were obtained from male, weanling Sprague-Dawley rats fed diets containing either deficient ( < 0.5 μg/g diet) or adequate (5.5 μg/g diet) copper for 5 weeks. Following stimulation with thrombin (0.1 U/mL), the rate of dense granule secretion as measured by ATP release was 160% higher in platelets from copper-deficient than from control rats. Inhibition of the rate of thrombin-induced ATP release by (6-aminohexyl)-1-naphthalene-sulfonamide, a calmodulin antagonist was independent of copper status. However, 1-(5-isoquinoline-sulfonyl)-2-methylpiperazine, a protein kinase C inhibitor, inhibited the rate of ATP release only in platelets from copper-deficient rats. Aspirin had no effect on ATP release from platelets obtained from either copper-deficient or control rats. This suggests that copper deficiency alters the role of protein kinase C in regulating dense granule secretion. Analysis of autoradiographs showing [32P]-labeled platelet proteins indicated that the phosphorylation of a 40 kDa protein, a known substrate for protein kinase C in platelets, was significantly less following thrombin stimulation in platelets from copper-deficient than from control rats. When protein kinase C was activated by phorbol 12-myristate 13-acetate prior to thrombin stimulation, ATP release was attenuated regardless of copper status. These findings suggest that protein kinase C can still function as a feedback inhibitor of platelet dense granule secretion in copper deficiency, but impaired activation of this enzyme following thrombin stimulation may prevent it from achieving full regulatory capacity.  相似文献   

2.
In platelets activated by thrombin, the hydrolysis of phosphatidylinositol 4,5-bisphosphate by phospholipase C produces inositol 1,4,5-triphosphate (IP3) and diacylglycerol, metabolites which are known to cause Ca2+ release from the platelet dense tubular system and granule secretion. Previous studies suggest that phospholipase C activation is coupled to platelet thrombin receptors by a guanine nucleotide-binding protein or G protein. The present studies examine the contribution of this protein to thrombin-induced platelet activation and compare its properties with those of Gi, the G protein which mediates inhibition of adenylate cyclase by thrombin. In platelets permeabilized with saponin, nonhydrolyzable GTP analogs reproduced the effects of thrombin by causing diacylglycerol formation, Ca2+ release from the dense tubular system and serotonin secretion. In intact platelets, fluoride, which by-passes the thrombin receptor and directly activates G proteins, caused phosphoinositide hydrolysis and secretion. Fluoride also caused an increase in the platelet cytosolic free Ca2+ concentration that appeared to be due to a combination of Ca2+ release from the dense tubular system and increased Ca2+ influx across the platelet plasma membrane. Guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), which inhibits G protein function, inhibited the ability of thrombin to cause IP3 and diacylglycerol formation, granule secretion, and Ca2+ release from the dense tubular system in saponin-treated platelets. Increasing the thrombin concentration overcame the effects of GDP beta S on secretion without restoring diacylglycerol formation. The effects of GDP beta S on platelet responses to thrombin which had been subjected to partial proteolysis (gamma-thrombin) were similar to those obtained with native alpha-thrombin despite the fact that gamma-thrombin is a less potent inhibitor of adenylate cyclase than is alpha-thrombin. Thrombin-induced diacylglycerol formation and 45Ca release were also inhibited when the saponin-treated platelets were preincubated with pertussis toxin, an event that was associated with the ADP-ribosylation of a protein with Mr = 41.7 kDa. At each concentration tested, the inhibition of thrombin-induced diacylglycerol formation by pertussis toxin paralleled the inhibition of thrombin's ability to suppress PGI2-stimulated cAMP formation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Signal transduction pathway under the influence of somatotropin have been identified basis on the analysis of Ca2+ release from intracellular stores of fresh and vitrified porcine oocytes using inhibitory analysis. Somatotropin and GTP individually stimulated Ca2+ release from intracellular stores. The joint action of somatotropin and GTP activated additional Ca2+ release from intracellular stores both in fresh and vitrified porcine oocytes. Treatment of the oocytes with inhibitor of protein kinase C caused no additional Ca2+ release from intracellular stores. Ca2+ release from intracellular stores stimulated by GTP was connected with phosphate hydrolysis. Moving between intracellular Ca2+ depots stimulated by GTP was not determined by phosphate hydrolysis. Inhibitor of protein kinase C and microtubules were involved in the interaction of various intracellular depots. The data obtained suggest that signal transduction pathway in porcine oocytes do not change after vitrification.  相似文献   

4.
The effects of guanine nucleotides and protein kinase C on prolactin-stimulated Ca2+ release from intracellular stores of pig oocytes were studied using the fluorescent dye chlorotetracycline. The effect of prolactin was related to the protein kinase C activation. Inhibition of protein kinase C stimulated Ca2+ release from intracellular stores of the pig oocytes treated with 5 ng/ml prolactin in the presence of extracellular Ca2+ and inhibited Ca2+ release from intracellular stores of the pig oocytes treated with 50 ng/ml prolactin. In a Ca2+-free medium, prolactin did not stimulate Ca2+ release from intracellular stores of the oocytes treated with GDP in the presence of GDP. GTP inhibition of protein kinase C activated Ca2+ release from intracellular stores of the pig oocytes treated with 5 ng/ml prolactin and inhibited Ca2+ release from intracellular stores of the pig oocytes treated with 50 ng/ml prolactin. These data suggest the influence of guanine nucleotides and protein kinase C on calcium metabolism, stimulated by prolactin.  相似文献   

5.
Electropermeabilized human platelets containing 5-hydroxy[14C]tryptamine ([14C]5-HT) were suspended in a glutamate medium containing ATP and incubated for 10 min with (in various combinations) Ca2+ buffers, phorbol 12-myristate 13-acetate (PMA), guanine nucleotides, and thrombin. Release of [14C]5-HT and beta-thromboglobulin (beta TG) were used to measure secretion from dense and alpha-granules, respectively. Ca2+ alone induced secretion from both granule types; half-maximal effects were seen at a -log [Ca2+ free] (pCa) of 5.5 and maximal secretion at a pCa of 4.5, when approximately 80% of 5-HT and approximately 50% of beta TG were released. Addition of PMA, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), GTP, or thrombin shifted the Ca2+ dose-response curves for secretion of both 5-HT and beta TG to the left and caused small increases in the maximum secretion observed. These results suggested that secretion from alpha-granules, like that from dense granules, is a Ca(2+)-dependent process stimulated by the sequential activation of a G-protein, phospholipase C, and protein kinase C (PKC). However, high concentrations of PMA and GTP gamma S had distinct effects in the absence of Ca2+ (pCa greater than 9); 100 nM PMA released approximately 20% of platelet 5-HT but little beta TG, whereas 100 microM GTP gamma S stimulated secretion of approximately 25% of each. Simultaneous addition of PMA greatly enhanced these effects of GTP gamma S. Phosphorylation of pleckstrin in permeabilized platelets incubated with [gamma-32P]ATP was used as an index of the activation of PKC during secretion. In the absence of Ca2+, 100 nM PMA caused maximal phosphorylation of pleckstrin and 100 microM GTP gamma S was approximately 50% as effective as PMA; neither GTP gamma S nor Ca2+ enhanced the phosphorylation of pleckstrin caused by 100 nM PMA. These results indicate that, although activation of PKC promoted secretion, GTP gamma S exerted additional stimulatory effects on secretion from both dense and alpha-granules that were not mediated by PKC. Measurement of [3H]inositol phosphate formation in permeabilized platelets containing [3H]phosphoinositides showed that GTP gamma S did not stimulate phosphoinositide-specific phospholipase C in the absence of Ca2+. It follows that in permeabilized platelets, GTP gamma S can both stimulate PKC and enhance secretion via G-protein-linked effectors other than this phospholipase.  相似文献   

6.
In order to better understand granule release from platelets, we developed an alpha-toxin permeabilized platelet model to study alpha-granule secretion. Secretion of alpha-granules was analyzed by flow cytometry using P-selectin as a marker for alpha-granule release. P-selectin surface expression occurred when platelets were permeabilized in the presence of Ca2+. Responsiveness to Ca2+ was lost 30 min after permeabilization but could be reconstituted with MgATP. Alpha-toxin-permeabilized, MgATP-exposed platelets also degranulated within a pH range of 5.4-5.9 without exposure to and independent of Ca2+. ATP, GTP, CTP, UTP, and ITP supported Ca2+-induced alpha-granule secretion, while H+-induced alpha-granule secretion occurred only with ATP and GTP. Both Ca2+- and H+-induced alpha-granule secretion required ATP hydrolysis. Kinase inhibitors blocked both Ca2+- and H+-induced secretion. These data suggest that alpha-granule secretion in this permeabilized platelet system shares many characteristics with granule secretion studied in other permeabilized cell models. Furthermore, these results show that H+ can trigger alpha-granule release independent of Ca2+.  相似文献   

7.
Ca2+ release from intracellular stores of pig oocytes was investigated using the Ca(2+)-sensitive fluorescent dye chlorotetracycline. Oocytes were divided into growing ones and those that completed their growth using brilliant cresyl clue (BCB) staining. The stained oocytes (BCB "+") were determined as the ones that completed their growth, while the stainless ones (BCB "-") were determined as those in the final stages of growth. In the BCB "+" and BCB "-" oocytes, prolactin, theophylline, GTP, and GDP cause Ca2+ to exit intracellular stores. In the oocytes that completed their growth, joint action of prolactin and GTP activates additional release of Ca2+, in which protein kinase C takes part. In growing oocytes, joint action of prolactin and GTP does not lead to additional release of Ca2+. Joint action of theophylline and GDP in growing oocytes and oocytes that completed the growth stage promotes additional Ca2+ exit from intracellular stores. This exit is regulated by protein kinase A. The obtained data show that there various routes of Ca2+ release from intracellular stores in growing and grown pig oocytes.  相似文献   

8.
Addition of NaF to washed platelets produces a dose-dependent and transient elevation of the intracellular free calcium concentration ([Ca++]i), thromboxane B2 (TxB2) generation and dense granule release, all of which are significantly inhibited when the extracellular calcium concentration ([Ca++]e) is reduced with EGTA. Inhibition of platelet cyclo-oxygenase by acetylsalicylic acid (ASA) does not affect NaF-induced elevation of [Ca++]i and dense granule release in the presence of 1 mM [Ca++]e. Pre-incubation of the platelets with the phorbol ester TPA produces a marked inhibition of NaF-induced elevation of [Ca++]i and TxB2 generation without affecting dense granule release. Thus, NaF may have more than one site of action. Pretreatment of the platelets with the selective protein kinase C inhibitor H7 prevents TPA induced inhibition of NaF mediated rise in [Ca++]i and TxB2 generation. Thus we propose that NaF induced calcium mobilisation is analogous to receptor-operated calcium mobilisation in platelets, as it is readily inhibited by protein kinase C activation or by the reduction of [Ca++]e and is independent of platelet cyclo-oxygenase activity.  相似文献   

9.
Several platelet agonists, including thrombin, collagen, and thromboxane A(2), cause dense granule release independently of thromboxane generation. Because protein kinase C (PKC) isoforms are implicated in platelet secretion, we investigated the role of individual PKC isoforms in platelet dense granule release. PKCdelta was phosphorylated in a time-dependent manner that coincided with dense granule release in response to protease-activated receptor-activating peptides SFLLRN and AYPGKF in human platelets. Only agonists that caused platelet dense granule secretion activated PKCdelta. SFLLRN- or AYPGKF-induced dense granule release and PKCdelta phosphorylation occurred at the same respective agonist concentration. Furthermore, AYPGKF and SFLLRN-induced dense granule release was blocked by rottlerin, a PKCdelta selective inhibitor. In contrast, convulxin-induced dense granule secretion was potentiated by rottlerin but was abolished by Go6976, a classical PKC isoform inhibitor. However, SFLLRN-induced dense granule release was unaffected in the presence of Go6976. Finally, rottlerin did not affect SFLLRN-induced platelet aggregation, even in the presence of dimethyl-BAPTA, indicating that PKCdelta has no role in platelet fibrinogen receptor activation. We conclude that PKCdelta and the classical PKC isoforms play a differential role in platelet dense granule release mediated by protease-activated receptors and glycoprotein VI. Furthermore, PKCdelta plays a positive role in protease-activated receptor-mediated dense granule secretion, whereas it functions as a negative regulator downstream of glycoprotein VI signaling.  相似文献   

10.
The role of guanine nucleotides in insulin secretion was investigated in electrically permeabilized RINm5F cells. Ca2+ stimulated insulin release (EC50 approximately 2 microM Ca2+). The GTP stable analog, GTP gamma S, elicited insulin secretion at vanishingly low Ca2+ concentrations (less than 10(-11) M), slightly potentiated the response to intermediate Ca2+ levels, but exerted less than additive effects at maximal Ca2+ concentrations. The GDP analog, GDP beta S, inhibited both GTP gamma S- and Ca2+-stimulated secretion. The action of GTP gamma S was not mediated by cAMP, as the latter only enhanced Ca2+-induced secretion. In contrast, 12-O-tetradecanoylphorbol-13-acetate, an activator of protein kinase C, promoted insulin release at nonstimulatory Ca2+ levels as well as potentiating the Ca2+ response. GTP analogs stimulated hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdInsP2), as assessed by inositol phosphate generation. However, this could not fully explain guanine nucleotide-induced secretion because: GTP gamma S-stimulated PtdInsP2 breakdown was totally dependent on Ca2+ and abolished at Ca2+ below 10(-11) M; at these Ca2+ levels, activators of protein kinase C were weak or ineffective secretagogues; the GTP analog Gpp(NH)p was much less effective than GTP gamma S in activating PtdInsP2 hydrolysis, while fully mimicking the effect on Ca2+-independent secretion. Both GTP gamma S-induced PtdInsP2 hydrolysis and insulin release were insensitive to pertussis toxin and cholera toxin. The findings point to a guanine nucleotide-regulated site in the activation of insulin secretion different from the known transmembrane signalling systems.  相似文献   

11.
Involvement of protein kinase C in the regulation of Ca2+ exit from intracellular stores of pig oocytes activated by prolactin was investigated, using the fluorescent dye chlortetracycline. In the presence of extracellular calcium, the inhibitor of protein kinase C Ro 31-8220 increased calcium exit from intracellular stores in pig oocytes after prolactin treatment. In calcium-free medium, Ro 31-8220 exerted effect on calcium release from intracellular stores. In calcium-free medium, prolactin did not stimulate calcium release from intracellular stores of oocytes in the presence of thimerosal, while in the presence of protein kinase C inhibitor, prolactin increased Ca2+ content from intracellular stores in such oocytes. These data suggest a direct involvement of protein kinase C in the processes of regulation of Ca2+ exit from intracellular stores of pig oocytes stimulated by prolactin.  相似文献   

12.
The influence of ryanodine and inositol triphosphate receptors inhibitors on Ca2+ exit from intracellular stores of porcine oocytes stimulated by prolactin and GTP was investigated using fluorescent dye chlortetracycline. Porcine oocytes were isolated from ovaries with yellow body. Ca2+ exit from intracellular stores of porcine oocytes activated by prolactin (5 and 50 ng/ml) in calcium free medium was decreased after treatment of oocytes by heparin (inhibitor of inositol triphosphate receptors) and was not changed after treatment of oocytes by ruthenium red (inhibitor of ryanodine receptors). Inhibition of protein kinase C did not affect on the Ca2+ exit stimulated by prolactin. GTP did not stimulate Ca2+ exit from intracellular stores of pig oocytes, and inhibitors of both calcium channels and proteinkinase C had no influence on this process. The joint action of prolactin and GTP did not result in additional Ca2+ exit from intracellular stores of oocytes after both pretreatment and untreatment by the inhibitor of protein kinase C. The data obtained testify to activation of IP3-sensitive receptors under effect of prolactin and in the absence of GTP influence on these receptors.  相似文献   

13.
Effect of progesterone on theophylline and prolactin stimulated Ca2+ exit from intracellular stores of pig oocytes was investigated using a fluorescent dye chlortetracycline. It is shown that in progesterone treated oocytes prolactin in concentration 50 ng/ml inhibits Ca2+ exit from intracellular stores of pig oocytes. Theophylline exerts the effect on prolactin Ca2+ exit from intracellular stores of pig oocytes. Employment of protein kinase C inhibitor cancelled inhibitory effect of prolactin and theophylline on Ca2+ exit from intracellular stores of pig oocytes. Ca2+ exit from intracellular stores of pig oocytes caused a joint influence of prolactin and GDP, and that of theophylline and GTP. The influence of protein kinase C inhibitor cancelled the stimulating effect of prolactin and GDP on Ca2+ exit from intracellular stores of pig oocytes also did not render any influence on the action of theophylline and GTP. These data suggest the influence of progesterone on theophylline and prolactin stimulated Ca2+ exit from intracellular stores of pig oocytes.  相似文献   

14.
We have previously demonstrated that Rab27 regulates dense granule secretion in platelets. Here, we analyzed the activation status of Rab27 using the thin layer chromatography method analyzing nucleotides bound to immunoprecipitated Rab27 and the pull-down method quantifying Rab27 bound to the GTP-Rab27-binding domain (synaptotagmin-like protein (Slp)-homology domain) of its specific effector, Slac2-b. We found that Rab27 was predominantly present in the GTP-bound form in unstimulated platelets due to constitutive GDP/GTP exchange activity. The GTP-bound Rab27 level drastically decreased due to enhanced GTP hydrolysis activity upon granule secretion. In permeabilized platelets, increase of Ca(2+) concentration induced dense granule secretion with concomitant decrease of GTP-Rab27, whereas in non-hydrolyzable GTP analogue GppNHp (beta-gamma-imidoguanosine 5'-triphosphate)-loaded permeabilized platelets, the GTP (GppNHp)-Rab27 level did not decrease upon the Ca(2+)-induced secretion. These data suggested that GTP hydrolysis of Rab27 was not necessary for inducing the secretion. Taken together, Rab27 is maintained in the active status in unstimulated platelets, which could function to keep dense granules in a preparative status for secretion.  相似文献   

15.
Platelets play a vital role in maintaining haemostasis. Human platelet activation depends on Ca2+ release, leading to cell activation, granule secretion and aggregation. NAADP (nicotinic acid-adenine dinucleotide phosphate) is a Ca2+-releasing second messenger that acts on acidic Ca2+ stores and is used by a number of mammalian systems. In human platelets, NAADP has been shown to release Ca2+ in permeabilized human platelets and contribute to thrombin-mediated platelet activation. In the present study, we have further characterized NAADP-mediated Ca2+ release in human platelets in response to both thrombin and the GPVI (glycoprotein VI)-specific agonist CRP (collagen-related peptide). Using a radioligand-binding assay, we reveal an NAADP-binding site in human platelets, indicative of a platelet NAADP receptor. We also found that NAADP releases loaded 45Ca2+ from intracellular stores and that total platelet Ca2+ release is inhibited by the proton ionophore nigericin. Ned-19, a novel cell-permeant NAADP receptor antagonist, competes for the NAADP-binding site in platelets and can inhibit both thrombin- and CRP-induced Ca2+ release in human platelets. Ned-19 has an inhibitory effect on platelet aggregation, secretion and spreading. In addition, Ned-19 extends the clotting time in whole-blood samples. We conclude that NAADP plays an important role in human platelet function. Furthermore, the development of Ned-19 as an NAADP receptor antagonist provides a potential avenue for platelet-targeted therapy and the regulation of thrombosis.  相似文献   

16.
Atrial natriuretic factor (ANF), a peptide hormone that regulates salt and water balance and blood pressure, is synthesized, stored, and secreted from mammalian myocytes. Stretching of atrial myocytes stimulates ANF secretion, but the cellular processes involved in linking mechanical distension to ANF release are unknown. We reported that phorbol esters, which mimic the action of diacylglycerol by acting directly on protein kinase C and the Ca2+ ionophore A23187, which introduces free Ca2+ into the cell, both increase basal ANF secretion in the isolated perfused rat heart. Phorbol ester also increased responsiveness to Ca2+ channel agonists, such as Bay k8644, and to agents that increase cAMP, such as forskolin and membrane-permeable cAMP analogs. In neonatal cultured rat atrial myocytes, protein kinase C activation by 12-O-tetradecanoylphorbol 13-acetate stimulated ANF secretion, whereas the release was unresponsive to changes in intracellular Ca2+. Endothelin, which stimulates phospholipase C mediated hydrolysis of phosphoinositides and activates protein kinase C, increased both basal and atrial stretch-induced ANF secretion from isolated perfused rat hearts. Similarly, phorbol ester enhanced atrial stretch-stimulated ANF secretion, while the increase in intracellular Ca2+ appeared to be negatively coupled to the stretch-induced ANF release. Finally, phorbol ester stimulated ANF release from the severely hypertrophied ventricles of hypertensive animals but not from normal rat myocardium. These results suggest that the protein kinase C activity may play an important role in the regulation of basal ANF secretion both from atria and ventricular cells, and that stretch of atrial myocytes appears to be positively modulated by phorbol esters.  相似文献   

17.
Non-hydrolyzable GTP analogues, such as guanosine 5'-(beta, gamma-imido)triphosphate (GppNHp), induce granule secretion from permeabilized platelets in the absence of increased intracellular Ca(2+). Here, we show that the GppNHp-induced dense granule secretion from permeabilized platelets occurred concomitantly with the activation of small GTPase Ral. This secretion was inhibited by the addition of GTP-Ral-binding domain (RBD) of Sec5, which is a component of the exocyst complex known to function as a tethering factor at the plasma membrane for vesicles. We generated an antibody against Sec5-RBD, which abolished the interaction between GTP-Ral and the exocyst complex in vitro. The addition of this antibody inhibited the GppNHp-induced secretion. These data indicate that Ral mediates the GppNHp-induced dense granule secretion from permeabilized platelets through interaction with its effector, the exocyst complex. Furthermore, GppNHp enhanced the Ca(2+) sensitivity of dense granule secretion from permeabilized platelets, and this enhancement was inhibited by Sec5-RBD. In intact platelets, the association between Ral and the exocyst complex was induced by thrombin stimulation with a time course similar to that of dense granule secretion and Ral activation. Taken together, our results suggest that the Ral-exocyst pathway participates in the regulation of platelet dense granule secretion by enhancing the Ca(2+) sensitivity of the secretion.  相似文献   

18.
Electrically permeabilized RINm5F cells were used to assess the factors required for activation of protein kinase C (PKC) and insulin secretion. PKC was activated either by phorbol 12-myristate 13-acetate (PMA) or by the generation of endogenous diacylglycerol in response to the nonhydrolyzable guanine nucleotide analog guanosine 5'-O-(thiotriphosphate) (GTP gamma S). As shown previously, both PMA and GTP gamma S elicit Ca2+-independent insulin secretion. This effect was mimicked by guanyl-5'-yl imidodiphosphate (Gpp(NH)p) but not by guanosine 5'-O-(3-fluorotriphosphate) and guanosine 5'-O-(3-phenyltriphosphate) possessing only one negative charge in the gamma-phosphate group. The action of PMA was mediated by PKC, since the agent caused both phosphorylation of specific protein substrates and association of the enzyme with cellular membranes. This translocation was independent of the Ca2+ concentration employed. In contrast, GTP gamma S only promoted association of PKC with membranes at 10(-6) and 10(-5) M Ca2+ and failed to alter significantly protein phosphorylation in the absence of Ca2+. Neither Gpp(NH)p, which stimulates insulin release, nor the other two GTP analogs, increased the proportion of PKC associated with membranes. To verify that the Ca2+-dependent effect of GTP gamma S on PKC is due to activation of phospholipase C, we measured the generation of diacylglycerol. GTP gamma S indeed stimulated diacylglycerol production in the leaky cells by about 50% at Ca2+ concentrations between 10(-7) and 10(-5) M, an effect which was almost abolished in the absence of Ca2+. Thus, at 10(-7) M Ca2+, the concentration found in resting intact cells, the generated diacylglycerol was not sufficient to cause PKC insertion into the membrane, demonstrating that both elevated Ca2+ and diacylglycerol are necessary for translocation to occur. It is concluded that while PKC activation by PMA elicits Ca2+-independent insulin secretion, the kinase seems not to mediate the stimulatory action of GTP analogs in the absence of Ca2+.  相似文献   

19.
1. Calcium-dependent exocytosis of catecholamines from intact and digitonin-permeabilized bovine adrenal chromaffin cells was investigated. 2. 45Ca2+ uptake and secretion induced by nicotinic stimulation or depolarization in intact cells were closely correlated. The results provide strong support for Ca2+ entry being the trigger for exocytosis. 3. Experiments in which the H+ electrochemical gradient across the intracellular secretory granule (chromaffin granule) membrane was altered indicated that the gradient does not play an important role in exocytosis. 4. Ca2+ entry into the cells is associated with activation of phospholiphase C and a rapid translocation of protein kinase C to membranes. 5. The plasma membrane of chromaffin cells was rendered permeable to Ca2+, ATP, and proteins by the detergent digitonin without disruption of the intracellular secretory granules. In this system in which the intracellular milieu can be controlled, micromolar Ca2+ directly stimulated catecholamine secretion. 6. Treatment of the cells with phorbol esters and diglyceride, which activate protein kinase C, enhanced phosphorylation and subsequent Ca2+-dependent secretion in digitonin-treated cells. 7. Phorbol ester-induced secretion could be specifically inhibited by trypsin. The experiments indicate that protein kinase C modulates but is not necessary for Ca2+-dependent secretion.  相似文献   

20.
The effects of GTP, with or without polyethylene glycol (PEG), on the release and uptake of Ca2+ were examined by using saponin-treated macrophages and sarcoplasmic reticulum isolated from skeletal muscles. The application of GTP in concentrations in the range 0.1-10 microM induced a gradual, small but sustained release of Ca2+ from the saponin-treated macrophages. The addition of PEG to GTP markedly enhanced the GTP-mediated Ca2+ release. GTP at the same concentration ranges used for Ca2+ release decreased the amount of Ca2+ uptake, at a steady state, but stimulated the rate of Ca2+ accumulation in the presence of oxalate, the Ca2+-precipitating anion. The addition of PEG abolished the GTP-evoked stimulation of Ca2+ accumulation in the presence of oxalate. The stimulating effect on the rate of Ca2+ accumulation by GTP and its elimination by PEG were not due to changes in the permeability of oxalate by either GTP or PEG, or both. The Ca2+-releasing effect of GTP without PEG was enhanced by eliminating the uptake activity by decreasing the content of ATP. These results indicate that GTP has an inherent activity to release Ca2+ from non-mitochondrial intracellular stores of saponin-treated macrophages, and PEG enhances the GTP-mediated Ca2+ release, partly owing to its eliminating effect on GTP-stimulated Ca2+ uptake activity. These effects of GTP observed with saponin-permeabilized macrophages were not apparent in the isolated skeletal-muscle sarcoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号