首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three forms of cytochrome P-450 were purified to homogeneity from liver microsomes of Wistar-strain rats treated with phenobarbital. They had minimum mol.wts. of 52 000, 53 000 and 54 000 as determined by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and are designated as P-450(L), P-450(M) and P-450(H) respectively. They were shown to be immunoidentical by Ouchterlony double-diffusion analysis. Several criteria, such as isoelectric points, substrate specificities and sensitivities to tryptic digestion, however, indicated that these cytochromes are distinct isoenzymes of cytochrome P-450. Whereas P-450(L) was highly active on various substrates, P-450(H) had generally low catalytic activities, except on aminopyrine. The cytochromes purified by immunoaffinity chromatography using anti-P-450(L) showed a marked variation in their distribution depending on the strain and colony of rat. Limited tryptic digestion of P-450(H) gave one tryptic peptide showing the same mobility as P-450(L) by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and their primary structures were very similar. The result suggests a possibility that such limited proteolysis is involved in the post-translational modification of the cytochrome or its destruction.  相似文献   

2.
S D Black 《FASEB journal》1992,6(2):680-685
The membrane topology of the mammalian P450 cytochromes has been studied intensively by computational approaches, proteolysis, chemical modification, genetic engineering, and immunochemistry. Initial results for the cytochromes of the endoplasmic reticulum appeared to indicate a polytopic, four to eight transmembrane anchor model with an active site buried in the membrane. However, recent findings show that the microsomal P450s are bound to the endoplasmic reticulum by only one or two transmembrane peptides located at the NH2-terminal end, and that the active site is part of a large cytoplasmic domain that may have one or two additional peripheral membrane contacts. The membrane-bound state is viewed as rather rigid, and the plane of the heme lies between perpendicular and parallel to the plane of the endoplasmic reticulum. The mitochondrial P450 cytochromes lack a hydrophobic NH2 terminus in the mature form, and thus differ from the microsomal isozymes in this significant way. However, although the exact topology of cytochrome P450 in the inner mitochondrial membrane remains to be elucidated, certain features are clearly comparable to those of microsomal P450. Therefore, the membrane topology of the P450 gene superfamily may follow a similar pattern.  相似文献   

3.
Metabolism of triphenylene by liver microsomes from control, phenobarbital(PB)-treated rats and 3-methylcholanthrene(MC)-treated rats as well as by a purified system reconstituted with cytochrome P-450c in the absence or presence of purified microsomal epoxide hydrolase was examined. Control microsomes metabolized triphenylene at a rate of 1.2 nmol/nmol of cytochrome P-450/min. Treatment of rats with PB or MC resulted in a 40% reduction and a 3-fold enhancement in the rate of metabolism, respectively. Metabolites consisted of the trans-1,2-dihydrodiol as well as 1-hydroxytriphenylene, and to a lesser extent 2-hydroxytriphenylene. The (-)-1R,2R-enantiomer of the dihydrodiol predominated (70 to 92%) under all incubation conditions. Incubation of racemic triphenylene 1,2-oxide with microsomal epoxide hydrolase produced dihydrodiol which was highly enriched (80%) in the (-)-1R,2R-enantiomer. Experiments with 18O-enriched water showed that attack of water was exclusively at the allylic 2-position of the arene oxide, indicating that the 1R,2S-enantiomer of the oxide was preferentially hydrated by epoxide hydrolase. Thiol trapping experiments indicated that liver microsomes from MC-treated rats produced almost exclusively (greater than 90%) the 1R,2S-enantiomer of triphenylene 1,2-oxide whereas liver microsomes from PB-treated rats formed racemic oxide. The optically active oxide has a half-life for racemization of only approximately 20 s under the incubation conditions. This study may represent the first attempt to address stereochemical consequences of a rapidly racemizing intermediary metabolite.  相似文献   

4.
Cytochrome P-450 was purified from phenobarbital-treated guinea pigs to a specific content of 19.8 nmoles per mg of protein, and was free of cytochrome b5 and NADPH-cytochrome c reductase. The purified cytochrome P-450 gave a single protein band on sodium dodecylsulfate-polyacrylamide gel electrophoresis, and an apparent molecular weight of about 49,000 was estimated. Benzphetamine N-demethylation activity could be reconstituted by mixing the purified cytochrome, NADPH-cytochrome c reductase and phosphatidylcholine.  相似文献   

5.
6.
Circular dichroism (CD) spectra were measured for cytochromes P-450 (P-450) purified from phenobarbital- and 3-methylcholanthrene-induced rabbit liver microsomes. No striking difference in alpha-helix content was seen between phenobarbital-induced P-450 (PB P-450) (50%), phenobarbital-induced P-448 (PB P-448) (40%) and 3-methylcholanthrene-induced P-448 (MC P-448) (45--50%) in terms of ultraviolet CD spectra. Strong negative CD spectra associated with 3-methylcholanthrene transitions for MC P-448 in the near-ultraviolet region (250--310 nm) and weaker negative CD spectra associated with Soret transitions for PBP-448 ([theta] = 50 000) and MCP-448 ([theta] = 160 000), indicated that structures of these preparations are strikingly different from each other. Reduction of P-450 and P-448 led to a remarkable decrease of the Soret CD trough, suggesting that reduction was accompanied by a striking conformational change in the vicinity of the heme. Since CO complexes of reduced P-450 and P-448 showed a CD trough and an S-shaped CD, respectively, associated with the absorption peak at 450 nm, the heme vicinities are remarkably different from each other. The CD spectra in the visible region are also discussed. It was noticed that P-420, the denatured form of P-450, exhibited no CD spectra in the Soret and visible regions.  相似文献   

7.
Cytochromes P-450 and P-448 in rat liver microsomes were solubilized with sodium cholate and were partially purified. The preparations contained 5.0–5.5 nmoles of cytochrome P-450 or P-448 per mg of protein; contamination with cytochrome P-420 and cytochrome b5, was less than 10% of the total heme content. The absolute spectra of Cytochromes P-450 and P-448 differed only slightly; both hemoproteins had a Soret peak at 418–419 nm in the oxidized absolute spectra and at 448 and 450 nm in the reduced plus CO absolute spectra. Both hemoproteins showed typical type I (benzphetamine) and type II (aniline) binding spectra but differed in their binding of hexobarbital (another type I substrate). The total phospholipid content of the preparation (per mg protein) has been reduced by approximately 90% relative to microsomes and the hemoprotein has been purified 20–25 fold with respect to phospholipid. The partially purified hemoprotein fractions, after combination with a reductase and lipid fraction, were capable of oxidizing a variety of substrates inluding drugs, steroids, and chemical carcinogens.  相似文献   

8.
Incubation of [3H]-sidechain-labeled and [14C]-C(4)-ring-labeled cyclophosphamide (CPA) with purified cytochrome P-450 from liver microsomes of rats treated with phenobarbital resulted in the production of a major metabolite that contained both labels, was unaffected by diazomethane, possessed high polarity, was identical in TLC and HPLC behavior to a synthetic standard, didechlorodihydroxy-CPA, and was converted to CPA and bis(2-chloroethyl)amine by thionyl choloride. These results indicate that phenobarbital-inducible cytochrome P-450 is able to dechlorinate CPA and may account, in part, for the inability of phenobarbital to enhance the therapeutic activity and toxicity of this important anticancer and immunosuppressive agent.  相似文献   

9.
Two forms of cytochrome P-450 (P-450MC1 and P-450MC2) were purified from liver microsomes of crab-eating monkeys (Macaca irus) treated with 3-methylcholanthrene (MC). Monkey P-450MC1 preparation had a specific content of 14.0 nmol/mg protein and showed a main protein band with a minimum molecular weight of 52,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Monkey P-450MC2 preparation had a specific content of 12.1 nmol/mg protein and a minimum molecular weight of 54,000. The carbon monoxide-reduced difference spectral peaks of monkey P-450MC1 and P-450MC2 were at 448 and 447 nm, respectively. In the reconstituted system, monkey P-450MC2 had high activities for benzo[a]pyrene 3-hydroxylation and 7-ethoxycoumarin O-deethylation. Monkey P-450MC1 had low activities toward these two substrates and a high activity for benzphetamine N-demethylation. Monkey P-450MC1 and P-450MC2 were detected by immunoblotting using an antibody prepared against rat cytochrome P-450c, which is a major form of cytochrome P-450 in liver microsomes of MC-treated rats. These results suggested that the molecular properties of cytochrome P-450 in liver microsomes of crab-eating monkeys treated with MC are similar to those in rats.  相似文献   

10.
The hypothesis of a preferential biosynthesis of a major phenobarbital inducible form of hepatic cytochrome P-450 (P-450b) in mitochondria-associated rough endoplasmic reticulum (RERmito) was tested by measuring incorporation rates of [35S]methionine and delta-amino[3H]levulinate into the hemoprotein in adult rats. RERmito, rough microsomes (RM representing RER not associated with mitochondria) and smooth microsomes (SM) were quantitatively isolated from the same homogenate by rate zonal centrifugation and their content of P-450b determined by rocket immunoelectrophoresis. P-450b was isolated by immunoprecipitation from detergent-solubilized membrane fractions. The time course and rate of incorporation of [35S] methionine into immunoprecipitable P-450b of RERmito and of RM were similar at all time points studied (2-15 min) both under conditions of maximal induction (4 injections of phenobarbital in 4 days) and after a single injection of phenobarbital. The incorporation of [35S]methionine into P-450b of SM was slower at early time points (2-8 min) but similar to RERmito and RM after 15 min. In contrast, at short labeling periods (less than 8 min) more delta-amino[3H]levulinate was incorporated into P-450b of RERmito than into P-450b of RM and SM. No significant accumulation of free apocytochrome P-450b was found in either membrane fraction. These data indicate a close coordination of the biosynthesis and assembly of apocytochrome P-450b and its prosthetic heme but do not support the hypothesis of a major functional role of MITO X RER complexes in the synthesis of microsomal cytochrome P-450b.  相似文献   

11.
Addition of p-nitroanisole to a reaction mixture containing phenobarbital-pretreated rabbit liver microsomes brings about an increase the reoxidation rate of NADH-reduced cytochrome b5. Addition of partially purified cytochrome b5 to a solution containing microsomes results in a marked increase in both NADH- and NADPH-dependent O-demethylation of p-nitroanisole. p-Nitroanisole also increases the rate of NADH mediated cytochrome P-450 reduction. From these and other results described in the Discussion section, we confirm that electrons required for NADH-dependent O-demethylation of p-nitroanisole is transfered from NADH to cytochrome P-450 via cytochrome b5 and that cytochrome P-450 is the enzyme which catalyzes p-nitroanisole O-demethylation.  相似文献   

12.
ER to Golgi transport requires the function of two distinct vesicle coat complexes, termed COPI (coatomer) and COPII, whose assembly is regulated by the small GTPases ADP-ribosylation factor 1 (ARF1) and Sar1, respectively. To address their individual roles in transport, we have developed a new assay using mammalian microsomes that reconstitute the formation of ER-derived vesicular carriers. Vesicles released from the ER were found to contain the cargo molecule vesicular stomatitis virus glycoprotein (VSV-G) and p58, an endogenous protein that continuously recycles between the ER and pre-Golgi intermediates. Cargo was efficiently sorted from resident ER proteins during vesicle formation in vitro. Export of VSV-G and p58 were found to be exclusively mediated by COPII. Subsequent movement of ER-derived carriers to the Golgi stack was blocked by a trans-dominant ARF1 mutant restricted to the GDP-bound state, which is known to prevent COPI recruitment. To establish the initial site of coatomer assembly after export from the ER, we immunoisolated the vesicular intermediates and tested their ability to recruit COPI. Vesicles bound coatomer in a physiological fashion requiring an ARF1-guanine nucleotide exchange activity. These results suggest that coat exchange is an early event preceding the targeting of ER-derived vesicles to pre-Golgi intermediates.  相似文献   

13.
The orientation of eukaryotic cytochromes P450, with respect to the membrane of the endoplasmic reticulum, has been investigated. There is now good evidence that the tertiary structure of these proteins is essentially the same as that of the soluble bacterial isoenzyme cytochrome P450CI, with the exception of an extension at the N-terminus which is thought to form a membrane-anchoring sequence. The remainder of the molecule protrudes from the cytosolic face of the membrane so that it can interact with substrates and electron-donating proteins. Two models based on this structure have been considered, in which the plane of the heme of cytochrome P450 is oriented either parallel with or perpendicular to the plane of the membrane of the endoplasmic reticulum. The validity of these models has been assessed from the results of studies involving the binding of antipeptide antibodies directed toward known regions of cytochromes P450, modeling of the interaction of cytochrome P450 with cytochrome b5, proposed intramolecular movements of cytochrome P450 during its catalytic cycle, and the partitioning of substrates for cytochrome P450 between the cytosol and membrane. It is concluded that cytochrome P450 is most likely oriented such that the heme is not fixed horizontal to the plane of the membrane of the endoplasmic reticulum and may well lie with the heme perpendicular to the membrane.  相似文献   

14.
The quaternary structure of rat liver cytochrome P-450 within microsomal membranes from 3-methyl-cholanthrene-treated rats was examined by a novel chemical cross-linking-monoclonal antibody approach. Complex formation among the different forms of P-450 was probed by cross-linking of membrane proteins followed by immunopurification with a monoclonal antibody (mAb) to P-450c, the major 3-methylcholanthrene-inducible form. Subsequent immunoblot analysis of the immunopurified proteins with this mAb indicated that P-450c formed complexes with other microsomal proteins. Immunoblots with mAbs to different P-450s were carried out to identify the P-450s that were cross-linked to P-450c. This approach detected specific cross-linking of P-450c to P-450 2a. Immunoinhibition experiments suggest that P-450 2a further metabolizes the primary phenols produced by P-450c-catalyzed hydroxylation of benzo[a]pyrene. Complex formation among membrane-bound enzymes has implications for their catalytic efficiency and an approach combining cross-linking and monoclonal antibody-based characterization of cross-linked proteins will be useful for elucidating such membrane protein macrostructures.  相似文献   

15.
Low-temperature EPR examination of rat liver microsomes from control, phenobarbital-treated, and methylcholanthrene-treated animals showed the presence of both high- and low-spin ferric cytochromes P-450 and P-448. Partially purified cytochromes P-450 (from control and phenobarbital-treated rats) and P-448 (from methylcholanthrene-treated rats) were also examined with EPR. In all cases, both high- and low-spin ferric forms of cytochromes P-450 and P-448 could be observed and were found to be essentially identical compared to the microsomal preparations. However, the level of high-spin species in the soluble P-448 preparation from methylcholanthrene-treated animals was less than could be observed in the liver microsomes from the same animals. The addition of substrates increased the concentration of the high-spin form in the soluble preparations obtained from drug-treated animals. Thus, cytochromes P-450 and P-448 exist as mixtures of high- and low-spin forms. It is concluded that the substrate specificity of these cytochromes is not predetermined by the spin state of the hemoprotein. In all liver microsomal and soluble preparations, the low-spin ferric form of the hemoprotein consisted of more than a single species as determined from the EPR examinations. Each of these species upon reduction and the addition of CO yielded an identical optical spectrum. In all cases, for the ferric protein, a mercaptide sulfur is believed to be a heme ligand while the other heme ligand is variable.  相似文献   

16.
NADPH-cytochrome P-450 reductase has been purified to electrophoretic homogeneity from rabbit liver microsomes by a procedure that may be used in conjunction with the isolation of the major forms of cytochrome P-450. The purified reductase is active in a reconstituted hydroxylation system containing P-450LM2 or P-450LM4. The enzyme contains one molecule each of FMN and FAD per polypeptide chain having an apparent minimal molecular weight of 74,000. Immunological techniques provided evidence for only a single form of the reductase; lower molecular weight forms occasionally seen are believed to be due to degradation by contaminating microsomal or bacterial proteases. Upon anaerobic photochemical reduction, the rabbit liver reductase undergoes spectral changes highly similar to those previously described by Vermilion and Coon for the rat liver enzyme; the fully reduced rabbit liver enzyme is converted to the three-electron-reduced form by the addition of NADP and then to the stable one-electron-reduced form by exposure to oxygen. The CD spectra of the fully oxidized enzyme, one-electron-reduced form (air-stable semiquinone), three-electron-reduced form, and fully reduced form are presented. The results obtained provide evidence that the FMN and FAD are in highly different environments in the enzyme, as also indicated by the different redox potentials and oxygen reactivities of the flavins.  相似文献   

17.
The activities of cytochrome P-450-dependent monooxygenases has been investigated in the liver microsomes of newborn rats (3-16 days after birth) induced with PB or 3-MC. It has been shown that the induction by PB and 3-MC results in the increase of both the total amount of cytochrome P-450 as determined by the CO-reduced spectrum and the amount of induced forms P-450b/e and P-450c respectively. In the course of induction of the specific forms of cytochrome P-450 BP-hydroxylase and 7-ER-O-deethylase activities increased at 3-MC-induction, while BPh-N-demethylase and BP-hydroxylase increased at PB-induction. Analysis of inhibition of monooxygenase reactions with antibodies has showed that only P-450c was involved in metabolism of BP and 7-ER. Participation of P-450b/e in BPh N-demethylation was notably lower in the neonates in comparison to the adult rats. In the one-week-old rats induced with 3-MC a considerable rate of BP hydroxylation and 7-ER O-deethylation (2-4.5 nmol of product min-1 mg-1) has been observed despite a small amount of P-450 (0.02-0.1 nmol/mg of protein). This fact shows the higher catalytic activity of this cytochrome P-450 in the neonates compared to similar characteristics of P-450c in the 3-MC-induced microsomes. Metabolism of BP in the PB-microsomes of the neonatal rats was inhibited neither by anti-P-450b/e nor anti-P-450c in contrast to the adults, where this reaction was inhibited by antibodies against P-450b/e.  相似文献   

18.
Antibodies produced against two forms of cytochrome P-450, PB-B and MC-B, which were purified to apparent homogeneity from hepatic microsomes of rats pretreated with phenobarbital and 3-methylcholanthrene, respectively, have been employed to localize these hemoproteins immunohistochemically at the light microscopic level in the livers of untreated rats. Using these antibodies in an unlabeled antibody peroxidase-antiperoxidase technique, immunohistochemical staining for the cytochromes P-450 was detected in parenchymal cells throughout the liver lobule. The patterns of immunohistochemical staining intensity observed with the two antibodies, however, were quite different. Exposure of liver sections to the antibody to cytochrome P-450 PB-B resulted in intense immunostaining within the centrilobular regions but produced staining of considerably weaker intensity in the peripheral regions of the lobule. In contrast to these observations, the antibody to cytochrome P-450 MC-B yielded a more uniform pattern of immunohistochemical staining, with the intensity of staining being only slightly greater in the centrilobular regions. The results of this immunohistochemical study thus demonstrate that different patterns of distribution exist for different forms of cytochrome P-450 within the liver lobule and that the greatest concentration of cytochrome P-450 occurs within the centrilobular regions of the liver.  相似文献   

19.
Six rat hepatic cytochromes P-450, named P-450IF-1-6, were purified from hepatic microsomes of immature female rats by high-performance liquid chromatography with anion-exchange, cation-exchange, and hydroxylapatite columns. The purified forms, except for P-450IF-4, gave a single protein-staining band on SDS-polyacrylamide gel electrophoresis, with a minimum molecular weight of 50,000 for P-450IF-1, 49,000 for P-450IF-2, 47,000 for P-450IF-3, 53,500 for P-450IF-5, and 54,000 for P-450IF-6. The CO-reduced spectral maximum of these forms was at 450 nm for P-450IF-1, 448 nm for P-450IF-2, 451 nm for P-450IF-3, 449 nm for P-450IF-4, 449 nm for P-450IF-5, and 450 nm for P-450IF-6. All of these cytochromes had the low-spin state of heme in the oxidized form. P-450IF-4 had high metabolic activity for both benzphetamine and 7-ethoxycoumarin. P-450IF-5 had moderate activity toward 7-ethoxycoumarin. P-450IF-3 catalyzed the hydroxylation of testosterone at the 7 alpha-position effectively, but the other forms did not hydroxylate testosterone. Analysis of the NH2-terminal sequence showed that P-450IF-1, 2, 3, 5, and 6 differed structurally from each other. The sequences of P-450IF-1 and IF-2 were somewhat homologous, but the NH2-terminal sequences of the other forms were all different. Based on these results, we concluded that P-450IF-1 corresponded to one of the phenobarbital-inducible forms in male rat liver. P-450IF-2 was a female-specific form and its concentration was low.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Purification of a new cytochrome P-450 from human liver microsomes   总被引:3,自引:0,他引:3  
Using a classical methodology of purification consisting of three chromatographic steps (Octyl-Sepharose, DEAE-cellulose, CM-cellulose) we have purified a new cytochrome P-450 from human liver microsomes. It was called cytochrome P-450(9). It has been proven to be different from all precedingly purified human liver microsomal cytochrome P-450 isozymes by its immunological and electrophoretical properties. It does not cross-react with any rat liver cytochrome P-450 and anti-cytochrome P-450(9) does not recognize rat liver microsomes; thus this cytochrome P-450(9) is specific to humans. This cytochrome P-450 isozyme exists in low amounts in human liver microsomes and exhibits an important quantitative polymorphism. In reconstituted system, cytochrome P-450(9) is able to hydroxylate all substrates tested but is not specific of any; its exact role in xenobiotic metabolism in man remains to be elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号